
Commercialized Practical Network Service Applications from the Integration of
Network Distribution and High-Speed Cipher Technologies in Cloud Environments

Kazuo Ichihara, Naoko Nojima
Net&Logic Inc.,
Meguro-ward,
Tokyo, Japan

e-mail: ichihara@nogic.net, nojima@nogic.net

Yoichiro Ueno, Shuichi Suzuki, Noriharu Miyaho
Department of Information Environment,

Tokyo Denki University, Inzai-shi,
Chiba, Japan

e-mail: ueno416@mail.dendai.ac.jp,
suzuky@mail.dendai.ac.jp, miyaho@mail.dendai.ac.jp

Abstract— This paper presents the evaluation results of the
commercialization of High Security Disaster Recovery
Technology (HS-DRT) that uses network distribution and
high-speed strong cipher technologies to realize efficient and
secure network services. We have commercialized a disaster
recovery system and evaluated the performance of the
distributed engines using the hash functions, versatile spatial
scrambling functions, etc., in cloud computing environments.
The average processing time has been estimated in terms of the
method of implementation of the engine. As for practical
network applications, an automatic back-up system using an
FTP server has been introduced. We have developed on-
premise systems which achieve high security through the use of
HS-DRT. Finally, we also propose future technologies for
preventing an insider attack.

Keywords-disaster recovery; backup; distributed processing;
cloud; strong cipher.

I. INTRODUCTION

Innovative network technology, which can guarantee, as
far as possible, the security of users’ or institutes' massive
files of important data from any risks such as an unexpected
natural disaster, a cyber attack, etc., are becoming
increasingly indispensable day by day. As a means of
satisfying this need, cloud computing technology is expected
to provide an effective and economical backup system by
making use of a very large number of data stores and
processing resources which are not fully utilized. It is
expected that this file data backup mechanism will be
utilized by government and municipal offices, hospitals,
insurance companies, etc., to guard against the occurrence of
unexpected disasters such as earthquakes, large fires and
storms and Tsunamis. To achieve secure back up, there is an
indispensable need for prompt restoration, which may make
versatile use of cellular phones, smart phones, digital signage
equipment and PCs, in addition to cloud resources dispersed
in multiple geographical locations. In addition to these
factors, many companies and individuals involved in
industry and commerce are interested in making use of
public or private cloud computing facilities, provided by
carriers or computer vendors as a means of achieving
security and low maintenance and operation costs. In this
paper we present the results of an evaluation of an innovative

file backup network service, which makes use of an effective
ultra-widely distributed data transfer mechanism and a high-
speed strong cipher technology to realize efficient, safe data
backup at an affordable maintenance and operation cost [1-
6].

When a block cipher is used, the required processor and
memory costs increase in an exponential manner with
increasing data volume. However, with a stream cipher, the
input data is simply operated on bit-by-bit, using a simple
arithmetic operation, and high-speed processing becomes
feasible. This is the fundamental difference between the two
cipher technologies. It is possible to combine the use of
technologies, specifically, the spatial scrambling of all data
files, the random fragmentation of the data files, and the
corresponding encryption and replication of each file
fragment using a stream cipher. Figure 1 shows the concept
of the proposed network service compared with a
conventional back up system using the leased lines.

 In the data center, it is appropriate to introduce a secret
sharing scheme for sending “encryption metadata” to the
supervisory servers deployed in the several different
locations for deciphering the original file data. To enhance
security it is better to send the metadata using a Virtual
Private Network(VPN). This mechanism make it quite
difficult to find out any series in the “encryption metadata”
itself. From a disaster recovery point of view, a secret
sharing scheme with some appropriate “thresholds” should
be introduced in the proposed system. If the system uses a
(3,5)-threshold scheme, the system uses five supervisory
servers, and can tolerate the simultaneous failure of two
servers. On the other hand, from a cyber terrorism point of

Conventional file back up system

Data File # 1

Internet / NGN / VPN

Clouds, PCs, Smart phones, Cellular phones

Data File # 2 Data File # 3Resource of
Clouds, PCs,
Smart Phones

Enterprise # 1 Enterprise # 2 Enterprise # 3

Effective
utilization of
network
resources

Proposed file back up system

Stream cipher, File spatial scrambling ,
Fragmentation, and distribution

Cloud
Ｉ

Cloud
Ｉ Ｉ

Replication
of the data
file

Replication
of the data
file

Data File

Leased Circuits

Region #A

Region #B Region #C

Enterprise #1

Replication
of the data
file

Replication
of the data
file

Data File

Leased Circuits

Region #A

Region #B Region #C

Enterprise #1
Enterprise #2

Enterprise #3

Data
Center #1

Data Center

Region #X

Metadata #1

Metadata #1

Metadata #n

Supervisory
Servers

Region #1～#n

Figure 1. Concept of the proposed network service

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

view, if the system uses a (3, 5)-threshold scheme, a cracker
has to intrude at least three “encryption metadata” servers
and one alive/valid information server at the same time [1].

We have developed a high security disaster recovery
technology (HS-DRT) for realizing file backup network
services. To realize the proposed DRT mechanism, the
following three principal network components are required:
(1) a secure data center, (2) several secure supervisory
servers, and (3) a number of client nodes such as smart
phones, cellular phones, digital signage equipment or cloud
storage which are available for use. The corresponding
history data, including the encryption key code sequences,
which we call "encryption metadata", are used to recover the
original data. This mechanism is equivalent to realizing a
strong cipher code, comparable to any conventionally
developed cipher code, by appropriately assigning affordable
network resources.

To realize a safe and highly secure system, it is necessary
to assure the users that their important file data cannot be
stolen from the service provider. When the important file
data is composed of a number of fragments distributed to the
several providers' clouds, we need to ensure that even a
single fragment cannot be deciphered by any of the
providers. From this point of view, we considered the
special case of preventing an insider attack. The proposed
technology can also increase both the cipher code strength
and the operation of decryption and reassembly of original
file data.

In this paper, we briefly describe related work in Section
II, and then, the basic configuration of the HS-DRT engine in
Section III, and a performance evaluation of the proposed
network services using the HS-DRT engine is presented in
Section IV. Practical commercialized systems are discussed
in detail in Section V. In Section VI, we describe the
technique behind the proposed method of preventing insider
attacks. Finally, we describe the conclusions and the future
issues in Section VII.

II. RELATED WORK

In the field of Disaster Recovery Systems, there have
been many research publications and many commercial
products. Most disaster recovery systems include data
replication functions using stand-by servers in remote
locations. In contrast, the proposed disaster recovery system
using HS-DRT uses a secure distributed data backup scheme.
By making use of the HS-DRT mechanism to achieve a
reliable backup scheme, we have been able to provide a
system product at a reasonable price to both individuals and
companies. For example, we can provide only the backup
application by using HS-DRT with multiple cloud services
as backup storage in accordance with appropriate customer
contracts. So, it is rather difficult to compare our proposed
system quantitatively with an ordinary disaster recovery
system from the viewpoint of the price.

In the field of secure data backup systems, other related
studies have included the concept of a distributed file backup
system [7][8]. However, in these studies, neither a precise
performance evaluation nor a practical network service
system is clearly described.

In the field of intrusion tolerance, a file server should
introduce such functions as encryption, fragmentation,
replication, and scattering [9]. The core technologies of HS-
DRT resemble those of a persistent file server, except for the
spatial scrambling and random dispatching technology. With
these two technologies, deciphering by a third party, by
comparing and combining the encrypted fragments, becomes
almost impossible. In addition, HS-DRT is applicable to
other fields, such as secure video streaming, etc.

 In the field of Distributed Anonymous Storage Services,
the replication and scattering techniques were introduced in
the Eternity Service [15]. However, the main objectives of
these services are longevity and anonymity.

 In contrast, these objectives (longevity and anonymity)
are not taken into account as primary requirements in the
HS-DRT. HS-DRT is effectively utilized for the purpose of
fast, safe and secure file back up until the next backup event.
Only the authorized users are able to initiate the process of
recovery of their file data contents.

III. BASIC CONFIGURATION OF THE HS-DRT ENGINE

The HS-DRT file backup mechanism has three principal
components, as shown in Figure 2. The main functions of the
proposed network components, which are Data Center,
Supervisory Server and various client nodes, can be specified
as follows. The client nodes (at the bottom of Figure 2 are
PCs, Smart Phones, Network Attached Storage (NAS)
devices, Digital Signage and Storage Services in the Cloud.
They are connected to a Supervisory Server in addition to the
Data Center via a secure network.

The Supervisory Server (on the right in Figure 2)
acquires the history data, which includes the encryption key
code sequence (metadata) from the Data Center (on the left
in Figure 2) via a network. The basic procedure in the
proposed network system is as follows.

Storage
Service

bdata

Data Center

1st encryption

spatial scrambling

fragmentation, duplication & shuffling

2nd encryption

Distribution with shuffling

Smart phoneSmart phoneSmart phone Storage
Service

NAS PC PC

Supervisory
Server

meta
data

encryption key

fragmentation,
duplication &
shuffle info.

distribution info.

encryption key

rake

decryption (2nd)

sort & merge

decryption (1st)

inverse spatial
scrambling

data

networknetwork

Network (Internet / NGN / VPN ,etc.)

Backup request user

VPN

Backup request user

Figure 2. Principle of HS-DRT file backup mechanism

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

A. Backup sequence

When the Data Center receives the data to be backed up,
it encrypts it, scrambles it, and divides it into fragments, and
thereafter replicates the data to the extent necessary to satisfy
the required recovery rate according to the pre-determined
service level. The Data Center encrypts the fragments again
in the second stage and distributes them to the client nodes in
a random order. At the same time, the Data Center sends the
metadata to be used for deciphering the series of fragments
to the supervisory servers. The metadata comprises
encryption keys (for both the first and second stages), and
several items of information related to fragmentation,
replication, and distribution.

B. Recovery sequence

When a disaster occurs, the Supervisory Server initiates
the recovery sequence. The Supervisory Server collects the
encrypted fragments from the various appropriate clients in a
manner similar to a rake reception procedure. When the
Supervisory Server has collected a sufficient number of
encrypted fragments, these are decrypted, merged, and
descrambled in the reverse order of that performed during
the second stage of encryption, and the decryption is then
complete. Through these processes, the Supervisory Server
can recover the original data that has been backed-up.

Let us consider the probability of successful recovery,
which can be estimated from the following equation. Here, P
is the failure rate of each client node, n is the degree of
duplication of each fragment, and m is the number of
fragments [1].

Probability of recovery nmn mPP  1)1(

Probability of recovery failure nmP
For example, when each file fragment’s failure rate P is

assumed to be 0.2, and the original file is divided into 30
fragments, and 30 replications are made of each fragment,

the probability of recovery failure becomes less than 1910 .
The above case applies to the use of smartphones, cellular
phones, or PCs.

The failure rate of such devices can be estimated to be
0.2 by considering their connectivity and reliability, erring
on the safe side. Here, the size of users’ important data is
classified into three types, called Type1, Type2, and Type3.
The data size of Type1 is at most around several hundreds of
megabytes in size. The data for Type2 is at most around
several tens of gigabytes, while that for Type3 is up to
several terabytes. Considering a smart phone’s memory
capacity to be 32 Gbytes, and the number of terminals to be
several tens of millions, these are used for Type1 and Type2
data, with the assurance that less than 1% of the vacant
memory resource in the terminals offered would be used to
support the backup service. This percentage can usually be
measured by the user’s self-check monitoring and the
monitored result can be transmitted to the remote supervisory
center. The value of 1% is an example of the conditions to be
temporarily assigned to encourage people to participate.
Several cloud storage resources can be effectively utilized
for Type3 data. When cloud storage is used, then P can be

less than 1110 and a reliability much higher than that
available commercially can be easily obtained.

The security level of the HS-DRT does not only depend
on the cryptographic technology but also on the method of
specifying the three combined factors, that is, spatial
scrambling, fragmentation/replication, and the shuffling
algorithm. Because of these three factors, nobody is able to
decrypt the data without collecting all relevant fragments and
sorting the fragments into the correct order. Even if some
fragments are intercepted, nobody is able to decrypt parts of
the original data from such fragments.

The spatial scrambling procedure can be realized by
executing a simple algorithm using a C-style description [1].
This computation process should be repeated several times.
To de-scramble, it is only necessary to perform the same
operations in the reverse order. Introducing the above
mentioned spatial scrambling technology makes it almost
impossible for a third party to decipher the data by
comparing and combining the encrypted fragments, since the
spatial scrambling scatters the relevant fragments widely and
uniformly amongst the storage devices.

One of the innovative ideas of HS-DRT is that the
combination of fragmentation and distribution can be
achieved in an appropriately shuffled order. Even if a cracker
captured all the raw packets passing between the data center
and the client nodes, it would be extremely difficult to
assemble all the packets in the correct order, because it
would be necessary to try about N! (N: number of fragments)
possibilities, where N is sufficiently large. In fact since the
bit patterns of any two encrypted fragments are completely
different from each other owing to the different encryption
keys, it is impossible to associate one encrypted fragment
with another. Crackers would require innumerable attempts
to decipher the data. In addition, HS-DRT mainly uses a
shuffling method that uses pseudo-random number
generators for the distribution to the client nodes. When we
distribute the fragments of the encrypted data to widely
dispersed client nodes, we can send them in a shuffled order,
since we predetermine the destination client nodes from the
shuffled table in advance. When we use a shuffle table which
makes use of the "Fisher-Yates shuffle" algorithm with 3
rounds, leading to a uniform distribution, the table itself is
hard for a third party to guess [10].

Practical systems to realize a hybrid HS-DRT engine can
be realized effectively by making use of a cloud computing
system at the same time. The system essentially consists of
the following four parts: thin clients, a web applications
server (Web-Apps Server), an HS-DRT engine, and Storage
Clouds. Thin Clients are terminals which can use web
applications in a SaaS (Software as a Service) environment.
Thin Clients can make use of the application services which
are provided by the web applications server. The HS-DRT
engine is considered to be a component of the hybrid cloud
computing system, which can also strengthen the cloud
computers’ security level at the same time. Usually, users
can also make use of one of multiple HS-DRT engines
available in the cloud environments through a contract with
the providers. The data center and the Supervisory Server

143Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

can be integrated in the HS-DRT engine. The HS-DRT
engine can effectively utilize the storage clouds which have a
function related to a web application and execute the
encryption, spatial scrambling, and fragmentation of the
corresponding data files. It is very important to note that the
processing efficiency of the HS-DRT engine can easily be
improved by increasing the amount of the web cache
memory.

 We need to consider the scalability of the HS-DRT
engine, since it may become a bottleneck in a very large
system, owing to the number of clients and the amount of
storage. In such cases, the HS-DRT engine may use a key-
value database. As the HS-DRT engine can easily work with
other HS-DRT engines, the system can be extended.

IV. PERFORMANCE EVALUATION OF THE HS-DRT

 To study the implementation of the spatial scrambling
functions in the HS-DRT engine, we evaluated a simple non-
optimized method, and an optimized method for use with
multi-core processors; for each method we used four sizes of
data, and the whole simulation was written in the C language.
The original data is divided into 64-kbyte data blocks and
each 64-kbyte data block is further divided into 64 data
blocks. The resulting 1024-byte data blocks are shuffled
using the Fisher-Yates algorithm. Since the scrambling effect
is limited within the range of 1024 bytes, the 64 1024-byte
data blocks are further shuffled three times using the Fisher-
Yates algorithm in order to achieve the appropriate degree
of randomness.

The above mentioned data processing has been
implemented using a single thread as a basic application
program. To optimize for multi-core processing, the Fisher-
Yates shuffling is applied to each thread in the environment
of the ubuntu12.04LTS OS.

 We adopted three types of CPU, which were 1-core
(AMD Athlon 1640B), 2-core (Intel Celeron G530), and 4-
core (Intel Corei7), from the viewpoint of economy. We
evaluated the processing time by using data sizes of 64kbytes,
640kbytes, 6.4Mbytes and 64MBytes. The measured results
are shown in Figure 3. In the graphs, the processing time is
shown in terms of the equivalent bit-rate. In case of the 1-
core processor, the efficiency of the single thread processing
for each 64-kbyte data block (referred to as the 64k-single
method) is approximately the same as the case of multi-
thread processing for each 64-kbyte block (referred to as the
64k-multi method). It shows that there is no benefit in multi-
processing in the case of 1-core processing. In contrast, in
the case of the 2-core and 4-core processing, when handling
6.4 Mbytes of data, the speed of the 64k-multi method is five
times faster than the 64k-single method for 2-core processing,
and nine times faster than the 64k-single method for 4-core
processing. Consequently, we derived the following two
characteristics of the HS-DRT engine.

1) The 64k-multi method can be used effectively with
multi-core processing in handling the spatial scrambling and
shuffling procedure under the Linux OS.

2) Since an increase in scrambled data size does not
result in much increase in the time required by the Fisher-

Yates shuffling, it is recommended to increase the size of
the data block for spatial scrambling by utilizing the 64k-
multi method.

V. PRACTICAL COMMERCIALIZED SYSTEM

We have considered the following business model.
1) The proposed system can share the network resources

such as clouds for different users with different security and
availability requirements. This can lead to an effective cost
reduction compared with conventional systems using leased
lines and data centers.

2) The proposed system can utilize the enormous
number of PCs, smart phones, and digital signage systems
as network resources to provide the backup services in
accordance with individual contracts with the owner users.
This also can lead to an effective cost reduction compared
with the conventional network system provider resources.

3) By effectively making use of the above mentioned
network resources, it is possible to provide backup services
for only a little bit more than the cloud usage prices.

4) For users who cooperate in offering available unused
network resources (memory), we can offer them a
communication tariff reduction or alternatively free backup
services.

A. Simple FTP server automatic backup system without
using Clouds

In 2010, we commercialized the personal HS-DRT
backup system that is called “@Cloud-DRT backup”. In this
system, the customer only installs client software on their
PC, and drags-and-drops the required files to the specific
folder. This process is suited to personal use, but it is not fit
for a large scale file service, such as an FTP server.

We have therefore made an autonomous backup system
for FTP servers by adapting the way “@Cloud-DRT backup”
is used. The components of our autonomous backup system
are shown in Figure 4. We added a backup server and only
installed the watch program on the target ftp server, without
modification of the ftp daemon. When a user uploads a file to
the FTP server, the watch program needs to look for the

Figure 3. Evaluation of HS-DRT

144Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

added or updated file. This process consumes significant
CPU resources, so we used the log file of the ftp daemon.
The log file is updated after every transfer, and it contains all
the information about added or updated or deleted files.
When the watch program detects a modification of the log
file, the updated files are copied from the FTP server to the
backup server. In the backup server, the client program of
“@Cloud-DRT backup” receives and backs up the updated
files to the cloud.

In our prototype backup-system, the speed of
performance of the file backup is only 1.4Mbps. The reason
for this rather low performance is due to the use of the client
program of “@Cloud-DRT backup” without modification. In
this prototype, we introduced the personal use client program
on the backup server. It will be necessary to build a new
client program for an enterprise use as the next step.

B. Practical disaster recovery system demonstrating the
advantage of mutually independent geographical sites

The essential configuration which has been developed for
the data backup system which makes use of cloud
environments is shown in Figure 5. The Meta-keys Processor
uses several cloud environments after user authentication,
and the multiple encrypted/divided/replicated data blocks are
deployed in the different cloud environments, as judged
appropriate, from the available network and computer
resources.

In this section, we describe an equipment we have newly
developed, which is effective not only for cloud systems, but
also for on-premise systems. The equipment, named
“DRTbox”, is a small box with an ARM-CPU and Linux
based OS. The DRTbox [13] is equipped with one Ethernet
port and one serial port. It works under temperatures of 0 to
55 degrees centigrade and the power consumption is only

5.0W. One of the typical configurations of the system is
illustrated in Figure 6, which shows the case of a
configuration in which a user site is backed up by two other
sites. Data1 is the original data which is stored by a user.
Data1a is stored in Site A, and Data1b is stored in Site B.
Data1a and Data1b include HS-DRT-processed 32 blocks
comprised of 64 blocks of whole data.

This means that even if one cloud out of three clouds
does not work, the corresponding data will not be lost.
Unlike conventional cloud systems, each site has its own file
server for users. Let us consider the case where the data are
processed by HS-DRT, and the size of Data1 is 100M bytes.
Data1a and Data1b are each 50Mbytes in size. In this case,
each site is basically controlled by a single company or an
organization. Each site can be linked via a secure network.
We used the technology to store the metadata keys for the
other sites using a simple AES encryption. This makes the
system operation simple, since the method to back up the
metadata keys is complex and it is generally difficult to
transport them securely.

If the user can use one more site (Site C), Data1 is
divided into 64 blocks, each of 100/64 Mbytes, and
processed to give 96 blocks. The additional 32 blocks are the
parity data of the other 64 blocks. After that, the 96 blocks of
data is divided into 3 groups, which are stored in Site A, Site
B and Site C, respectively. This means that even if two sites
out of four sites do not work, the corresponding data will not
be lost. This configuration of the system is more robust than
the one with just two back-up sites.

VI. INSIDER ATTACK ON BLOCK CIPHERS

A. Background

We need to consider case of an insider attack in which a
malicious vender of a security system attacks his clients by
using his cipher program, which is generally a block cipher.
It can be shown that the Initial Value (IV) mode [11][12] of
the block cipher is vulnerable to an insider attack. Moreover,
we will propose a countermeasure to this attack.

HDD

ftpd
@Cloud‐
DRTbackup

client
program

Cloudw
rite

watch

upload

watch
program

backup

FTP‐
server

backup
server

User PC

Figure 4. FTP server automatic backup system

Compression Encryption Dispersion

Replication

Distribution

Authentication

Cloud C

Meta-Keys Processor

Cloud B

Cloud A

to plural Clouds

Meta-Keys

Figure 5. Data backup configuration using several clouds

Figure 6. Implemented system using DRTBox

145Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

While we are planning to provide a safe and secure
system for the data backup, the client may be uneasy that the
data might be stolen through an unexpected insider attack.
To prevent this situation, we need to introduce the original
block cipher mode, only for this purpose.

B. Newly occurring model of attack on block ciphers

In an attack on the block cipher based on the IV mode,
the vendor as a supplier of the cipher program is assumed not
to have any malicious intentions towards clients. The safety
of block ciphers like the Advanced Encryption Standard
(AES) has been discussed under such assumptions.

Cipher Block Chaining (CBC) mode or counter mode are
recommended as safe methods to take the place of Electronic
Code Book (ECB) mode. Since AES actually exhibits steady
performance and reliability, it is now adopted as a world
standard. However, one may often have a sub-conscious
motivation for an insider attack. What sort of program could
a vendor produce if the malevolent intentions and which
might succeed in an insider attack? Such a situation raises a
serious concern in the disaster recovery service environment
which makes full use of cloud computing systems. We need
to resolve this kind of problem when we offer disaster
recovery services.

C. The model of an insider attack against block ciphers

First of all, let us define the model of an insider attack on
a block cipher.

1) The vendor of the cipher program attacks the user of
that program.

2) The cipher program outputs only the cipher text
through the client user’s input of key and message data. In
particular, the cipher program is inaccessible to the network.

3) The user can preserve the cipher text, and he can
always confirm the content by decoding according to the
publicized coding method.

4) The attacker can obtain only the cipher text.
The IV mode of the block cipher is not safe, as follows.

The attacker sends the client user encryption and decoding
programs, called E(K,M), and D(K,C), respectively, as
described below. Here K is a private key that only the client
user knows, and M is a message.

A pseudo-random number IV adheres to the head of the
cipher text C0, such that C=E(K,M) = (IV,C0).

Here C is a cipher text that looks quite normal, and M
can be computed by the normal decoding program D(K,C).
However, the attacker can obtain the key K and so succeeds
in the attack.

E(K,M) is composed as follows.
1. The attacker prepares internal code e and d in E(K,

M).
2. Here, e(M) = e(K0, M) = C, d(C) = d(K0, C) = M.

K0 is a key that only the attacker knows.
3. The program E(K, M) receives the user's key K and

plaintext M.
4. Let IV = e(K).
5. Calculate C0 in a usual IV mode.
6. Output C = (IV, C0).

7. The attacker acquires C from the network.
8. The attacker can calculate K = d(IV).
When this method is implemented with hardware, it is

especially difficult detect such an attack. This type of attack
is not addressed by protocol analyzers such as AVISPA or
Scyther since in their treatment of cryptographic primitives
they adopt the so-called black box approach [14]. Even if we
could detect the insider attack by using a protocol analyzer
by reverse engineering a cryptographic primitive, we could
hardly identify the same attack for another primitive. But, we
propose an integration mode of block ciphers, as described
below, which mode can avoid all insider attacks.

D. Vulnerability of double encryption method of block
ciphers

Although the IV mode is not safe, it might be thought
that it is safe if it is encrypted twice, including the appended
pseudo-random number. However, it is understood that it is
not safe if the attacker uses the following approach.

If IV=D(K,IV0) , then , E0(K,C)=E0(K,(IV,C0))
=E0(K,(D(K,IV0),C0))=(IV0,C1), where E0 is the

corresponding ECB mode encryption .
Hence, it is assumed IV0=e(K) by using a secret internal

code e that only the attacker knows.

E. Integration mode of block cipher

Now, we propose an encryption mode that is not
vulnerable to an insider attack. This encryption mode does
not have redundancy, and has the specific characteristic of
not being vulnerable to an insider attack. Moreover, it has
security more than equal to that of the block cipher which
was originally used.

We can provide a proof for this using a non-trivial one to
one correspondence

f:M  f(M) (integration transform).
Let E(K,M) and D(K,C) be the encryption and decryption,

respectively, of ECB mode of a safe block cipher. In E(K,M)
we adjust the length of M by zero padding. At this time, the
encryption and decryption are defined by C = E(K, f(M0))
and f-1(D(K, C)), respectively, where M0 denotes the zero
padding of M. In what follows, let Length(M) be the number
of bits of any message M.

Theorem 1. If the block cipher E(K, M0) is safe then E(K,
f(M0)) is also safe.

(Proof) For some algorithm A, suppose A(E(K, f(M0))) =
M0, then we have

f(A(E(K, M0))) = f(A(E(K, f(f-1(M0))))) = f(f-1(M0)) = M0.
Therefore the original block cipher E is also unsafe.

Theorem 2. E(K,f(M0)) is safe against an insider attack.
(Proof) Let C = E(K,f(M0)) and we assume this is not

safe against insider attacks. Note Length(M0) = Length(C).
Since Length(K) > 0, we have Length(M0) + Length(K) >
Length(C) and note that C contains the information of K and
M0. Therefore, the attacker must use a compression
algorithm, so we cannot decrypt C by the compatible
decryption program. This is a contradiction.

As mentioned above, client users of the disaster recovery
system are generally vulnerable to potential insider attack by
the system vendor.

146Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

However, by making use of the method proposed here,
this kind of vulnerability can also be avoided by using the
integration mode of AES or ECB mode.

VII. CONCLUSION AND FUTURE ISSUES

We have presented several types of commercialized
system and performance results for a system using HS-DRT
in cloud computing environments.

Further studies should address the optimum network
utilization technology. We are planning to verify the
essential characteristics necessary to fully utilize network
resources, in order to commercialize an ideal disaster
recovery system. In the conventional disaster recovery
system mentioned above, we assumed the use of push-type
client nodes which have ID information registered in
advance in both the data center and the supervisory center.
However, it would be preferable to increase the number of
potential users to support the corresponding network
services. For this purpose, client nodes such as those in a
mobile cell-phone network can be utilized for the network
services, even if their IP addresses are changeable with time.
To effectively realize this scheme both the data center and
the supervisory center register each list of fragmented file
information relating to each client node ID with a changeable
IP address, in preparation for a recovery request from the
user. We should further examine the performance of the Web
server as the number of fragments increases.

Since the formal protocol analyzers cannot include the
reverse engineering for all the cryptographic primitives, they
cannot correspond to all the proposed insider attacks.

In contrast, we have proposed the integration mode of
block ciphers, and this provides verifiable security against all
the proposed insider attacks.

ACKNOWLEDGMENT

This work has been partially supported by the study
(Issue number:151) of the National Institute of Information
and Communications Technology (NICT) of Japan.

REFERENCES
[1] N. Miyaho, Y. Ueno, S. Suzuki, K. Mori, and K. Ichihara, "Study on

a Disaster Recovery Network Mechanism by Using Widely
Distributed Client Nodes," ICSNC 2009, pp. 217-223, Sep., 2009.

[2] Y. Ueno, N. Miyaho, S. Suzuki, and K. Ichihara, "Performance
Evaluation of a Disaster Recovery System and Practical Network
System Applications," ICSNC 2010, pp. 195-200, Aug., 2010.

[3] S. Suzuki, “Additive cryptosystem and World Wide master key,”
IEICE technical report ISEC 101(403), pp. 39-46, Nov., 2001.

[4] N. Miyaho, S. Suzuki, Y. Ueno, A. Takubo, Y. Wada, and R. Shibata,
“Disaster recovery equipments, programs, and system,” Patent.
publication 2007/3/6 (Japan), PCT Patent :No.4296304, Apr., 2009.

[5] K. Kokubun, Y. Kawai, Y. Ueno, S. Suzuki, and N. Miyaho,
“Performance evaluation of Disaster Recovery System using Grid
Computing technology,” IEICE Technical Report 107(403), pp. 1-6,
Dec., 2007.

[6] S. Kurokawa, Y. Iwaki, and N. Miyaho, “Study on the distributed
data sharing mechanism with a mutual authentication and meta-
database technology,” APCC 2007, pp. 215-218, Oct., 2007.

[7] S. Tezuka, R. Uda, A. Inoue, and Y. Matsushita, “A Secure Virtual
File Server with P2P Connection to a Large-Scale Network,”

IASTED International Conference NCS2006, pp. 310-315, Mar.,
2006.

[8] R. Uda, A. Inoue, M. Ito, S. Ichimura, K. Tago, and T. Hoshi,
“Development of file distributed back up system,” Tokyo University
of Technology, Technical Report, No.3, pp. 31-38, Mar., 2008.

[9] Y. Deswarte, L. Blain, and J. C. Fabre, “Intrusion tolerance in
distributed computing systems,“Research in Security and Privacy,
1991. Proceedings., 1991 IEEE Computer Society Symposium on , pp.
110-121, May, 1991

[10] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural
and medical research (3rd ed.). London: Oliver & Boyd. pp. 26–27,
1948.

[11] J. Katz and Y. Lindell, "Introduction to modern cryptography",
Principles and Protocols, Chapman & Hall/CRC, pp. 96-106, 2008.

[12] D.R. Stinson, “Cryptography, -Theory and Practice- 3rd
edition”,Chapman & Hall/CRC, pp. 73-112, 2006.

[13] N.Nojima, "The DRTbox", pp. 1-2, Aug., 2013.
http://www.nogic.net/files/AtCloudDRTbox.pdf.

[14] C.J.F. Cremers, “Scyther-Semantics and Verification of Security
Protocols”, Ph.D. Thesis, Eindhoven University of Technology,
pp.11-12, 2006, ISBN 90-386-0804-7. ISBN 978-90-386-0804-4.

[15] R.J. Anderson, "The eternity service", Jun., 1997.
http://www.cl.cam.ac.uk/~rja14/eternity/eternity.html,

2013.8.22.

147Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

