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Abstract—We present a survey of results on how to im-
plement low-complexity lossless data compression on a high
speed network, so that the computational phase requires no
interprocessor communication. It follows that the computation
in between the input and output phases has a linear speed-up
when the network size increases, regardless of the bandwidth
and latency of the network. Depending on the type of data,
the performance of the compression method changes in terms
of scalability. Images are more suitable than strings, since text
compression is scalable only on very large size files.

Keywords-high speed network application; lossless compres-
sion; distributed algorithm; scalability.

I. INTRODUCTION

Arithmetic encoders enable the best lossless compressors
by means of the model driven method [1]. The model driven
method consists of two distinct and independent phases:
modeling [2] and coding [3]. Arithmetic encoders are the
best model driven compressors, but they are often ruled out
because they are too complex. Low-complexity compression
avoids arithmetic encoders.

Sliding window compression [4] is the most effective low-
complexity text compression method (SW compression).
When applied in parallel to data blocks on a large scale
high speed network, the approach is practical only when the
file size is large because of its adaptiveness [5].

Storer [6] extended SW compression to binary images
by means of a square greedy matching technique (BLOCK
MATCHING). The technique is suitable for high speed
applications. Rectangle matching improves the compression
performance, but it is slower since it requires O(M logM)
time for a single match, where M is the size of the match
[7]. Therefore, the sequential time to compress an image
of size n by rectangle matching is Ω(n logM). A variant
of this method, called monochromatic pattern substitution
(MP-SUB), compresses only monochromatic rectangles with
a variable length code [8]. Such monochromatic rectangles
are detected by means of a raster scan (row by row).
If the 4 x 4 subarray in position (i, j) of the image is
monochromatic, then we compute the largest monochromatic
rectangle in that position else we leave it uncompressed.
The encoding scheme is to precede each item with a

flag field indicating whether there is a monochromatic
rectangle or raw data. The procedure for computing the
largest monochromatic rectangle with left upper corner in
position (i, j) takes O(M logM) time, where M is the
size of the rectangle. The positions covered by the detected
rectangles are skipped in the linear scan of the image. The
analysis of the running time of this algorithm involves a
waste factor, defined as the average number of matches
covering the same pixel. We experimented that the waste
factor is less than 2 on realistic image data. Therefore, the
heuristic takes O(n logM) time in practice. On the other
hand, the decoding algorithm is linear. The compression
effectiveness of this technique is about the same as the one
of the rectangular block matching technique [7]. Moreover,
compression via monochromatic pattern substitution (MP-
SUB compression) has no relevant loss of effectiveness
if the image is partitioned into up to a thousand blocks
and each block is compressed independently. Therefore, the
computational phase can be implemented on both small and
large scale distributed systems with no interprocessor com-
munication. BLOCK MATCHING, instead, does not work
locally since it applies the generalized SW-type method with
an unrestricted window. Finally, MP-SUB compression has a
speed-up if applied sequentially to the partitioned image [9].
Experimental results suggest that the speed-up happens if the
image is partitioned into up to 256 blocks and sequentially
each block is compressed independently. It follows that the
speed-up can also be applied to a parallel implementation
on a small scale system. Such speed-up depends on the fact
that monochromatic rectangles crossing boundaries between
blocks are not computed and, consequently, the waste factor
decreases when the number of blocks increases. If we
refine the partition by splitting the blocks horizontally and
vertically, after four refinements experimentations show that
no further improvement is obtained.

The extension of Storer’s method to grey scale and color
images was left as an open problem, but it seems not
feasible since the high cardinality of the alphabet causes
an unpractical subexponential blow-up of the hash table
used in the implementation. A low-complexity application
compressing 8x8 blocks of a grey-scale or color image by
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means of a header and a fixed-length code is presented
in [10], which can be implemented on an arbitrarily large
scale system with no interprocessor communication during
the computational phase. A first step toward a good low-
complexity compression scheme was FELICS (Fast Efficient
Lossless Image Compression System) [11], which involves
Golomb-Rice codes [12], [13]. With the same complexity
level for compression (but with a 10 percent slower decom-
pressor) LOCO-I (Low Complexity Lossless Compression
for Images) [14] attains significantly better compression than
FELICS. As explained in [10], parallel implementations of
FELICS and LOCO-I require more sophisticated architec-
tures than a simple array of processors.

As far as the model driven method for grey scale and
color image compression is concerned, the modeling phase
consists of three components: the determination of the
context of the next pixel, the prediction of the next pixel
and a probabilistic model for the prediction residual, which
is the value difference between the actual pixel and the
predicted one. In the coding phase, the prediction residuals
are encoded. The use of prediction residuals for grey scale
and color image compression relies on the fact that most
of the times there are minimal variations of color in the
neighborood of one pixel. Therefore, in [10] we were able
to implement an extremely local procedure which is able
to achieve a satisfying degree of compression by work-
ing independently on very small blocks. We presented the
heuristic for grey scale images, but it can also be applied to
color images by working on the different components. The
main advantage is that it provides a highly parallelizable
compressor and decompressor since it can be applied inde-
pendently to each block of 8x8 pixels, achieving 80 percent
of the compression obtained with LOCO-I (JPEG-LS), the
current lossless standard in low-complexity applications. We
called such procedure PALIC (Parallelizable Lossless Image
Compression). The compressed form of each block employs
a header and a fixed length code. Two different techniques
might be applied to compress the block. One is the simple
idea of reducing the alphabet size by looking at the values
occurring in the block. The other one is to encode the
difference between the pixel value and the smallest one in
the block. This second technique can be interpreted in terms
of the model driven method, where the block is the context,
the smallest value is the prediction and the fixed length code
encodes the prediction residual.

In Sections 2, 3 and 4, we explain the SW, MP-SUB and
PALIC heuristics, respectively. The computational phase for
these heuristics requires no interprocessor communication
when implemented on a distributed system as, for example,
a high speed network. It follows that the computation in
between the input and output phases has a linear speed-up
when the network size increases, regardless of the bandwidth
and latency of the network. Quantitative results of such
speed-up are provided in [5], [8], [9]. Conclusions and future

work are given in Section 5.

II. TEXT COMPRESSION

Sliding window (SW) compression [4] is based on string
factorization. Each factor extends by one character the
longest match with a substring to its left in the input string.
SW compression is a dictionary-based technique and is also
called the sliding dictionary method. In fact, the factors
of the string are substituted by pointers to copies stored
in a dictionary. Distributed algorithms for SW compression
approximating in practice its compression effectiveness have
been realized in [5] on an array of processor with no
interprocessor communication. However, the scalability of a
parallel implementation of SW compression on a distributed
system with low communication cost guarantees robustness
only on very large size files.

A. SW Compression
Given an alphabet A and a string S in A∗ the factorization

of S is S = f1f2 · · · fi · · · fk where fi is the shortest
substring, which does not occur previously in the prefix
f1f2 · · · fi for 1 ≤ i ≤ k. With such factorization, the
encoding of each factor leaves one character uncompressed.
To avoid this, a different factorization was introduced where
fi is the longest match with a substring occurring in the
prefix f1f2 · · · fi if fi ̸= λ, otherwise fi is the alphabet
character next to f1f2 · · · fi−1 [15]. fi is encoded by the
pointer qi = (di, ℓi), where di is the displacement back to
the copy of the factor and ℓi is the length of the factor.
If di = 0, li is the alphabet character. In other words a
dictionary of factors is defined by a window sliding its
right end over the input string, that is, it comprises all
the substrings of the prefix read so far in the computation.
The factorization processes just described are such that the
number of different factors (that is, the dictionary size)
grows with the string length. In practical implementations
instead the dictionary size is bounded by a constant and the
pointers have equal size. This can be simply obtained by
bounding the match and window lengths (therefore, the left
end of the window slides as well).

B. Compression with Finite Windows
A real-time implementation of compression with finite

window is possible using a suffix tree data structure [16],
[17]. Much simpler real-time implementations are realized
by means of hashing techniques providing a specific position
in the window where a good approximation of the longest
match is found on realistic data. In [18], the three current
characters are hashed to yield a pointer into the already
compressed text. In [19], hashing of strings of all lengths
is used to find a match. In both methods, collisions are
resolved by overwriting. In [20], the two current characters
are hashed and collisions are chained via an offset array.
Also the Unix gzip compressor chains collisions, but hashes
three characters [21].
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C. The High Speed Network Implementation

For every integer k greater than 1 an O(kw) time,
O(n/kw) processors distributed algorithm factorizing an
input string S was presented on an array of processors with
no interconnections in [5], whose cost approximates the cost
of the string factorization within the multiplicative factor
(k+m−1)/k, where n, m and w are the lengths of the input
string, the longest factor and the window respectively. The
approach provides an approximation scheme for such string
factorization problem since the multiplicative approximation
factor converges to 1 when kw converges to n.

+++++(+++)xxxxxxxxxxx
———————/——————————–

wwwwwwwwww
.....

Figure 1. The making of the surplus factors.

We simply apply in parallel sliding window compression
to blocks of length kw. It follows that the algorithm requires
O(kw) time with n/kw processors and the multiplicative
approximation factor is (k+m− 1))/k with respect to any
parsing. In fact, the number of factors of a factorization on
a block is at least kw/m while the number of factors of
the factorization produced by the scheme is at most (k −
1)w/m+w. As shown in Figure 1, the boundary might cut
a factor (sequence of plus signs) and the length w of the
initial full size window of the block (sequence of w’s) is the
upper bound to the factors produced by the scheme in it. Yet,
the factor cut by the boundary might be followed by another
factor (sequence of x’s) which covers the remaining part of
the initial window. If this second factor has a suffix to the
right of the window, this suffix must be a factor of the sliding
dictionary defined by it (dotted line) and the multiplicative
approximation factor follows.

The approximation scheme is suitable for a small scale
system but due to its adaptiveness it works on a large
scale parallel system when the file size is large. From a
practical point of view, we can apply something like the gzip
procedure to a small number of input data blocks achieving a
satisfying degree of compression effectiveness and obtaining
the expected speed-up on a high speed network. Making
the order of magnitude of the block length greater than
the one of the window length largely beats the worst case
bound on realistic data. The window length is usually several
thousands of kilobytes. The compression tools of the Zip
family, as the Unix command “gzip” for example, use a
window size of at least 32K. It follows that the block length
in our parallel implementation should be about 300K at
least. It follows that the file size should be at least about
one third of the number of processors in megabytes.

To decode the compressed files on the network, it is

enough to use a special mark occurring in the sequence of
pointers each time the coding of a block ends. The input
phase distributes the subsequences of pointers coding each
block among the processors.

III. BINARY IMAGE COMPRESSION

Monochromatic pattern substitution (MP-SUB) is so far
the only low-complexity lossless binary image compression
technique implementable on a high speed network with
no interprocessor communication during the computational
phase and no scalability issues [8]. We describe sequential
and parallel implementations of this technique in the follow-
ing subsections.

A. Monochromatic Pattern Substitution

The MP-SUB technique scans an image row by row.
If the 4 x 4 subarray in position (i, j) of the image is
monochromatic, then we compute the largest monochromatic
rectangle in that position. We denote with pi,j the pixel
in position (i, j). The procedure for finding the largest
rectangle with left upper corner (i, j) is described in Figure
2. At the first step, the procedure computes the longest
possible width for a monochromatic rectangle in (i, j) and
stores the color in c. The rectangle 1 x ℓ computed at the
first step is the current detected rectangle and the sizes
of its sides are stored in side1 and side2. In order to
check whether there is a better match than the current one,
the longest sequence of consecutive pixels with color c is
computed on the next row starting from column j. Its length
is stored in the temporary variable width and the temporary
variable length is increased by one. If the rectangle R
whose sides have size width and length is greater than the
current one, the current one is replaced by R. We iterate
this operation on each row until the area of the current
rectangle is greater or equal to the area of the longest feasible
width-wide rectangle, since no further improvement would
be possible at that point. Such procedure for computing
the largest monochromatic rectangle in position (i, j) takes
O(M logM) time, where M is the rectangle size. In fact,
in the worst case a rectangle of size M could be detected
on row i, a rectangle of size M/2 on row i+1, a rectangle
of size M/3 on row i+ 2 and so on.

If the 4 x 4 subarray in position (i, j) of the image is not
monochromatic, we do not expand it. The positions covered
by the detected rectangles are skipped in the linear scan of
the image. The encoding scheme for such rectangles uses a
flag field indicating whether there is a monochromatic match
(0 for the white ones and 10 for the black ones) or not (11).
If the flag field is 11, it is followed by the sixteen bits of the
4 x 4 subarray (raw data). Otherwise, we bound by twelve
the number of bits to encode either the width or the length
of the monochromatic rectangle. We use either four or eight
or twelve bits to encode one rectangle side. Therefore, nine
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c = pr,j ;

r = i;

width = m′;

length = 0;

side1 = side2 = area = 0;

repeat

Let pr,j · · · pr,j+ℓ−1 be the longest string in (r, j) with color c and ℓ ≤ width;

length = length + 1;

width = ℓ;

r = r + 1;

if (length ∗ width > area) {

area = length ∗ width;

side1 = length;

side2 = width;

}

until area ≥ width ∗ (i − k + 1) or pr,j <> c

Figure 2. Computing the largest monochromatic rectangle match in (i, j).

different kinds of rectangle are defined. A monochromatic
rectangle is encoded in the following way:

• the flag field indicating the color;
• three or four bits encoding one of the nine kinds of

rectangle;
• bits for the length and the width.
Four bits are used to indicate when twelve bits or eight

and twelve bits are needed for the length and the width.
This way of encoding rectangles plays a relevant role for
the compression performance. In fact, it wastes four bits
when twelve bits are required for the sides but saves four to
twelve bits when four or eight bits suffice.

B. The High Speed Network Implementation

The MP-SUB technique has been applied to the CCITT
test set (Figure 3) and has provided a compression ratio
equal to 0.13 in average. The images of the CCITT test set
are 1728 x 2376 pixels. If these images are partitioned into
4k sub-images and the compression heuristic is applied inde-
pendently to each sub-image, the compression effectiveness
remains about the same for 1 ≤ k ≤ 5 with a 1 percent loss
for k = 5. Raw data are associated with the flag field 110,
so that we can indicate with 111 the end of the encoding of
a sub-image. For k = 6, the compression ratio is still just a
few percentage points of the sequential one. This is because
the sub-image is 27 x 37 pixels and it still captures the
monochromatic rectangles which belong to the class encoded
with four bits for each dimension. These rectangles are the
most frequent and give the main contribution to the com-
pression effectiveness. The compression effectiveness of the
variable-length coding employed by the technique depends
on the sub-image size rather than on the whole image. In
fact, if we apply the parallel procedure to the test set of
larger binary images as the 4096 x 4096 pixels half-tone

Figure 3. The CCITT image test set.

Figure 4. Images 1-5 from left to right.

topographic images of Figure 4, we obtain about the same
compression effectiveness for 1 ≤ k ≤ 5. The compression
ratio is 0.28 with a 2 percent loss for k = 6. This means that
actually the approach without interprocessor communication
works in the context of unbounded parallelism as long as the
elements of the image partition are large enough to capture
the monochromatic rectangles encoded with four bits for
each dimension.

C. A Sequential Speed-Up

We experimented that if we partition an image into
4k sub-images and apply compression via monochromatic
pattern substitution to each sub-image independently the
waste factor decreases with the increasing of k [9]. A speed-
up of the sequential algorithm follows from this fact. As
mentioned in the introduction, the waste factor is less than
2 on realistic image data for k = 0 and decreases to about
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1 when k = 4. It follows that if we refine the partition
by splitting the blocks horizontally and vertically, after four
refinements no further relevant speed-up is obtained. The
same happens when we partition the set of 4096 x 4096
pixels images of Figure 4, that is, the waste factor seems to
be determined by the number of refinements independently
from the image size on realistic data. Obviously, there is a
similar speed-up for the decompressor.

Since the sequential speed-up happens for an image
partitioned into less than 256 blocks, it can be applied to a
parallel implementation on a small scale network. Obviously,
a similar experiment could be run using two refinemets or
one refinement of the partition on a network of 16 or 64
nodes respectively.

IV. GREY SCALE AND COLOR IMAGE COMPRESSION

We explain the PALIC heuristic which compresses grey
scale and color images [10]. PALIC works independently on
blocks of 8x8 pixels. The heuristic is described for grey scale
images, but it can be trivially extended to RGB color images
by working separately on each of the three components of
the image. As previously mentioned, the compressed form
of each block employs a header and a fixed length code.

A. The Heuristic

We still assume to read the image with a raster scan on
each block. The heuristic applies at most three different ways
of compressing the block and chooses the best one. The first
one is the following.

The smallest pixel value is computed on the block. The
header consists of three fields of 1 bit, 3 bits and 8 bits,
respectively. The first bit is set to 1 to indicate that we
compress a block of 64 pixels. This is because one of the
three ways partitions the block in four sub-blocks of 16
pixels and compresses each of these smaller areas. The 3-bits
field stores the minimum number of bits required to encode
in binary the distance between the smallest pixel value and
every other pixel value in the block. The 8-bits field stores
the smallest pixel value. If the number of bits required to
encode the distance, say k, is at most 5, then a code of
fixed length k is used to encode the 64 pixels, by giving the
difference between the pixel value and the smallest one in
the block. To speed up the procedure, if k is less or equal to
2 the other ways are not tried because we reach a satisfying
compression ratio on the block. The second and third ways
are the following.

The second way is to detect all the different pixel values
in the 8x8 block, to create a reduced alphabet and to encode
each pixel in the block using a fixed length code for this
alphabet. The employment of this technique is declared by
setting the 1-bit field to 1 and the 3-bits field to 110. Then,
an additional three bits field stores the reduced alphabet size
d with an adjusted binary code in the range 2 ≤ d ≤ 9.
The last component of the header is the alphabet itself, a

concatenation of d bytes. Then, a fixed length code is used
for the 64 pixels.

The third way compresses the four 4x4 pixel sub-blocks.
The 1-bit field is set to 0. Four fields follow the flag bit, one
for each 4x4 block. The two previous techniques are applied
to the blocks and the best one is chosen. If the first technique
is applied to a block, the corresponding field stores values
from 0 to 7 rather than from 0 to 5 as for the 8x8 block. If
such value is in between 0 and 6, the field stores three bits.
Otherwise, the three bits (111) are followed by three more.
This is because 111 is used to denote the application of
the second way to the block as well, which is less frequent
to happen. In this case, the reduced alphabet size stored
in these three additional bits has range from 2 to 7, it is
encoded with an adjusted binary code from 000 to 101 and
the alphabet follows. 110 denotes the application of the first
technique with distances expressed in seven bits and 111
denotes that the block is not compressed. After the four
fields, the compressed forms of the blocks follow, which
are similar to the ones described for the 8x8 block. When
the 8x8 block is not compressed, 111 follows the flag bit
set to 1. How the heuristic works on an example is shown
in [10].

B. The High Speed Network Implementation

The heuristic is obviously implementable on a large scale
high speed network since an 8x8 pixels block is compressed
independently. There is no issue in scaling down the network
since one node can process more blocks sequentially [5]. On
many images, we experimented positively the effectiveness
of a less robust approach employing only the first way of
compressing data, which shortens the coding and speeds up
the process improving the compression efficiency.

C. Decompression

Parallel decoding of compressed gray scale images is
trivial. As mentioned at the beginning of this section, color
images are compressed by applying the method to each
of the three components. It is obviously better to apply
the method to each component of a block rather than
coding each component of the whole image. In this way,
besides producing on on-line decodable compressed form
we simplify the input phase of the high speed network
implementation.

V. CONCLUSION

We presented a survey describing three low-complexity
lossless compression techniques for black and white images,
color images and text respectively. These techniques can be
implemented on a high speed network with no interprocessor
communication. To garantee compression effectiveness and
robustness, text compression requires each node of the
network to store approximately 300 kilobytes of data while
just 300 bytes suffice for black and white images. For color
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images, it is even enough that a node stores 64 bytes. It
follows that, as far as text compression is concerned, scaling
up the network is possible only for very large size files. As
future work, the design of a more local low-complexity text
compression technique is the main goal.
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