
JAFSPOT: Java Agent-Based Framework for Sun SPOT

Wireless Sensor Networks

Hakan Cam, Ozgur Koray Sahingoz
Computer Engineering Department

Turkish Air Force Academy
Istanbul, Turkey

{h.cam, sahingoz}@hho.edu.tr

Ahmet Coskun Sonmez
Computer Engineering Department

Yildiz Technical University
Istanbul, Turkey

acsonmez@ce.yildiz.edu.tr

Abstract—Due to increasing capabilities of micro-sensors,
wireless sensor networks have emerged as one of the key
growth areas in recent years. They are a collection of sensor
nodes deployed over a target region for observing physical
phenomena, such as temperature, light, accelerometer, etc.
Mobile agent model is a distributed computing paradigm,
which is capable of solving problems effectively in dynamic
and open environments like wireless sensor networks. Few
mobile agent systems have been developed for wireless sensor
networks so far. In this paper, we describe JAFSPOT, a Java
Agent-based Framework for Sun SPOT. It uses event-based
programming in which the core components communicate
through events. To the best of our knowledge, JAFSPOT is one
of the very few mobile agent-based frameworks for wireless
sensor networks that support migration of isolates. First, we
describe the core components of the proposed system, then
present a sample application about monitoring Sun SPOT
sensor node with mobile agents and finally, give the results of
an experiment to evaluate the performance of this system in
terms of time and energy consumption.

Keywords- Wireless Sensor Networks; Mobile Agent Systems.

I. INTRODUCTION

Depending on recent developments in processing, power,
storage, micro-sensor and wireless communication
technologies, Wireless Sensor Networks (WSNs) have
become a broad area of interest in military, academic and
industrial circles [1]. WSNs are composed of hundreds of
sensor devices coming together and communicating over a
wireless radio. These sensor devices are low cost, tiny
devices with low power, constrained storage, limited
processing and short-range wireless communication
capabilities [2]. A sample WSN architecture is depicted in
Figure 1.

The mobile agent (MA) paradigm is a distributed
computing mechanism used for remedying the problems of
dynamically changing environments, such as WSNs. It is a
software process that can operate autonomously and can
migrate to its code and state. It provides a way to dynamic
reprogramming and facilitates a powerful and flexible
mechanism for complex distributed problems of WSN
systems [3][4].

USB

Sun SPOT
Basestation

2.4 GHz

2.4 GHz

Sun SPOT
Free Range

2.4 GHz

Sun SPOT
Free Range

2.4 GHz

Sun SPOT
Free Range

Sun SPOT
Free Range

Sun SPOT
Free Range

2.4 GHz

2.4 GHz

2.4 GHz

Figure 1. Wireless sensor network architecture

Since MAs can provide some reasonable, practical and
inexpensive solutions for the WSNs limitations, integration
of WSNs with MAs is emerging as an essential requirement.
Some of the limitations of WSNs are: energy for long
network lifetime, restricted bandwidth for wireless
communication, hardware due to the small size of the sensor
nodes, unstable network connections due to the mobility and
lifetime of the sensor nodes, low-level re-programmability
due to its distributed structure. Due to these constraints,
deploying a new code into a distributed WSN and upgrading
it is an extremely cumbersome issue. In addition to these
constraints, while most WSNs have typically been developed
in an application-specific manner, sensor devices can store
and run multiple applications at the same time. Instead of
storing and running all applications in a single sensor device,
using of MAs seems to be a more practical solution [5]. MA
paradigm is a way of smart programming and can be
regarded as the further development of a distributed
problem-solving of WSNs [6]. Performance of WSNs can be
improved by using MAs via improving communication and
coordination capabilities. A sample MA-based WSN
structure is depicted in Figure 2.

WSNs can benefit from MAs in several ways: First, MAs
use the bandwidth more efficiently by transferring its code to
the interested target area. Therefore, there is no need to
circulate the raw data over the network. Second, MAs
provide effective and dynamic re-

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

Figure 2. Mobile agent-based wireless sensor network

programming capability for cooperative data processing in
WSNs [7].

MASPOT [8], MAPS [9][10] and MOBILE-C
[11][12][13] are some of the studies regarding the integration
of MAs in WSNs, but very few ones have been developed
for Sun SPOT sensor devices [14]. They are compatible with
Java 2 Micro Edition [15], and are supported by the Squawk
Java Virtual Machine [16]. These studies are described in
detail in related work section.

In this paper, it is aimed to give some insight on the issue
of MA programming paradigm in WSNs and a Java Agent-
based Framework for Sun SPOT- JAFSPOT is proposed.
This is a new agent-based framework programmable in Java
for WSNs. It is based on Sun SPOT (Small Programmable
Object Technology) sensor device technology that is an
experimental platform for application programmers to
develop WSN applications using Sun SPOT technologies.
Because of their powerful structure, Sun SPOT sensor
devices are widely used in the industry.

Agent-oriented programming of WSN applications are
achieved in this framework using Java programming
language. At the same time, event-based programming
example is also used in the proposed framework. Therefore,
all operations can be performed based on these events and
the core components of the framework communicate through
these events.

The remainder of the paper is organized as follows. MA
systems recently developed for WSNs are investigated in
Section 2. The proposed system architecture of the
JAFSPOT framework and its main components are described
in Section 3. In Section 4, a simple example is provided for
exemplifying the MA-based application programming with
JAFSPOT framework. Section 5 describes the testing and
evaluation of proposed system. Finally, conclusion and the
future work are mentioned.

II. RELATED WORK

Agent-based programming of WSNs is a very
challenging issue because of the constrained resources of
sensor devices. In addition, programming of WSNs is
usually implemented as in an application specific manner
and dependent on the application running in the system.

Some of the most popular MA-based WSN middleware
systems proposed and implemented so far are described
below.

MASPOT [8] is a MA-based system developed for Sun
SPOT sensor devices. The authors claim that it is the only
Java-based MA system for WSNs that currently provides
code migration. Basic MA life cycles of creation,
initialization, cloning and migration services are
implemented in this framework. Its communication service
provides primitives for agent-agent communications using
tuple spaces and agents-base station communications using
message passing. In addition, it only uses around 1.5% of the
available flash memory and spends around 0.02% of the
battery energy of sensor devices for moving an agent. It also
extends the range of Java-based WSNs applications that can
be built using current technology.

MAPS (Mobile Agent Platform for Sun SPOT) [9][10] is
a MA-based platform for Sun SPOT sensor devices. It is
established on the agent paradigm and provides the
programming of WSN applications using Java language. The
architecture of MAPS is component-based and presents the
core services to agents. Event-based, state-based and agent-
based approaches are combined in this platform. Since
Squawk Virtual Machine operations are relatively slow, the
time of MA migration is quite high. The serialization of
agents into a message is a very time consuming operation.
The radio stream communication between sensor devices is
quite slow.

MOBILE-C [11][12][13] is an agent platform for mobile
C/C++ agents. This platform is compatible with the IEEE the
Foundation for Intelligent Physical Agents (FIPA) [17]. It
extends FIPA standards to support MAs. It integrates an
embeddable C/C++ interpreter into the platform as a MA
execution engine and defines an agent mobility protocol to
direct agent migration process. For agent migration, it uses
FIPA agent communication language (ACL) messages
encoded in XML. This offers a good solution for inter-
platform agent migration in FIPA compliant agent systems.
In this framework, scriptable C/C++ is chosen as a MA
language. It is written in C with a small footprint, and it uses
an embeddable C/C++ interpreter named Ch [18][19][20] to
support the execution of MA C/C++ source code.

The system we described in this paper, JAFSPOT, differs
from other systems in several ways. It is, to the best of our
knowledge, one of the very few MA-based frameworks using
Java programming language for WSNs that supports weak
migration with isolate mechanism. In this mechanism, inner
state and the private data of the MA residing on a sensor
device can be saved in a format which the destination MA
can handle. The agent code must be present on both sensor
devices, so that any agent method can be created and
initialized with the transferred agent state on the destination
sensor device.

This isolate migration mechanism facilitates the mobility
and extends the range of possible applications of Sun SPOT
sensor devices. Furthermore, JAFSPOT provides event-
based communication between MAs. Event-based approach
is a useful abstraction in the context of WSNs. Particularly;
occurrence of a physical event and the resulting reaction

Mobile Agent

Sink

Internet

Gateway

Target
Region

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

according to this event provides a way to optimize the
consumption of invaluable resources of resource-constrained
WSNs.

III. SYSTEM ARCHITECTURE OF JAFSPOT FRAMEWORK

The block diagram of proposed system is depicted in
Figure 3, and explained in detail below.

A. Hardware

Processor board, sensor board and battery are the three
main components of Sun SPOT sensor devices. Interested
readers may refer to [14] for detailed hardware components.

B. SQUAWK Java Virtual Machine

Squawk Java Virtual Machine is just over the hardware
component. Here, fully capable J2ME CLDC 1.1 Java VM is
supported by operating system. Hardware-independent and
simultaneously working applications can be possible owing
to the virtual machine.

Squawk JVM is realized for tiny devices with
constrained capabilities using Java language and provides
OS level mechanisms. It includes a mechanism for
serializing the object graphs. All the pointers in a serialized
object relocate in canonical addresses. This serialized form
can be transformed into a new live object graph again.

Squawk JVM architecture is depicted in Figure 4. The
most important characteristic feature of this architecture is a
small and more remarkable compact byte code instruction
set. Standard J2ME class files cover 35-45% less space
compared with byte codes.

Isolate mechanism is one of the most important elements
in the Squawk JVM architecture. Any application is
represented as an object in this mechanism. More than one
application can work in a single Squawk JVM. In this
method, any application can conceptually run as fully
isolated from other applications.

Figure 3. Block diagram of proposed system architecture

Figure 4. Squawk JVM architectural structure

It allows isolate migration which means that an isolate

working in any instance of Squawk JVM to cease its
operation, serialize into a file, send over network connection
and work again in another instance of Squawk JVM.

1) Isolate Mechanism
While one application has multiple threads in standard

Java ME applications, in practice only one application can
work in standard Java VM at the same time. Nevertheless,
Squawk JVM allows working of multiple applications on
any Sun SPOT sensor device using a special class of Isolate.
Thus, the operation of any application can be isolated from
other applications. It prevents blocking the operation of one
application from others. Each MIDlet-based application
works in a separate isolate mechanism. All isolates can reach
the resources of Sun SPOT hardware.

Isolate class provides a way to the instance of an isolate
to work isolated from the instances of other isolates. Isolate
mechanism is similar to the processes. Objects of any isolate
are logically separated from objects of other isolates.
Similarly, static variables of any isolate are logically
separated from static variables of other isolates.

Isolate mechanism can be suspended in hibernation
which stops working of both isolate and the threads of this
isolate and can be serialized. The saved form of an isolate
includes all the accessible objects, static variables and
working contexts of all threads of this isolate. This saved
form can be transferred to any file or other sensor devices
over the sensor network. This saved isolate can be reopened,
de-serialized and reactivated on the opposite side of the
channel. An isolate can be in NEW, ALIVE, HIBERNATED
and EXITED states.

C. Agent Server Agency

Agent Server Agency platform is located on the
SQUAWK Java Virtual Machine component. This platform
should be established on all Sun SPOT sensor devices and all
components of the system work on this platform. This
platform must be activated in the developed application in
order to initialize the other components. New MAs that will
work on the Sun SPOT sensor devices are to be added to the
system with using this component. The 64-bit IEEE extended
MAC address of the system running on the Sun SPOT sensor
device is kept in this component.

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

D. Agent Management System

Agent Management System is the second component
after the Agent Server Agency platform. This component
operates as the brain of the system. It manages the events
that happen throughout the system, connects and keeps the
elements and provides the possibility of working together of
the system components. This component makes connections
with other components in order to perform the operations
such as sending message, reading sensor values and
synchronize timers performed by agents. This component is
responsible for the required activities of agent creation,
initialization, communication, migration, timing and
termination. It provides the other components a way to work
in a harmony.

E. Agent Transport Manager

Agent Transport Manager Component enables naming of
agents, specifying the neighboring sensor nodes and
neighboring agents dynamically and migration of agents
from one sensor node to the other. In doing so, it provides a
mechanism for serializing the agents into a message and
migration of these agents to the neighboring sensor nodes. It
also receives the messages containing the serialized agent
coming from neighboring sensor nodes and opens and
activates these agents with a reverse operation. This
component is used for keeping the address and lists of the
agents while migrating from a Sun SPOT sensor device to
others within the communication range. It is also used for
establishing a RadiostreamConnection between sensor
devices before migrating of the agents to other sensor
devices. Finally, it is used for receiving the agents sent from
the other sensor devices.

F. Agent Communication Manager

Agent Communication Manager is the other component
located on the Agent Server Agency platform. This
component provides message-based asynchronous
communication capability between agents working on the
Sun SPOT devices. Thus, agents working on the different
sensor devices can communicate with each other. Similarly,
this component provides a way about communication of all
the other components located on the Sun SPOT device.
RadiogramConnection link can be established through the
communication port between sender device and receiver
device using this component. After the connection had been
established, the Datagram was created for sending and
receiving operations. In addition, all the events publish
through this communication port to the neighboring sensor
devices within the communication range.

G. Hardware Manager

The Hardware Manager component is located at the
bottom of the Agent Server Agency platform. This
component allows reading of data values from hardware
resources like temperature sensor, light sensor, acceleration
sensor, battery, switch and LED from Sun SPOT devices.
Therefore, it can be possible to operate on the reading both
sensor values and input/output values of hardware resources
of Sun SPOT devices. It provides a way to perceive the

physical temperature, light and three-dimensional
acceleration as analog, to convert these analog values to
numerical values and to evaluate these values as required.

IV. MOBILE AGENT APPLICATION

In this part of the paper, a MA application designed,
developed and implemented using Java programming
language. The purpose of this application is to demonstrate
the rationale behind MAs working over the proposed system
architecture on Sun SPOT devices. This MA-based
application works on two real physical Sun SPOT devices.
While the first one serves as the sender device, the second
one serves as the receiver. In this application there are two
MAs working on the sender device and one MA working on
the receiver device. One of the sender side MAs is named
MobileAgentSender and the other for
MobileAgentMediator. MobileAgentMediator agent is
migrated from sender device to the receiver device over
wireless communication channel. MobileAgentReceiver
agent works on the receiver device.

There are two different components of the proposed
system, namely, the primary components and the secondary
components. The primary ones are Agent Server Agency,
Agent Management System, Agent Transport Manager,
Agent Communication Manager and Hardware Manager.
The secondary ones are Light Sensor, Temperature Sensor,
Accelerometer Sensor, LED and Switch. All these
components on the two Sun SPOT devices should be
activated and worked in order to MAs to work. After all the
components had been activated on the two Sun SPOT
devices, the MAs added to the system.

A. MobileAgentSender

There are six conditions for MobileAgentSender agent
working on sender Sun SPOT device in this application.
These conditions are Begin State, Wait_Message State,
Event_Creation State, Capture_Value State,
Transmit_Value State and End State. These conditions are
illustrated in Figure 5.

Figure 5. States/actions of MobileAgentSender agent

BEGIN:
AGENT_START:

Create LED_ON/LED_OFF events used for producing a binary count up
to 256 on the 8 tri-color LEDs on Sun SPOT sensor device in red color

WAIT_MESSAGE:
MESSAGE:

Create LED_FLASH event used for flashing all the 8 tri-color LEDs ten
times in blue color
Create SWITCH_ON event

EVENT_CREATION:
Create TEMPERATURE, LIGHT, ACCELERATION, BATTERY event

CAPTURE_VALUE:
TEMPERATURE, LIGHT, ACCELERATION and BATTERY:

Add light, temperature, acceleration and battery values to related variable
SWITCH_ON:

Create MobileAgentMediator agent
Create LED_FLASH event used for flashing the first LED of 8 tri-color
LEDs in red color

TRANSMIT_VALUE:
Create related event for MobileAgentMediator agent to be sent
Piggy-back the data to the MobileAgentMediator agent as a payload

END:
Stop agent operation

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

B. MobileAgentReceiver

There are four conditions for MobileAgentReceiver
agent working on the receiver side Sun SPOT sensor device
in this application, including Begin State, Switch_On State,
Circulated_Data State and End State. These conditions are
illustrated in Figure 6.

Figure 6. States/actions of MobileAgentReceiver agent

C. MobileAgentMediator

There are three conditions for MobileAgentMediator
agent working on the sender side device and will migrate to
the receiver side in this application. These conditions are
Begin State, Migration State and End State. These
conditions are illustrated in Figure 7.

Figure 7. States/actions of MobileAgentMediator agent

V. TEST AND EVALUATION

This section describes the testing and evaluation of
proposed system explained in Section IV. The purpose of
this test scenario is to demonstrate the rationale behind MAs
working over the proposed system architecture on Sun
SPOT Java Development Kit with Sun SPOT SDK v5.0
(Red). This kit includes a base station and two Sun SPOT
sensor devices equipped with sensor boards and
rechargeable batteries. This application is developed using
the Apache Ant Server, Java Development Kit 1.6.0_31 and
NetBeans IDE 7.1.1 Integrated Development Environment.

Since the amount of energy spent by sender and receiver
side agents is a critical issue for WSNs we evaluated this
parameter. Here, we tested five issues namely, battery
current drawn while the MA migration, available capacity,
MA creation time, MA migration time and MA termination
time. We repeated and obtained 15 different values for this
test.

There are three key points for testing the migration cost
of MA. The first point is where the MA residing on the

sender side sensor node asks for the migration. The second
point is where the sender side MA received an ACK used
for acceptance of migration from receiver side sensor node.
The third point is where the sender side MA successfully
migrates to the destination side node. At these points, we
captured the maximum battery current drawn from sender
and receiver side nodes. These experiment values are
depicted in Figure 8. BEGIN:

AGENT_START:
Here, we compare our results with the values of Table 1

in related research paper on MASPOT [8]. As it can be seen
from these results, the mean spent energy of JAFSPOT was
0.71559986 milliampere for the sender side and
0.453732553 milliampere for the receiver side. Here this
gives an overall mean of 0.584666207 milliampere.
Similarly, mean spent energy of MASPOT [8] was 0.1577
milliampere for the sender side and 0.1257 milliampere for
the receiver side, giving an overall mean of 0.1417
milliampere.

Create LED_ON/LED_OFF events used for producing a binary count up to
256 on the 8 tri-color LEDs on Sun SPOT sensor device in red color
Create SWITCH_ON event

SWITCH_ON:
Discover the other mobile agents
Create and send message event

CIRCULATED_DATA:
MESSAGE:

Fragment obtained data into meaningful parts using StringTokenizer
Print out light, temperature, acceleration and battery values on the screen

END:
Stop agent operation

We have also studied the available capacity of the sender
and receiver side sensor nodes. Each Sun SPOT sensor node
is equipped with a 3.7 V rechargeable 770 milliAmperehour
Lithium-Ion battery. The obtained values are depicted in
Figure 9. Here, the mean percentage of battery use is on
average 0.099388869% for the sender side and
0.06301841% for the receiver side battery capacities.
Considering these average values obtained with these tests,
sender side sensor node spent around 57.71% more energy
than the receiver side sensor node.

BEGIN:
AGENT_START:

 Obtain the value of data from related variable
Discover the other neighboring mobile agents

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

JAFSPOT_Sender

JAFSPOT_Receiver

MASPOT_Sender

MASPOT_Receiver

Declare its migration request to these identified sensor devices
MIGRATION:

Migrate to these identified sensor device
END:

Stop agent operation

Figure 8. Agent Migration Cost in milliampere

719,1

719,2

719,3

719,4

719,5

719,6

719,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sender

Receiver

Figure 9. Available Capacity

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor
network survey”, Computer Networks, vol. 52 (12), pp. 2292-
2330, 2008.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Agent Creation

Agent Migration

Agent Termination

[3] F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri, “A Java-
based platform for programming wireless sensor networks”,
The Computer Journal, vol. 54 (3), pp. 439-454, 2010.

[4] S. González-Valenzuela, M. Chen, and V. C. M. Leung,
“Applications of mobile agents in wireless networks and
mobile computing”, Advances in Computers, Marv Zelkowitz
(Ed.), vol. 82, pp. 113-163, 2011.

[5] M. Chen, T. Kwon, and Y. Choi, “Mobile agent-based
Directed Diffusion in wireless sensor networks”, EURASIP
Journal on Applied Signal Processing, (1), 2007.

Figure 10. Elapsed time in milliseconds
[6] E. Shakshuki, H. Ghenniwa and M. Kamel, “Agent-base

system architecture for dynamic and open environments”,
Journal of Information Technology and Decision Making, vol.
2 (1), pp. 105-133, 2003.

We have also tested the MA creation time, migration
time and termination time for the evaluation of cost of these
parameters. The results are shown in Figure 10. It can be
seen that, the mean agent creation time was 259.2666667
milliseconds. Similarly, the mean agent migration time and
agent termination time were 4093.4 milliseconds and
108.9333333 milliseconds, respectively. Considering these
values, agent migration time is much greater than the agent
creation time and agent termination time. Because the
operations of Squawk JVM are relatively slow, the
serialization of agents into a message is a very time
consuming process, and the radio stream communication
between sensor devices is quite slow.

[7] P. Wang, “A brief survey on cooperation in multi-agent
system”, International Conference on Computer Design and
Applications (ICCDA), vol.2, pp. 39-43, 25-27 June 2010.

[8] R. Lopes, F. Assis, and C. Montez, “MASPOT: A mobile
agent system for Sun SPOT”, Tenth International Symposium
on Autonomous Decentralized Systems, Tokyo, 2011.

[9] F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri, “MAPS:
A mobile agent platform for Java Sun SPOTs”, Proc. 3rd Int.
Workshop on Agent Technology for Sensor Networks
(ATSN), Budapest, Hungary, 12 May 2009.

[10] F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri, “A Java-
based agent platform for programming wireless sensor
networks”, The Computer Journal, vol. 54 (3), pp. 439-454,
2010. VI. CONCLUSION

The design, development, deployment and
implementation of a Java Agent-based Framework for Sun
SPOT- JAFSPOT, has been presented in this article. To the
best of our knowledge, JAFSPOT is one of the very few
Java-based, MA-based and event-based systems for Sun
SPOT sensor devices of WSN that supports isolate
migration. With this framework, it is possible to specify real
world scenarios using static and/or MA-based applications.
It also facilitates the programming of event-based and
agent-based applications. Event-based approach is a
particularly useful abstraction in the context of WSNs.
Particularly; this approach provides a way to optimize the
consumption of invaluable resources of resource-
constrained WSNs. It exemplifies how to program different
dynamic behaviors of the MAs during their lifetime.
Providing weak migration of isolate mechanism is an
important facility when considering usage of MAs to
support WSN reprogramming. The possibility of executing
MAs on Sun SPOT sensor devices extends considerably the
varieties of applications for this platform.

[11] B. Chen, H. H. Cheng, and J. Palen, “Mobile-C: a mobile
agent platform for mobile C/C++ agents”, Software: Practice.
and Experience, vol. 36, pp. 1711-1733, 2006.

[12] B. Chen and H. H. Cheng, “A runtime support environment
for mobile agents”, Proceedings of the 2005 ASME/IEEE
International Conference on Mechatronic and Embedded
Systems and Applications (MESA05), Long Beach, CA,
September 2005. American Society of Mechanical Engineers:
New York, pp. 37-46, 2005.

[13] B. Chen, “Runtime support for code mobility in distributed
systems”, PhD Thesis, Department of Mechanical and
Aeronautical Engineering, University of California, 2005.

[14] Sun™ Small programmable object technology (Sun SPOT).
(2012), http://www.sunspotworld.com/.

[15] Sun Microsystems. Java 2 Platform, Micro Edition (J2ME)-
Connected Limited Device Configuration-Specification-
version 1.1, Mar. 2003.

[16] D. Simon and C. Cifuentes, “The Squawk Java Virtual
Machine: Java on the Bare Metal”, Proc. 20th Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA 2005), San Diego, CA, USA, October 16-20, pp.
150-151.ACM, NewYork, NY, USA, 2005.

[17] IEEE Foundation for Intelligent Physical Agents (FIPA).
Agent Communication Language Specifications. (2012),
http://www.fipa.org/repository/aclspecs.html.

Our ongoing efforts have been devoted to extending this
framework for a real world application and adding a security
aspect.

[18] H. H. Cheng, “Scientific computing in the Ch programming
language”, Scientific Programming, vol.2 (3), pp. 49-75,1993.

[19] H. H. Cheng, “Ch: A C/C++ interpreter for script computing”,
C/C++ User’s Journal, vol. 24 (1), pp. 6-12, 2006.

REFERENCES
[20] Softintegration, Inc. “Ch: An Embeddable C/C++

Interpreter”, (2012), http://www.softintegration.com. [1] I. F. Akyildiz, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks”, IEEE Communications
Magazine, vol. 40 (8), pp. 104-112, 2002.

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

http://www.fipa.org/repository/aclspecs.html%20%5B2006
http://www.softintegration.com/

	I. Introduction
	II. Related Work
	III. System Archıtecture of Jafspot Framework
	A. Hardware
	B. SQUAWK Java Virtual Machine
	C. Agent Server Agency
	D. Agent Management System
	E. Agent Transport Manager
	F. Agent Communication Manager
	G. Hardware Manager

	IV. Mobıle Agent Applıcatıon
	A. MobileAgentSender
	B. MobileAgentReceiver
	C. MobileAgentMediator

	V. Test and Evaluatıon
	VI. Conclusıon
	References

