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Abstract—A Self-Adaptive Network Coding TCP protocol is 

proposed for dynamical adaptation of the redundancy factor in the 

network, including the case of a wireless network. It trims packet 

loss effectively via redundant packets of network coding. It also 

adapts certain traffic information, to be stored in the header of TCP 

or ACK packets, thus enables the sender to dynamically adjust the 

redundancy factor of the network. Simulation of traffic fluctuation 

in the real network shows better utilization of communication 

channels and better throughput by the proposed protocol than TCP-

Vegas as well as NC-TCP. 

Keywords-network coding; packet loss; TCP 

I. INTRODUCTION  

Network coding is a technique where, instead of simply 
forwarding the packets the nodes receive, they will combine 
several packets together for transmission in order to be used for 
attain the maximum possible information flow in a network. It 
has emerged as an important potential approach to the 
operation of communication network, including the case of a 
wireless network where network coding can trim losses 
effectively. The major advantage of network coding is masking 
packet loss by mixing data across time and across flows [1-3]. 
In lossy networks, network coding can mask the packet loss via 
redundant packets, thus decrease the delay caused by the 
timeout and to raise the utilization of the channels. However, 
we still seem far from seeing widespread implementation of 
network coding across network. Since network coding can 
bring benefits in terms of throughput and robustness [4,5], how 
to put it into practice in real communication network is the 
main problem that needs to be solved. To do so, firstly, we 
need to plant network coding into TCP properly with minor 
changes to the protocol stack, thereby allowing incremental 
development. We therefore see a need to find a sliding-window 
approach as similar as possible to TCP for network coding that 
makes use of acknowledgments for flow and congestion 
control [6]. Such an approach would necessarily differ from the 
generation-based approach more commonly considered for 
network coding [7, 8]. Secondly, we need to solve the delay of 

encoding and decoding caused by network coding, which can 
do harm to the performance of networks. 

TCP-NC protocol was presented in 2008 [9] which 

successfully implemented the network coding into TCP with 

minor changes to the protocol stack. The key idea was adding a 

network coding layer between transport layer and IP layer to 

masks packet losses from congestion algorithm. In fact, 

masking losses from TCP was considered earlier by using link 

layer retransmission [10]. Yet it has been noted in [11] and [12] 

that the interaction between link layer retransmission and TCP 

retransmission is complicated and the performance may suffer 

due to independent retransmission protocols at different layers. 

TCP-NC modifies the ACK echo system, and brings in a new 

notion “see packets”. The biggest difference compared to the 

original mechanism is that under network coding the receiver 

does not obtain original packets of the message, but linear 

combinations that are then decoded to get the original message 

once enough such combinations have arrived. The “see packets” 

notion can perfectly adapt to these changes, and before explain 

the notion, they introduce a definition that will be useful 

throughout the paper [3]. In NC-TCP, packets are treated as 

vectors over a finite field F𝑞  of size q. All the discussion here is 

with respect to a single source that generates a stream of 

packets. The k
th
 packet that the source generates is said to have 

an index k and is denoted as pk. As a result, a node is said to 

have seen a packet pk if it has enough information to compute a 

linear combination of the form (pk + q), where q =  𝛼𝑙𝐩𝑙𝑙>𝑘  , 

with αl ∈ F𝑞  for all l > k. Thus, q is a linear combination 

involving packets with indices larger than k. To conclude, there 

are two main differences in our scheme. First, whenever the 

source is allowed to transmit, it sends a random linear 

combination of all packets in the congestion window. Second, 

the receiver acknowledges every sequence number of seen 

packet. Additionally it brings in a redundancy factor R, which 

is used for masking the packet loss. For example, if the loss 

rate is about 10%, then the optimal R equals to 1/ (1-

10%) ≈ 1.11, this means the sender will send one more 

redundant packet every ten packets NC-TCP achieves a goal, 
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that is, planting network coding into TCP properly. In some 

communication networks, where the loss rate is roughly 

constant, via setting the redundancy factor R to an optimal 

number, a better throughput can got compared to the original 

TCP. 

TCP-DNC protocol is presented in 2009 [13], which 

focuses on reducing the decoding delay and redundancy by 

adding some information in packet‟s header. It inherits the 

coding approach and “see packets” notion presented by the 

NC-TCP scheme [9]. In the receiver, the TCP-DNC brings in a 

new factor “loss”, which indicates how many combinations the 

sender needs to retransmit enable the receiver decode all the 

combinations it has received. The “loss” factor will be sent 

back to the sender, and the sender uses this factor to decide 

how many redundant packets should be sent and how many 

original packets should be coded. By doing this, this new 

scheme can avoid the retransmission of the useless redundant 

packets, and due to sending redundancy packets coded by the 

appropriate number of original packets, it significantly reduces 

the decoding delay and improves the performance of the 

networks.   
We propose a new scheme named SANC-TCP protocol, 

which mainly optimizes the scheme based on NC-TCP. To be 
concrete, in NC-TCP, the redundancy factor R is constant, we 
need to know the loss rate of the network circumstance, and set 
R to the optimal number. However, when the system is under 
lossy networks, especially wireless network where the loss rate 
is not constant, the constant redundancy factor R may cause 
problems, either sending bunches of useless redundancy 
packets or being not able to mask the packets loss. Both will 
impair the performance of the network. As a result, we need to 
find a scheme to adjust R adaptively to the real system, aiming 
to better the utility of the networks and decrease the 
retransmission of the useless redundant packets. Our new 
scheme, SANC-TCP, adds some feedback information in the 
ACK header, to indicate the current network state, thus enable 
the sender to dynamically change the R according to the real 
system. 

In Section I, we get an overview of the NC-TCP scheme, 
and describe the basic theory for background; In Section Ⅱ, 
we introduce the arithmetic of the Active-R NC-TCP Protocol; 
In Section Ⅲ, we prove the fairness of our new scheme 
compared to the old one; In Section Ⅳ, we demonstrate the 
effectiveness of the new protocol, and show its advantage over 
the old others. Finally, in Section Ⅴ, we make a succinct 
conclusion of the whole article. 

II. SELF-ADAPTIVE NC-TCP PROTOCOL 

In this section, we will describe the basic ideas of the 
SANC-TCP protocol and the arithmetic for dynamically 
adjusting the redundancy factor R. 

The SANC-TCP aims to better the utilization of channels 
by dynamically adjusting the redundancy factor R in unknown 
lossy networks. To fulfill this target, we make some minor 
changes to the original protocol stack via adding two variables 
to the ACK header, i.e., loss and echo_pktID. At the receiver, 

the difference which is indicated by loss between the largest 
packet index in the coefficient vector and the number of seen 
packets implies the number of packets the sender needs to 
retransmit. Another variable echo_pktID indicates the packet 
ID of which packet generates this ACK. At the sender, once it 
receives a new ACK, it checks the echo_pktID. When 
echo_pktID = 10 or echo_pktID > 10 for the first time, it starts 
to adjust the R. First, the sender picks up the variable loss from 
the header of ACK, then figures out the value of diff_loss_new, 
that is, diff_loss_new = loss – loss_old, where diff_loss_new 
indicates the effect of the redundant packets that sended in the 
latest turn. The new R = 1 + (diff_loss_new/10)*2 + 
diff_loss_old/10 , and the original diff_loss_old = 0. The 
current variables echo_pktID, diff_loss_new, loss and R, that is 
W = echo_pktID, diff_loss_old = diff_loss_new, loss_old = loss, 
R_old = R is also recorded; For example, if the sender receives 
a new ACK, and the echo_pktID in the ACK equals to 10, then 
the sender decides to adjust the R. Suppose one packet lose 
among the first ten packets, then the loss_new = 1. Meanwhile, 
the loss_old = 0 originally. So, the new redundancy factor R = 
1 + (1/10)*2 + 0 = 1 + 0.1*2 + 0 = 1.2. After this, the sender 
keeps checking echo_pktID from every new ACK. When 
echo_pktID = W + 10*R, or echo_pktID > W + 10*R for the 
first time, adjust the R. At this time, R = R_old + 
(diff_loss_new/10)*2 + diff_loss_old/10. Record the current 
variables echo_pktID, diff_loss_new, loss and R, that is W = e 
echo_pktID, diff_loss_old = diff_loss_new, loss_old = loss, 
R_old = R. If the result of R is smaller than 1, set the R to 1. 
For example, if the previous echo_pktID = 200, R = 1.1, and 
the sender did not receive ACK which contain echo_pktID = 
211 or echo_pktID = 212. Then, when it receives the ACK 
whose echo_pktID = 213, the sender starts to adjust the R. At 
the receiver when this ACK is generated, if loss_new = 20, 
loss_old = 19, then diff_loss = 20 – 19 = 1; This time, at the 
sender, if diff_loss_old = 1, then R = 1.1 + (1/10)*2 + 1/10 = 
1.4.  

To make it clear, we independently describe the actions 
which are taken on the sender and receiver side. Provided we 
have introduced a network coding layer between the transport 
layer and the IP layer. 

(1) Receiver side: The receiver side algorithm has to 
respond to two types of events – the arrival of a packet 
from the sender, and the arrival of ACKs from the TCP 
sink. 

1. Wait state: If any of the following events occurs, 
respond as follows; else wait. 

2. ACK arrives from TCP sink: If the ACK is a control 
packet for connection management, deliver it to the IP 
layer and return to the wait state; else, ignore the ACK. 

3. Packet arrives from the sender side: 

a) Remove the network coding header and retrieve the 
coding vector. 

b) Add the coding vector as a new row to the existing 
coding coefficient matrix, and perform Gaussian 
elimination to update the set of seen packets. 
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c) Add the payload to the decoding buffer. Perform the 
operations corresponding to the Gaussian 
elimination, on the buffer contents. If any packet 
gets decoded in the process, deliver it to the TCP 
sink and remove it from the buffer. 

d) Count the variable loss which equals to the 
difference between the largest packet index in the 
coefficient vector and the number of seen packets; 
Pick up the value of pktID from the received 
packet‟s header, record it to echo_pktID. 

e) Generate a new ACK with sequence number equals 
to that of the oldest unseen packets and add two 
variables loss and echo_pktID to the ACK header. 

(2) Sender side: On the sender side, the algorithm again has 
to respond to two types of events – the arrival of a packet from 
the sender TCP, and the arrival of an ACK from the receiver 
via IP. 

1.  Set NUM to 0; 

2.  Wait state: If any of the following events occurs, 
respond as follows; else wait. 

3.  Packet arrives from TCP sender: 

   a) If the packet is a control packet used for connection 
management, deliver it to the IP layer and return to 
wait state. 

   b) If packet is not already in the coding window, add it to 
the coding window. 

   c) Set NUM = NUM + R. (R = redundancy factor) 

   d) Repeat the following  NUM NUM] times: 

i) Generate a random linear combination of the 
packets in the coding window. 

ii) Add the network coding header specifying the set 
of packets in the coding window and the 
coefficients used for the random linear 
combination. Add the variable pktID to the 
network coding header. 

iii) Deliver the packet to the IP layer. 

   e) Set NUM:= fraction part of NUM. 

   f) Return to the wait state. 

4.  ACK arrives from receiver: 

a) Pick up the variable echo_pktID, to judge if it is time to 
adjust the value of R. 

i) If echo_pktID = W + 10*R_old or echo_pktID > W 
+ 10*R_old for the first time, start to reset the 
value of R.  

Ⅰ) Extravagate the value of loss from the ACK 
header, diff_loss_new = loss – loss_old;  

Ⅱ) Then R_new = R_old + 2*(diff_loss_new/10) + 
diff_loss_old/10. 

Ⅲ) Record variables, such as, R_old = R_new; 
diff_loss_old = diff_loss_new; loss_old = loss; 
W = W + 10*R_new.  

ii) else doing nothing and move to state b). 

b) Remove the ACKed packet from the coding buffer and 
hand over the ACK to the TCP sender. 

Following the approach above, the sender adjusts the 
redundancy factor R from time to time, thus to dynamically 
change the R according to the real system. The algorithm to 
adjust the redundancy factor R in the sender is showed in 
Figure 1. 

Start

Pick up 

echo_pktID

If echo_pktID == 

W + 10*R_old
If echo_pktID > W + 

10*R_old

If echo_pktID > W + 

10*R_old for the first 

time

Finish

figure out 

diff_loss_new

Refresh R

Record 

R_old,diff_loss_
old,loss_old and 

W

Yes

Yes

Yes

No No

No

Figure 1. The algorithm to adjust the redundancy factor R in the sender 

III. FAIRNESS OF THE NEW PROTOCOL 

We use the network simulator-2 [14] to access the 
performance of different protocols in network. The topology 
for all the simulations is a tandem network consisting of 8 hops 
(hence 9 nodes), shown in Figure 2. 

In this system, there are two flows generated by two FTP 
applications. One is from node 0 to node 7, and the other is 
from node 1 to node 8. They will compete for the intermediate 
channels and nodes. All the channels have a bandwidth of 1 
Mbps, and a propagation delay of 10ms. The buffer size on the 
channel is set to 200. The TCP receive window size is set to 40 
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packets, and the packet size is 1000 bytes. The Vegas 

parameters are chosen to be α =28, β = 30, γ =2.  

  
Figure 2. A tandem network consisting of 8 hops 

 

By fairness, we mean that if two or more similar flows 
compete for the same channel, they must receive an 
approximately equal share of the channel bandwidth. In 
addition, this must not depend on the order in which the flows 
join in the network. It is well known that depending on the 

value chosen for α  and β , TCP-Vegas could be unfair to an 

existing connection when a new connection enters the 
bottleneck link. In our simulation, we first choose a certain 

value of α  and β  (in this case, α =28, β =30) that allows fair 

sharing of bandwidth when two TCP-Vegas flows without our 

modification. Then, we choose the same value of α  and β , 

and figure out the fairness characteristic under three different 
situations: 

Situation 1: a TCP-Vegas flow competes with an SANC-

TCP flow. 

Situation 2: an SANC-TCP flow competes with another 

SANC-TCP flow. 
Situation 3: five SANC-TCP flows compete with each 

other. 

In Situation 1, the loss rate is set to 0%, and the SANC-
TCP flow starts at 0.5s while TCP-Vegas flow is 200s later. 
The SANC-TCP flow ends at 800.5s, while TCP-Vegas flow 
ends at 1000.5s. The system is simulated for 1100s. The 
current throughput is calculated at intervals of 2.5s. The 
evolution of the two flows‟ throughput over time is shown in 
Figure 3 which indicates, when TCP-Vegas flow joins in the 
channel, it quickly shares an equal amount of bandwidth of the 
channel with the previous SANC-TCP flows, thus proving the 
fairness of new SANC-TCP. 

In Situation 2, the loss rate is set to 0%, and one of the 
SANC-TCP flows start at 0.5s while the other one is 300s later, 
and they both end at 1000.5s. The system is simulated for 
1100s. The current throughput is calculated at intervals of 2.5s. 
The evolution of the two flows‟ throughput over time is shown 
in Figure 4 which is similar to Figure 3. The latter flow quickly 
shares an equal amount of bandwidth of the channel with the 
former one after it joins in the system. This also demonstrates 
that the fairness of SANC-TCP. 

In Situation 3, five different SANC-TCP flows start 
independently at 0.5s, 100.5s, 200.5s, 300.5s, 400.5s. 
According to the result showed in Figure 5, when each flow 
comes into the channel, they quickly share equal amount of the 
channel‟s bandwidth compared to others, and thus, it proves 
that the SANC-TCP is strictly fair. 

IV. EFFECTIVENESS OF THE NEW PROTOCOL 

Backed-up by the simulation, we now try to prove that our 

new protocol SANC-TCP has a better throughput rate and 

utilization of the channels under unknown lossy channels, 

compared to NC-TCP. In part A, we compare the throughput 

rate and the utility of three different protocols TCP-Vegas, 

NC-TCP, SANC-TCP under the same lossy channels, with 

different loss rate every measured time. For the NC-TCP, we 

set the redundancy factor at the optimum value corresponding 

to each loss rate. In part B, we set the redundancy factor to a 

constant number 1.11. The loss rate of the channels is varied 

from 10% to 45%. We will compare the throughput rate and 

the utilization of the channels between NC-TCP flow and 

SANC-TCP flow. Finally, in part C, we consider a situation 

called bursty loss situation, where there will be a sudden large 

loss rate for a short time in the system. We compare the 

performance of three different protocol flows under bursty 

loss situation. 

Fairness 

The topology setup is identical to that used in the fairness 

simulation, except that now we only use one FTP flow, which 

is from node 0 to node 7. We set the same loss rate on the 

channels between node 2 and node 6. For example, if we set 

loss rate to 0.1 on every channels between node 2 and node 6, 

we get the total loss rate 1 − (1 − 0.1)4  = 0.3439. When 

simulation starts, the FTP0 flow starts at 0.5s, and the 

intermediate channels start to lose packet in a certain rate at 

0.6s. The simulation time is set to 1000s. 

 
Figure 3. A TCP-Vegas flow compete with an SANC-TCP flow 
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Figure 4. an SANC-TCP flow compete with another SANC-TCP flow 

 

 
Figure 5. Five SANC-TCP flows compete with each other 

 

Simulation results are shown in Figure 6. The X-axis 
represents the various loss rate, and the Y-axis represents the 
throughput rate corresponding to different loss rate. As we set 
the link capacity to 1 Mbps, the Y-axis can also represents the 
utilization of the channels. The blue line is referred to TCP-
Vegas, the green line is referred to NC-TCP and the red is to 
SANC-TCP. To emphasize, under every different loss rate, the 
redundancy factor R is set to the optimal value. For example, if 
the loss rate is 20%, then the R is set to be 1 / (1-0.2) = 1.25. 
Figure 5 shows that, when the loss rate is 0%, the throughput of 
all three protocols almost reaches the optimal value 1Mbps. 
However, as the loss rate becomes larger, the throughput of 
TCP-Vegas descends drastically, while both NC-TCP and 
SANC-TCP are close to the theoretical value of maximum 
utilization of channels. For example, theoretical value of 
maximum utility of channels is 1Mbps * ( 1 – 20%) = 0.8Mbps 
when loss rate is set to 20%, as we can see NC-TCP and 
SANC-TCP are both close to it from Figure 6. 

 
Figure 6. The throughputs of three different flows 

 

 
Figure 7. The throughputs of TCP-NC flow and SANC-TCP flow 

 

Effectiveness 

In order to compare the throughput and utilization of the 

channel between NC-TCP flow and SANC-TCP flow under 

various loss rate, we set the R to 1.11 in NC-TCP flow case, 

while the other parameters of simulation environment are 

totally the same.  

As is shown in Figure 7, The X-axis represents the 

different loss rate which is varied from 10% to 45%, and the 

Y-axis represents the throughput rate corresponding to 

different loss rate which can also be understood as utilization 

of the channel. The green line is referred to NC-TCP flow and 

the red one is to SANC-TCP flow. When the loss rate is 10%, 

NC-TCP flow requires high throughput with R equals to 1.11 

as the optimal value and approximates SANC-TCP flow. 

However, as the loss rate becomes larger, the throughput of 

NC-TCP case descends drastically because it cannot mask the 

packet loss with the R value sticking to 1.11. Adversely, the 

throughput of SANC-TCP flow is close to theoretical value 

under every loss rate. For example, the theoretical value of 

maximum utility of the channel is 1Mbps * (1 – 30%) = 
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Figure 8. Bursty loss situations 

 

0.7Mbps when loss rate is set to 30%, and the SANC-TCP 

flow is close to it. In addition, given R equals to 1.11, lots of  

packets will be sent unnecessarily which leads to low 

performance if there are more than one flow in the network 

when the loss rate is smaller than 10%. SANC-TCP adjusts R 

to the practical condition and maintains it at the optimal state 

which avoids wasting bandwidth. 

Bursty 

In real wireless networks, the loss rate is affected by 

various reasons. Sudden large loss, we call it bursty loss, is 

one of the phenomena that occur in the system. To evaluate 

the performance of the three different protocol flows under 

bursty loss situation, we set a circumstance where the loss rate 

of the system is kept as 10%, except for the time from 500s to 

600s, the loss rate is changed to 30%. We use the same 

topology as Part A and Part B. 

As is shown in Figure 8, the X-axis represents the 

simulation time, and the Y-axis represents the throughput or 

the utilization of the channel. The blue line is referred to TCP-

Vegas flow, the green line is referred to NC-TCP flow whose 

redundant factor R is set to the optimal value of 1.11 and the 

red line is referred to SANC-TCP flow. During the time when 

the loss rate is kept in 10%, the NC-TCP flow and SANC-TCP 

flow can both nearly reach the theoretical value of the 

throughput. However, when the time comes to 500s, the loss 

rate is suddenly changed to 30% until 600s. According to 

Figure 8, NC-TCP flow suffers a lot during the time from 500s 

to 600s, the throughput is almost drop to 0. Comparably, the 

SANC-TCP shows its robustness to the bursty loss, and 

maintains the theoretical value of throughput during 500s to 

600s.  

V. CONCLUSION AND FUTURE WORKS 

Network coding is an effective tool to fight against non-

congestion losses. However, due to the different loss rate in 

different period of time in wireless networks, the NC-TCP 

with constant redundancy factor R cannot effectively solve the 

non-congestion losses problem by retransmitting redundant 

packets. In this work, we propose a new approach to 

dynamically adjust R to the real networks. As the redundancy 

factor R is no longer constant, we can change it according to 

the real current circumstance, thus better the performance 

under lossy networks where the loss rate is not constant. 

For future work, we plan to focus on the encoding and 

decoding delay problem which stands in the way for the 

network coding technology to implement in the real system. 
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