
Self-Adaptive TCP Protocol Combined with Network

Coding Scheme

Sicong Song
1
, Hui Li

1*
, Kai Pan

1
, Ji Liu

1
, Shuo-Yen Robert Li

2

1. Shenzhen Key Lab of Cloud Computing Technology & Application, Shenzhen Graduate School, Peking

University, Shenzhen, China, 518055

2. Dept. of Information Engineering, The Chinese University of Hong Kong, China

E-mail: songsc0707@yahoo.com.cn, lih64@pkusz.edu.cn, pankai0905@gmail.com, jliu@pkusz.edu.cn

bobli@ie.cuhk.edu.hk

Abstract—A Self-Adaptive Network Coding TCP protocol is

proposed for dynamical adaptation of the redundancy factor in the

network, including the case of a wireless network. It trims packet

loss effectively via redundant packets of network coding. It also

adapts certain traffic information, to be stored in the header of TCP

or ACK packets, thus enables the sender to dynamically adjust the

redundancy factor of the network. Simulation of traffic fluctuation

in the real network shows better utilization of communication

channels and better throughput by the proposed protocol than TCP-

Vegas as well as NC-TCP.

Keywords-network coding; packet loss; TCP

I. INTRODUCTION

Network coding is a technique where, instead of simply
forwarding the packets the nodes receive, they will combine
several packets together for transmission in order to be used for
attain the maximum possible information flow in a network. It
has emerged as an important potential approach to the
operation of communication network, including the case of a
wireless network where network coding can trim losses
effectively. The major advantage of network coding is masking
packet loss by mixing data across time and across flows [1-3].
In lossy networks, network coding can mask the packet loss via
redundant packets, thus decrease the delay caused by the
timeout and to raise the utilization of the channels. However,
we still seem far from seeing widespread implementation of
network coding across network. Since network coding can
bring benefits in terms of throughput and robustness [4,5], how
to put it into practice in real communication network is the
main problem that needs to be solved. To do so, firstly, we
need to plant network coding into TCP properly with minor
changes to the protocol stack, thereby allowing incremental
development. We therefore see a need to find a sliding-window
approach as similar as possible to TCP for network coding that
makes use of acknowledgments for flow and congestion
control [6]. Such an approach would necessarily differ from the
generation-based approach more commonly considered for
network coding [7, 8]. Secondly, we need to solve the delay of

encoding and decoding caused by network coding, which can
do harm to the performance of networks.

TCP-NC protocol was presented in 2008 [9] which

successfully implemented the network coding into TCP with

minor changes to the protocol stack. The key idea was adding a

network coding layer between transport layer and IP layer to

masks packet losses from congestion algorithm. In fact,

masking losses from TCP was considered earlier by using link

layer retransmission [10]. Yet it has been noted in [11] and [12]

that the interaction between link layer retransmission and TCP

retransmission is complicated and the performance may suffer

due to independent retransmission protocols at different layers.

TCP-NC modifies the ACK echo system, and brings in a new

notion “see packets”. The biggest difference compared to the

original mechanism is that under network coding the receiver

does not obtain original packets of the message, but linear

combinations that are then decoded to get the original message

once enough such combinations have arrived. The “see packets”

notion can perfectly adapt to these changes, and before explain

the notion, they introduce a definition that will be useful

throughout the paper [3]. In NC-TCP, packets are treated as

vectors over a finite field F𝑞 of size q. All the discussion here is

with respect to a single source that generates a stream of

packets. The k
th
 packet that the source generates is said to have

an index k and is denoted as pk. As a result, a node is said to

have seen a packet pk if it has enough information to compute a

linear combination of the form (pk + q), where q = 𝛼𝑙𝐩𝑙𝑙>𝑘 ,

with αl ∈ F𝑞 for all l > k. Thus, q is a linear combination

involving packets with indices larger than k. To conclude, there

are two main differences in our scheme. First, whenever the

source is allowed to transmit, it sends a random linear

combination of all packets in the congestion window. Second,

the receiver acknowledges every sequence number of seen

packet. Additionally it brings in a redundancy factor R, which

is used for masking the packet loss. For example, if the loss

rate is about 10%, then the optimal R equals to 1/ (1-

10%) ≈ 1.11, this means the sender will send one more

redundant packet every ten packets NC-TCP achieves a goal,

20

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

http://en.wikipedia.org/wiki/Packet_(information_technology)
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Flow_network
http://en.wikipedia.org/wiki/Network_theory

that is, planting network coding into TCP properly. In some

communication networks, where the loss rate is roughly

constant, via setting the redundancy factor R to an optimal

number, a better throughput can got compared to the original

TCP.

TCP-DNC protocol is presented in 2009 [13], which

focuses on reducing the decoding delay and redundancy by

adding some information in packet‟s header. It inherits the

coding approach and “see packets” notion presented by the

NC-TCP scheme [9]. In the receiver, the TCP-DNC brings in a

new factor “loss”, which indicates how many combinations the

sender needs to retransmit enable the receiver decode all the

combinations it has received. The “loss” factor will be sent

back to the sender, and the sender uses this factor to decide

how many redundant packets should be sent and how many

original packets should be coded. By doing this, this new

scheme can avoid the retransmission of the useless redundant

packets, and due to sending redundancy packets coded by the

appropriate number of original packets, it significantly reduces

the decoding delay and improves the performance of the

networks.
We propose a new scheme named SANC-TCP protocol,

which mainly optimizes the scheme based on NC-TCP. To be
concrete, in NC-TCP, the redundancy factor R is constant, we
need to know the loss rate of the network circumstance, and set
R to the optimal number. However, when the system is under
lossy networks, especially wireless network where the loss rate
is not constant, the constant redundancy factor R may cause
problems, either sending bunches of useless redundancy
packets or being not able to mask the packets loss. Both will
impair the performance of the network. As a result, we need to
find a scheme to adjust R adaptively to the real system, aiming
to better the utility of the networks and decrease the
retransmission of the useless redundant packets. Our new
scheme, SANC-TCP, adds some feedback information in the
ACK header, to indicate the current network state, thus enable
the sender to dynamically change the R according to the real
system.

In Section I, we get an overview of the NC-TCP scheme,
and describe the basic theory for background; In Section Ⅱ,
we introduce the arithmetic of the Active-R NC-TCP Protocol;
In Section Ⅲ, we prove the fairness of our new scheme
compared to the old one; In Section Ⅳ, we demonstrate the
effectiveness of the new protocol, and show its advantage over
the old others. Finally, in Section Ⅴ, we make a succinct
conclusion of the whole article.

II. SELF-ADAPTIVE NC-TCP PROTOCOL

In this section, we will describe the basic ideas of the
SANC-TCP protocol and the arithmetic for dynamically
adjusting the redundancy factor R.

The SANC-TCP aims to better the utilization of channels
by dynamically adjusting the redundancy factor R in unknown
lossy networks. To fulfill this target, we make some minor
changes to the original protocol stack via adding two variables
to the ACK header, i.e., loss and echo_pktID. At the receiver,

the difference which is indicated by loss between the largest
packet index in the coefficient vector and the number of seen
packets implies the number of packets the sender needs to
retransmit. Another variable echo_pktID indicates the packet
ID of which packet generates this ACK. At the sender, once it
receives a new ACK, it checks the echo_pktID. When
echo_pktID = 10 or echo_pktID > 10 for the first time, it starts
to adjust the R. First, the sender picks up the variable loss from
the header of ACK, then figures out the value of diff_loss_new,
that is, diff_loss_new = loss – loss_old, where diff_loss_new
indicates the effect of the redundant packets that sended in the
latest turn. The new R = 1 + (diff_loss_new/10)*2 +
diff_loss_old/10 , and the original diff_loss_old = 0. The
current variables echo_pktID, diff_loss_new, loss and R, that is
W = echo_pktID, diff_loss_old = diff_loss_new, loss_old = loss,
R_old = R is also recorded; For example, if the sender receives
a new ACK, and the echo_pktID in the ACK equals to 10, then
the sender decides to adjust the R. Suppose one packet lose
among the first ten packets, then the loss_new = 1. Meanwhile,
the loss_old = 0 originally. So, the new redundancy factor R =
1 + (1/10)*2 + 0 = 1 + 0.1*2 + 0 = 1.2. After this, the sender
keeps checking echo_pktID from every new ACK. When
echo_pktID = W + 10*R, or echo_pktID > W + 10*R for the
first time, adjust the R. At this time, R = R_old +
(diff_loss_new/10)*2 + diff_loss_old/10. Record the current
variables echo_pktID, diff_loss_new, loss and R, that is W = e
echo_pktID, diff_loss_old = diff_loss_new, loss_old = loss,
R_old = R. If the result of R is smaller than 1, set the R to 1.
For example, if the previous echo_pktID = 200, R = 1.1, and
the sender did not receive ACK which contain echo_pktID =
211 or echo_pktID = 212. Then, when it receives the ACK
whose echo_pktID = 213, the sender starts to adjust the R. At
the receiver when this ACK is generated, if loss_new = 20,
loss_old = 19, then diff_loss = 20 – 19 = 1; This time, at the
sender, if diff_loss_old = 1, then R = 1.1 + (1/10)*2 + 1/10 =
1.4.

To make it clear, we independently describe the actions
which are taken on the sender and receiver side. Provided we
have introduced a network coding layer between the transport
layer and the IP layer.

(1) Receiver side: The receiver side algorithm has to
respond to two types of events – the arrival of a packet
from the sender, and the arrival of ACKs from the TCP
sink.

1. Wait state: If any of the following events occurs,
respond as follows; else wait.

2. ACK arrives from TCP sink: If the ACK is a control
packet for connection management, deliver it to the IP
layer and return to the wait state; else, ignore the ACK.

3. Packet arrives from the sender side:

a) Remove the network coding header and retrieve the
coding vector.

b) Add the coding vector as a new row to the existing
coding coefficient matrix, and perform Gaussian
elimination to update the set of seen packets.

21

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

c) Add the payload to the decoding buffer. Perform the
operations corresponding to the Gaussian
elimination, on the buffer contents. If any packet
gets decoded in the process, deliver it to the TCP
sink and remove it from the buffer.

d) Count the variable loss which equals to the
difference between the largest packet index in the
coefficient vector and the number of seen packets;
Pick up the value of pktID from the received
packet‟s header, record it to echo_pktID.

e) Generate a new ACK with sequence number equals
to that of the oldest unseen packets and add two
variables loss and echo_pktID to the ACK header.

(2) Sender side: On the sender side, the algorithm again has
to respond to two types of events – the arrival of a packet from
the sender TCP, and the arrival of an ACK from the receiver
via IP.

1. Set NUM to 0;

2. Wait state: If any of the following events occurs,
respond as follows; else wait.

3. Packet arrives from TCP sender:

 a) If the packet is a control packet used for connection
management, deliver it to the IP layer and return to
wait state.

 b) If packet is not already in the coding window, add it to
the coding window.

 c) Set NUM = NUM + R. (R = redundancy factor)

 d) Repeat the following NUM NUM] times:

i) Generate a random linear combination of the
packets in the coding window.

ii) Add the network coding header specifying the set
of packets in the coding window and the
coefficients used for the random linear
combination. Add the variable pktID to the
network coding header.

iii) Deliver the packet to the IP layer.

 e) Set NUM:= fraction part of NUM.

 f) Return to the wait state.

4. ACK arrives from receiver:

a) Pick up the variable echo_pktID, to judge if it is time to
adjust the value of R.

i) If echo_pktID = W + 10*R_old or echo_pktID > W
+ 10*R_old for the first time, start to reset the
value of R.

Ⅰ) Extravagate the value of loss from the ACK
header, diff_loss_new = loss – loss_old;

Ⅱ) Then R_new = R_old + 2*(diff_loss_new/10) +
diff_loss_old/10.

Ⅲ) Record variables, such as, R_old = R_new;
diff_loss_old = diff_loss_new; loss_old = loss;
W = W + 10*R_new.

ii) else doing nothing and move to state b).

b) Remove the ACKed packet from the coding buffer and
hand over the ACK to the TCP sender.

Following the approach above, the sender adjusts the
redundancy factor R from time to time, thus to dynamically
change the R according to the real system. The algorithm to
adjust the redundancy factor R in the sender is showed in
Figure 1.

Start

Pick up

echo_pktID

If echo_pktID ==

W + 10*R_old
If echo_pktID > W +

10*R_old

If echo_pktID > W +

10*R_old for the first

time

Finish

figure out

diff_loss_new

Refresh R

Record

R_old,diff_loss_
old,loss_old and

W

Yes

Yes

Yes

No No

No

Figure 1. The algorithm to adjust the redundancy factor R in the sender

III. FAIRNESS OF THE NEW PROTOCOL

We use the network simulator-2 [14] to access the
performance of different protocols in network. The topology
for all the simulations is a tandem network consisting of 8 hops
(hence 9 nodes), shown in Figure 2.

In this system, there are two flows generated by two FTP
applications. One is from node 0 to node 7, and the other is
from node 1 to node 8. They will compete for the intermediate
channels and nodes. All the channels have a bandwidth of 1
Mbps, and a propagation delay of 10ms. The buffer size on the
channel is set to 200. The TCP receive window size is set to 40

22

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

packets, and the packet size is 1000 bytes. The Vegas

parameters are chosen to be α =28, β = 30, γ =2.

Figure 2. A tandem network consisting of 8 hops

By fairness, we mean that if two or more similar flows
compete for the same channel, they must receive an
approximately equal share of the channel bandwidth. In
addition, this must not depend on the order in which the flows
join in the network. It is well known that depending on the

value chosen for α and β , TCP-Vegas could be unfair to an

existing connection when a new connection enters the
bottleneck link. In our simulation, we first choose a certain

value of α and β (in this case, α =28, β =30) that allows fair

sharing of bandwidth when two TCP-Vegas flows without our

modification. Then, we choose the same value of α and β ,

and figure out the fairness characteristic under three different
situations:

Situation 1: a TCP-Vegas flow competes with an SANC-

TCP flow.

Situation 2: an SANC-TCP flow competes with another

SANC-TCP flow.
Situation 3: five SANC-TCP flows compete with each

other.

In Situation 1, the loss rate is set to 0%, and the SANC-
TCP flow starts at 0.5s while TCP-Vegas flow is 200s later.
The SANC-TCP flow ends at 800.5s, while TCP-Vegas flow
ends at 1000.5s. The system is simulated for 1100s. The
current throughput is calculated at intervals of 2.5s. The
evolution of the two flows‟ throughput over time is shown in
Figure 3 which indicates, when TCP-Vegas flow joins in the
channel, it quickly shares an equal amount of bandwidth of the
channel with the previous SANC-TCP flows, thus proving the
fairness of new SANC-TCP.

In Situation 2, the loss rate is set to 0%, and one of the
SANC-TCP flows start at 0.5s while the other one is 300s later,
and they both end at 1000.5s. The system is simulated for
1100s. The current throughput is calculated at intervals of 2.5s.
The evolution of the two flows‟ throughput over time is shown
in Figure 4 which is similar to Figure 3. The latter flow quickly
shares an equal amount of bandwidth of the channel with the
former one after it joins in the system. This also demonstrates
that the fairness of SANC-TCP.

In Situation 3, five different SANC-TCP flows start
independently at 0.5s, 100.5s, 200.5s, 300.5s, 400.5s.
According to the result showed in Figure 5, when each flow
comes into the channel, they quickly share equal amount of the
channel‟s bandwidth compared to others, and thus, it proves
that the SANC-TCP is strictly fair.

IV. EFFECTIVENESS OF THE NEW PROTOCOL

Backed-up by the simulation, we now try to prove that our

new protocol SANC-TCP has a better throughput rate and

utilization of the channels under unknown lossy channels,

compared to NC-TCP. In part A, we compare the throughput

rate and the utility of three different protocols TCP-Vegas,

NC-TCP, SANC-TCP under the same lossy channels, with

different loss rate every measured time. For the NC-TCP, we

set the redundancy factor at the optimum value corresponding

to each loss rate. In part B, we set the redundancy factor to a

constant number 1.11. The loss rate of the channels is varied

from 10% to 45%. We will compare the throughput rate and

the utilization of the channels between NC-TCP flow and

SANC-TCP flow. Finally, in part C, we consider a situation

called bursty loss situation, where there will be a sudden large

loss rate for a short time in the system. We compare the

performance of three different protocol flows under bursty

loss situation.

Fairness

The topology setup is identical to that used in the fairness

simulation, except that now we only use one FTP flow, which

is from node 0 to node 7. We set the same loss rate on the

channels between node 2 and node 6. For example, if we set

loss rate to 0.1 on every channels between node 2 and node 6,

we get the total loss rate 1 − (1 − 0.1)4 = 0.3439. When

simulation starts, the FTP0 flow starts at 0.5s, and the

intermediate channels start to lose packet in a certain rate at

0.6s. The simulation time is set to 1000s.

Figure 3. A TCP-Vegas flow compete with an SANC-TCP flow

23

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

Figure 4. an SANC-TCP flow compete with another SANC-TCP flow

Figure 5. Five SANC-TCP flows compete with each other

Simulation results are shown in Figure 6. The X-axis
represents the various loss rate, and the Y-axis represents the
throughput rate corresponding to different loss rate. As we set
the link capacity to 1 Mbps, the Y-axis can also represents the
utilization of the channels. The blue line is referred to TCP-
Vegas, the green line is referred to NC-TCP and the red is to
SANC-TCP. To emphasize, under every different loss rate, the
redundancy factor R is set to the optimal value. For example, if
the loss rate is 20%, then the R is set to be 1 / (1-0.2) = 1.25.
Figure 5 shows that, when the loss rate is 0%, the throughput of
all three protocols almost reaches the optimal value 1Mbps.
However, as the loss rate becomes larger, the throughput of
TCP-Vegas descends drastically, while both NC-TCP and
SANC-TCP are close to the theoretical value of maximum
utilization of channels. For example, theoretical value of
maximum utility of channels is 1Mbps * (1 – 20%) = 0.8Mbps
when loss rate is set to 20%, as we can see NC-TCP and
SANC-TCP are both close to it from Figure 6.

Figure 6. The throughputs of three different flows

Figure 7. The throughputs of TCP-NC flow and SANC-TCP flow

Effectiveness

In order to compare the throughput and utilization of the

channel between NC-TCP flow and SANC-TCP flow under

various loss rate, we set the R to 1.11 in NC-TCP flow case,

while the other parameters of simulation environment are

totally the same.

As is shown in Figure 7, The X-axis represents the

different loss rate which is varied from 10% to 45%, and the

Y-axis represents the throughput rate corresponding to

different loss rate which can also be understood as utilization

of the channel. The green line is referred to NC-TCP flow and

the red one is to SANC-TCP flow. When the loss rate is 10%,

NC-TCP flow requires high throughput with R equals to 1.11

as the optimal value and approximates SANC-TCP flow.

However, as the loss rate becomes larger, the throughput of

NC-TCP case descends drastically because it cannot mask the

packet loss with the R value sticking to 1.11. Adversely, the

throughput of SANC-TCP flow is close to theoretical value

under every loss rate. For example, the theoretical value of

maximum utility of the channel is 1Mbps * (1 – 30%) =

24

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

Figure 8. Bursty loss situations

0.7Mbps when loss rate is set to 30%, and the SANC-TCP

flow is close to it. In addition, given R equals to 1.11, lots of

packets will be sent unnecessarily which leads to low

performance if there are more than one flow in the network

when the loss rate is smaller than 10%. SANC-TCP adjusts R

to the practical condition and maintains it at the optimal state

which avoids wasting bandwidth.

Bursty

In real wireless networks, the loss rate is affected by

various reasons. Sudden large loss, we call it bursty loss, is

one of the phenomena that occur in the system. To evaluate

the performance of the three different protocol flows under

bursty loss situation, we set a circumstance where the loss rate

of the system is kept as 10%, except for the time from 500s to

600s, the loss rate is changed to 30%. We use the same

topology as Part A and Part B.

As is shown in Figure 8, the X-axis represents the

simulation time, and the Y-axis represents the throughput or

the utilization of the channel. The blue line is referred to TCP-

Vegas flow, the green line is referred to NC-TCP flow whose

redundant factor R is set to the optimal value of 1.11 and the

red line is referred to SANC-TCP flow. During the time when

the loss rate is kept in 10%, the NC-TCP flow and SANC-TCP

flow can both nearly reach the theoretical value of the

throughput. However, when the time comes to 500s, the loss

rate is suddenly changed to 30% until 600s. According to

Figure 8, NC-TCP flow suffers a lot during the time from 500s

to 600s, the throughput is almost drop to 0. Comparably, the

SANC-TCP shows its robustness to the bursty loss, and

maintains the theoretical value of throughput during 500s to

600s.

V. CONCLUSION AND FUTURE WORKS

Network coding is an effective tool to fight against non-

congestion losses. However, due to the different loss rate in

different period of time in wireless networks, the NC-TCP

with constant redundancy factor R cannot effectively solve the

non-congestion losses problem by retransmitting redundant

packets. In this work, we propose a new approach to

dynamically adjust R to the real networks. As the redundancy

factor R is no longer constant, we can change it according to

the real current circumstance, thus better the performance

under lossy networks where the loss rate is not constant.

For future work, we plan to focus on the encoding and

decoding delay problem which stands in the way for the

network coding technology to implement in the real system.

VI. ACKNOWLEDGEMENT

This work has been supported by 973 Program

2012CB315904; NSFC 60872010; SZJC201005260234A;

SZZD201006110044A; GDNSF No.9150 6420 1000 031.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Trans. On Information Theory, vol. 46, pp. 1204-1216,
2000.

[2] T. Ho, “Networking from a network coding perspective,” phD Thesis,
Massachusetts Institute of Technology, Dept. of EECS, May 2004.

[3] J. K. Sundararajan, D. Shah, and M. Medard, “ARQ for network coding,”
in IEEE ISIT 2008, Toronto, Canada, Jul, 2008.

[4] S. Katti, H. Rahul, W. Hu, Databi, M. Mcdard, and J. Crowcrofg,
“XORs in the Air: Practical Wireless Network Coding,” in IEEE/ACM
Transactions on Networking, 16(3): 497-510, June 2008.

[5] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding
Aninstant primer,” ACM Computer Communication Review, Jan. 2006.

[6] C. Fragouli, D. S. Lun, M. Medard, and P. Pakzad, “On feedback for
network coding,” in Proc. of 2007 Conference on Information Sciences
and Systems (CISS 2007).

[7] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. of
Allerton Conference on Communication, Control, and Computing, 2003.

[8] S. Chachulski, M. ennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proc. of ACM
SIGCOMM 2007, August 2007.

[9] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J.
Barros, “Network Coding Meets TCP,” in IEEE INFOCOM, Apr 2009.

[10] S. Paul, E. Ayanoglu, T. F. L. Porta, K.-W. H. Chen, K. E. Sabnani, and
R. D. Gitlin, “An asymmetric protocol for digital cellular
communications,” in Proceedings of INFOCOM, 1995.

[11] A. DeSimone, M. C. Chuah, and O.-C. Yue, “Throughput performance
of transport-layer protocols over wireless LANs,” IEEE Global
Telecommunications Conference (GLOBECOM „93), pp. 542-549 Vol.1,
1993.

[12] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable
transport and handoff performance in cellular wireless networks,” ACM
Wireless Networks, vol. 1, no. 4, pp. 469-481, December 1995.

[13] J. Chen, W. Tan, and L. X. Liu, “Towards zero loss for TCP in wireless
networks,” in Performance Computing and Communications
Conference(IPCCC), 2009 IEEE 28th international.

[14] “ns-2 Network Simulator,” http://www.isi.edu/nsnam/ (Sep 20th, 2011)

[15]

25

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

