
An Assessment of the Contemporary Threat Posed
by Network Worm Malware

Luc Tidy, Khurram Shahzad, Muhammad Aminu Ahmad and Steve Woodhead

Internet Security Research Laboratory
Faculty of Engineering and Science

University of Greenwich
Email: {l.j.tidy, k.shahzad, m.ahmad, s.r.woodhead}@greenwich.ac.uk

Abstract—The cost of a zero-day network worm outbreak has
been estimated to be up to US$2.6 billion. Additionally zero-
day network worm outbreaks have been observed that spread at
a significant pace across the global Internet, with an observed
infection level of more than 90 percent of vulnerable hosts within
10 minutes. The threat posed by such fast-spreading malware
is therefore significant, particularly given the fact that network
operator / administrator intervention is not likely to take effect
within the typical epidemiological timescale of such infections.
This paper presents a classification of wormable vulnerabilities,
demonstrating a method to determine if a vulnerability is
wormable, and presents a survey into the cause of the reduction
of worm outbreaks in recent years, as well as their viability in the
future. It then goes on to explore recent wormable vulnerabilities,
and points out the issues with operating system security in
relation to techniques used by zero-day worms.

Keywords—Cyber Defence; Malware; Network Worm; Zero-Day
Worm; Simulation; Modelling

I. INTRODUCTION

As a type of malware that exploits vulnerabilities that
have not been patched or acknowledged at the point of an
outbreak, with an automatic propagation method that can
spread pervasively throughout a network, zero-day worms are
particularly virulent. The effects are exacerbated by either a
lack of detection or a high speed of propagation [1]. The threat
presented by such malware to the Internet, national security
and defence systems is therefore significant.

In the first few years of the twenty-first century, there
were a number of notable zero-day worm outbreaks [2][3][4]
however, since these events the number of zero-day worm
outbreaks has reduced. Understanding this reduction, and
assessing whether such worm outbreaks are still viable in a
modern setting are essential. This paper presents a discussion
of historical worm events to ascertain why they occurred, and
then discusses the motivations for malware attacks to assess
why worm outbreaks have seen this reduction. The paper then
presents a discussion on recent wormable vulnerabilities and
operating system security, in order to assess whether zero-day
worm outbreaks are still viable on the modern Internet.

The remainder of this paper is presented as follows: Section
II presents a lexicon as a definition of terms. Section III
presents related work, focusing on similar studies into the

assessment of potential threats. Section IV presents a discus-
sion on the motivations for carrying out a malware attack.
Sections V and VI present a summary of recent wormable
vulnerabilities, and addressing the particular issue of operating
system security. Finally, the paper is concluded in Section VII.

II. LEXICON

A lexicon has been presented for the clarification of the
following terms, owing to their specific use in this paper.

Zero-Day Worm: In this paper, this is defined as a type
of malicious software that propagates automatically without
human interaction, using a vulnerability that has not been
patched or widely acknowledged at the point of an outbreak. In
particular, this paper reports findings on fast, random-scanning
worms [5]. This is a similar definition to the taxonomy
described by Weaver et al. [6], and other published literature
(see [2][3][4]).

Wormable Vulnerability: A vulnerability that has the po-
tential for use in worm propagation, as defined by being
network accessible, allowing the execution of arbitrary code
and whether a not a vulnerability can be exploited remotely.
This is in accordance with the model reported by Nazario et
al. [7].

III. RELATED WORK

Research into worms and their outbreaks has been reported
in three key areas: the classification of worms and wormable
vulnerabilities, potential worm outbreak scenarios and the
investigation of previous worm outbreaks. In addition, this
paper also considers contemporary malware threats.

A. Classification of Worms and Wormable Vulnerabilities

The taxonomy reported by Weaver et al. [6] presents an
overall method of classifying worms. The classification is
made under the following categories: target discovery, propa-
gation method, activation, payloads, motivations and attackers.
Similar categories are reported by Li et al. [8], which classified
worms under a number of schemes: target finding, propagation,
transmission and payload. Smith et al. [9] also uses the
taxonomy reported by Weaver, however, expands this further
to consider evasion and detection methods, which incorporate

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

different propagation methods and payloads. For the purposes
of this paper, we choose to focus on self-carried worms, or
worms that do not require other network traffic in order to
propagate.

Another factor of classifying worms is the vulnerability they
exploit in order to propagate. As reported by Nazario et al. [7],
a wormable vulnerability can be summarised in (1), where
wormability, W , is a product of the exploit characteristics, E,
population characteristics, P , and the time since the disclosure
of the vulnerability to account for development of the worm.
Nazario et al. also defines the characteristics of a wormable
exploit, as shown in (2), where the exploit characteristics, E,
are defined by the fractional population of exploit architecture,
fEp

, the fractional availability of an exploit for a given
vulnerability, fEa

, the number of chances available to attempt
an exploit, Ec, the fraction of exploit reliability, fEr , the
Boolean value of whether the exploit is able to be made
remotely, R, if the impact of the vulnerability is execution of
code, Ie and if the impact of the vulnerability permits network
access, In.

W = E ∗ P ∗ L (1)

E = fEp(fEa + 0.067)(
Ec − 1

Ec
+ fEr

)RIeIn (2)

Using the key factors reported by Nazario et al., and those
reported by Weaver at al., Li et al., and Smith et al., a
wormable vulnerability can be summarised in the Boolean
equation (3), where a wormable vulnerability, Vw, is deter-
mined by not requiring human interaction, H , is network
reachable, Nr, provides remote code execution, R, and pro-
vides network access, Na once exploited.

Vw = H̄ •Nr •R •Na (3)

In addition to the reported work that provides a classifi-
cation, there are also a number of resources that focus on
providing details for known vulnerabilities. One such source
is the Common Vulnerabilities and Exposures (CVE) system
[10], which provide details for a range of vulnerabilities. The
CVE system notes the access vector, for instance if the vul-
nerability is network reachable or requires human interaction,
and the impact if the vulnerability were to be exploited, for
instance providing remote code execution or network access.
These details provide information in order to assess whether
a vulnerability is wormable.

B. Potential Worm Outbreak Scenarios

Potential worm outbreak scenarios often focus on new
technologies or methods that a worm may use in order to
spread faster. As far as the authors are aware, the first notable
instance of this was the work reported by Weaver in 2001 [11],
which described a Warhol worm - where using a combination
of a list of known vulnerable hosts, known as a hitlist, and
by dividing up how each worm scans for new susceptible
hosts, known as permutation scanning, the worm increases in

virulence. Such methods were seen in the Witty outbreak of
2003 [4], and the second version of Code Red, Code Red II,
in 2001, respectively.

Work reported by Staniford et al. [12], presents results on
the impact of very fast, what is termed as Flash worms, on a
contemporary Internet as of 2004. Using simulation, Staniford
estimates that an optimised Flash worm could spread within
seconds. Similar fast outbreaks are further corroborated in
work reported by Tidy et al. [13], as well as reporting work
on other potential scenarios in [5], where a worm uses an
intentionally slow phase before switching to a fast, random-
scanning method in order to increase the number of infected
hosts prior to its fast phase; resulting in an impact similar to
having a hitlist.

The work in potential worm outbreaks assume that a
wormable vulnerability exists, however, there is limited work
in investigating contemporary vulnerabilities in order to deter-
mine if they are wormable, and the possible worm outbreaks
that could occur.

C. Previous Worm Outbreaks

There have been a number of large-scale zero-day worm
outbreaks, most notable of which are the Morris Worm out-
break of 1988 [14], the Code Red outbreak of 2001 [2],
the Slammer outbreak of 2003 [3] and Witty outbreak of
2004 [4]. Table I summarises these worms, detailing the
platform/service that had the wormable vulnerability, the port/s
used for propagation, and the exploit method. This shows that
these notable events all used a buffer overflow in order to
infect susceptible hosts, propagated using different ports and
exploited vulnerabilities on a number of different platforms.

Another reported characteristic of these worm outbreaks
centre around their payload. Both the Morris and Slammer
worms contained no destructive or directly malicious content
as part of its payload. Similarly, the Code Red worm only
began to undertake a denial of service attack after it had
completed a propagation phase. As reported by Shannon and
Moore [4], the Witty worm was the first to carry a destructive
payload, overwriting randomly chosen sections of the infected
hosts hard drive with the phrase “(^.^) insert witty message

here (^.^)”.
Owing to the lack of malicious payload in the Slammer

worm, the intentional pause in propagation in the Code Red
worm and as the Morris worm was described by its author
to be designed to gauge the size of the ARPANET, it can be
argued that the motivation to release these worms was one of
discovery. Similarly, as the Witty worm was the first of these

TABLE I
SUMMARY OF NOTABLE WORM CHARACTERISTICS

Name Vulnerable Platform/Service Port/s Exploit Method

Morris DECX Sun 3, sendmail finger 25,79 Buffer overflow

Code Red Microsoft IIS web service 80 Buffer overflow

Slammer Microsoft SQL Server 2000 1434 Buffer overflow

Witty Internet Security Systems firewall Random Buffer overflow

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

to carry a destructive payload, it could have been released to
assess whether a destructive payload was feasible.

D. Contemporary Malware Threats

Since the large outbreaks at the beginning of the 21st cen-
tury, the number of large-scale worm outbreaks has decreased
significantly. Panda Security [15] reports that worms only
constituted approximately 6% of all malware infections in the
first quarter of 2013, it is also reported that trojans constitute
the majority of the malware infections with 80% of all malware
infections being of this type. One of the largest of these is the
Zeus trojan [16], which is designed in order to commit fraud
by gaining access to banking details on infected hosts and
sending these details to the attacker. This is defined by Wilson
[17] as cybercrime, or criminal activity that is “enabled by, or
that targets computers”.

A return to worm-like characteristics can be seen in the
Stuxnet [18] outbreak, which targeted industrial control sys-
tems in order to cause damage. It is suggested that Stuxnet is
an example of cyberwarfare [19], where the intent was to cause
damage to the targeted industrial systems. This is a distinct
difference in the cybercriminal activity, as instead of criminal
gain the motivation of released Stuxnet was one of causing
damage.

IV. MOTIVATIONS FOR MALWARE ATTACKS

One of the main factors in understanding malware outbreaks
is the motivation of the attacker. A difference in motivation
can influence the choice of malware that an attacker will
choose, given that different malware is more effective at
certain tasks than others. In the case of worm outbreaks, this is
demonstrated by the reduction in events, owing to a change in
the motivation of attackers. Figure 1 illustrates this change,
plotting the trend of worm prevalence against time, along
with three categories of attacker motivation: experimentation
or discovery, cybercrime and cyberwarfare.

Up to the first few years of the 21st century, the use of
malware was comparatively in its infancy, and the notable
worm outbreaks during this period can be argued to have been
for experimental purposes, with the main motivation of the
attacker to see if they are feasible; or in the case of the Morris

Fig. 1. Trend of Zero-Day Worm Prevalence

worm to measure the size of the ARPANET. From around
2004 onward, the use of malware for cybercrime has increased.
Such criminal activity, as shown by the prevalence of trojans
like Zeus [16], has focused on gaining access to confidential
data or disrupting services, such as a Distributed Denial-of-
Service attack (DDoS) [20], through the use of controlling a
large number of machines through a botnet created using a
trojan.

Although worms can be used in order to create botnets and
carry out DDoS attacks, other methods have been chosen by
attackers. Part of the reasoning for this, is that a large-scale,
fast random-scanning worm outbreak is easily detectable, and
it is often the intent of an attacker to avoid detection for as long
as possible. Additionally, as has been shown by the Slammer
outbreak [3], there is the possibility that a particularly fast
worm can impede the network traffic, that in the case of
a botnet, may disrupt the ability of an attacker to issue
commands to or receive information from infected hosts.

As it has been shown by the worm-like Stuxnet outbreak
[18], if it is the intention of an attacker to cause damage
then the use of worms becomes a more attractive option.
Although these have been isolated to targeted attacks to date,
if it is the intention of an attack to disrupt communication or
target the network infrastructure, such as in a cyberwarfare
scenario, then the use of worms becomes a much more viable
option. Additionally, if the motivation of an attack is to cause
disruption of the Internet, then worms also present a viable
option for attackers, even in the absence of a payload that
causes damage.

Given the further shift of motivation from cybercrime to
cyberwarfare, this also depends on the existence of wormable
vulnerabilities, in order to exploit and carry worm attacks in
the future.

V. RECENT WORMABLE VULNERABILITIES

Equation 3 presents a method of assessing whether or not
a vulnerability is wormable. This Section presents five case
studies of contemporary wormable vulnerabilities, along with
their CVE code [10] for reference.

Microsoft Remote Desktop Protocol (RDP) - 13/03/2012 -
CVE-2012-0002

The Microsoft RDP is a method for users to remotely access
Windows-based hosts across a network. This vulnerability was
present in a number of Windows versions, including XP, Vista,
7, Server 2003 and Server 2008. This allows an attacker
to send a crafted packet on port 3389 to the host running
RDP, and then potentially gain remote code execution. Having
gained access to execute remote code, the attacker could then
use this to send copies of the malicious packet

This wormable vulnerability is of particular note owing
to the potentially large number of susceptible hosts to such
an attack. W3Counter [21] reports that these recent editions
of Windows constituted of approximately 3 billion Internet-
connected hosts in 2012. As RDP is disabled by default, this
requires being enabled manually. One estimate for the number

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

of RDP enabled hosts is one in every 10,000 [22], or 300,000
hosts; resulting in a similar proportion of vulnerable hosts to
the Code Red outbreak in 2001. As has been reported in two
of the authors previous work [5], such a large proportion of
susceptible hosts could result in a particularly virulent worm
outbreak.

BigAnt Message Server - 09/01/2013 - CVE-2012-6275

The BigAnt instant messaging (IM) software is an instant
messaging solution targeted towards business use. By using
a buffer overflow present in the message server portion of
the software, an attacker is able to send a crafted packet and
execute remove code on the targeted machine. As the soft-
ware links with Microsoft Active Directory, this can include
ascertaining user account details, potentially having a wider
impact than just the host running the message server. This can
also lead to network access, allowing copies of the malicious
packet to be sent to other hosts running the message server
software.

Although lacking the install base of the Microsoft RDP
vulnerability, this is of particular note owing to its use in a
corporate setting, as well as potentially allowing access to fur-
ther details that could lead to further issues. This vulnerability,
as far as the authors are aware, also has yet to be patched
and details of how to exploit this vulnerability are publicly
available.

VMWare vCenter - 25/04/2013 - VMSA-2013-0006.1

VMWare vCenter is a management platform for virtualised
hosts. A number of CVEs reported under the VMWare security
advisory VMSA-2013-006.1 [23] detail how an attacker may
leverage Microsoft Active Directory integration in order to
gain authentication on Windows-based servers running vCen-
ter (CVE-2013-3107), and then use this authentication in order
to execute remote code using another vulnerability (CVE-
2013-3079). This access provides administrative privileges to
the host system, enabling the attacker to then send copies of
the malicious packet/s used to other susceptible hosts.

As one of the largest vendors for virtualisation software, a
vulnerability in VMWare software presents a scenario where
a substantial number of hosts may be susceptible to an attack.
Furthermore, access to the virtualisation environment may
further allow access to the virtualised hosts that are currently
running on it. This vulnerability has since been patched
by VMware, however, it demonstrates that virtualisation can
present a vulnerability for future worm outbreaks.

ASUS RT-AC66U Router - 26/07/2013 - CVE-2013-4659

The ASUS RT-AC66U router is a router produced for the
consumer and small office market. Using a vulnerability in the
Broadcom ACSD service allows an attacker to send a crafted
packet on port 5916 causing a buffer overflow. This allows
administrative access on the target device, providing remote
code execution and the ability for the router to send copies
of the malicious packet to other susceptible hosts. As far as

the authors are aware, no known patch is available for this
vulnerability and proof of concepts are currently available.

This vulnerability demonstrates that not only do server and
desktop hosts require consideration when considering potential
worm outbreaks, but also that of routing infrastructure. In addi-
tion to gaining access to further propagate itself, administrative
access to the router may also allow for further attacks, in-
cluding man-in-the-middle or denial of service attacks against
hosts connecting to the Internet through this router.

systemd 208 and prior - 20/09/2013 - CVE-2013-4391

Designed specifically for Linux-based operating systems,
systemd is a system management service, or daemon, that
forms part of the Linux startup process. By using a crafted
packet, a buffer overflow can be cause resulting in allowing
remote code execution. In addition with another vulnerability,
CVE-2013-4394 [10], administrative access can be gained,
therefore allowing network access to send copies of the
malicious packet/s to other susceptible hosts.

This vulnerability demonstrates that other operating sys-
tems, aside from Windows, can also be subject to a wormable
vulnerability. It also demonstrates that software required by
an operating system for basic functionality, as opposed to
additional functionality in the case of the Microsoft RDP
vulnerability, can also be vulnerable.

A. Host Discovery

As highlighted in the work reported by Shannon et al. [4]
and Staniford et al. [12], the use of a hitlist is one key method
of increasing the virulence of a worm outbreak. Given that
a number of unpatched vulnerabilities have been highlighted,
it is of note that there now exist a number of services that
catalogue information provided through the use of meta-data.
One such service, Shodan [24], is freely available and allows
the collated download of search results at a small price. Such
a service could be used in order to collate information prior
to a worm outbreak, in order to create a hitlist.

B. Susceptible Population

A key factor in determining the virulence of a worm is
the number of susceptible hosts that a worm can infect.
As has been demonstrated in some of the authors previous
work [5][13], and the measure of exploitability by Nazario
et al. [7], the larger the proportion of susceptible hosts on
a network both virulence and exploitability increase. In the
case studies presented, those vulnerabilities that would provide
the greatest number of susceptible hosts, are vulnerabilities
in operating systems. Therefore, it is pertinent to further
investigate operating system security.

VI. OPERATING SYSTEM SECURITY

A. Operating System Memory Security

The main method for exploited vulnerable hosts, allowing
for remote code execution, has been the use of buffer overflow
exploits (as demonstrated in table I). This has prompted the
development of a number of techniques in order to prevent

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

the writing of arbitrary data in the memory addresses that are
being used by a program; and therefore providing remote code
execution. The prevention techniques that are widely adopted
in modern day operating systems are Address Space Layout
Randomisation (ASLR), Data Execution Prevention (DEP),
using No eXecution (NX) and canaries.

1) Address Space Layout Randomisation: ASLR is a coun-
termeasure mechanism [25] adopted by operating systems
to randomize the positions of executable code and data in
memory at each run of a program. Randomising the base
address of important memory structures, such as the stack and
heap, makes the virtual address needed to perform a control-
flow hijacking attack unknown. However, some techniques
[26][27] have been reported that can bypass the randomness
of ASLR mechanism.

a) Non-ASLR Memory: A non-ASLR module that runs
on ASLR enabled operating system can be used to circumvent
the ASLR protection mechanism. This can be a shared library
in Microsoft Windows compiled without ASLR support for
compatibility reasons. When an application that is non-ASLR
is executed, the application tends to load its executables at
runtime at a fixed memory address, thus allowing critical mem-
ory sections to be overwritten, or changing memory location.
Additionally, using return-oriented programming techniques
the contained data can be abused in order to leak additional
memory addresses.

b) Information Disclosure: An information disclosure
vulnerability can be used to leak memory locations of elements
known to be at fixed addresses. For example, an out-of-bounds
memory access vulnerability can be used to read a function
pointer, and then send the value back to the remote server.
Consequently, the server will control the size parameter of the
function and accurately trigger an out-of-bounds read. As a
result, the address of the public function is leaked. Based on
this address, the memory layout of a corresponding executable
file can be inferred.

c) Heap Spraying: Heap spraying is a technique used to
allocate a substantially large amount of memory and fill it with
a concatenation of multiple copies of a block of data. This is
intended to create heap blocks using scripting languages so
that a reliable location can be attained, then execute shellcode
without looking for an offset in the memory address. This
can greatly increase the probability that a chosen address will
point to the beginning of the block even in the presence of
randomisation.

2) Data Execution Prevention: Execution prevention
[27][28] is another important countermeasure used to prevent
arbitrary code execution even when an attacker has gained
control over the processor’s instruction pointer. This technique
marks memory regions of executable application or service
as writable or executable, but not both at a time. Popularly
known as DEP on Microsoft Windows systems, it utilizes a
hardware feature of the processor known as the NX bit. This
marks writable memory regions, including the stack, as non-
executable. Thus, when an address from this memory region is
loaded as the instruction pointer, the processor will notice the

non-executable flag and then raises a kernel level exception.
The kernel will then send a segmentation fault signal to the
program and thus terminate the program. Techniques used
to circumvent DEP include return into libc, Return-Oriented
Programming (ROP) and stack pivoting.

a) Return into libc: This technique [25] bypasses DEP
by using the code of the running program or its shared libraries
for malicious purposes instead of its intended use. This is
achieved since the code is used by the running program itself,
then the memory space utilised by the program is marked as
executable. For example, in the Windows operating system an
attack that uses WinExec and its functions (normally found in
ntdll.dll) bypasses DEP as these are stored in an executable
part of the memory. Thus malicious code can be copied to
the executable memory space giving the attacker control of
applications and services as described in [29].

b) Return-oriented Programming: This technique [25]
allows an attacker to take control of the processor’s instruction
pointer and the stack area where return addresses are stored.
Small pieces of code called gadgets are chained together to ex-
ecute a chosen functionality instead of executing the intended
functions. These gadgets are simple instructions followed by
a return statement. For example, the statement in Figure 2
moves the content of the stack esp to ecx and then loads
the next address from the top of the stack into the processor’s
instruction pointer through the return statement. This technique
can successfully bypass DEP using WinExec as reported in
[30].

c) Stack Pivoting: This technique [25] is an improvement
of return-oriented programming by utilizing a special ROP
gadget in order to make return-oriented programming possible
through arbitrary overwrites. Having taken control of the
processor’s instruction pointer, an attacker will use the pointer
to jump to a gadget that modifies the stack pointer to make
it point to a controlled location. This can be accomplished
directly through an arithmetic operation or by gadgets con-
taining the popq instruction. It is intended that the controlled
stack area will contain the ROP shellcode that will be executed
subsequently.

3) Canaries: This is a compiler technique [31] that protects
the stack by inserting a guard, a randomly chosen integer,
at the start of the program between the protected region
of the stack and the local buffers, i.e., a canary value is
placed after the return address. Therefore, overwriting the
return address will change the canary value, which is normally
checked before a function uses the return address. The function
will compare the value on the stack and the original value
of the canary, if these values are different, then a message
is generated in the system logs and the program will be
terminated.

mov esp, ecx
ret

Fig. 2. Example Return-Oriented Programming Gadget

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

B. The Windows XP Opportunity

It has been estimated that Windows XP still constitutes 26%
of all operating systems installed on desktop hosts [32]. As of
the 8th April 2014, the extended support for Windows XP was
discontinued. This meant that from this date there were no
longer any security patches or support for this version of the
operating system being made available for free. Although what
is termed “critical patches” will be made available to paying
customers. Additionally, after the 14th July 2015, the built-
in anti-malware tools, Security Essentials and the Malicious
Software Removal Toolkit, will no longer be supported.

Given this lack of support, if vulnerabilities are found in
this version of the Windows operating system, it increases the
likelihood that these systems will be susceptible to a future
worm outbreak. This presents a particular issue, for instance,
Slammer was able to cause disruption with less than 1% of
the hosts at the time being susceptible to its infection vector
[3], therefore it is reasonable that should a Windows XP
vulnerability be exploited by a Slammer-like attack it could
cause significant network disruption.

VII. CONCLUSION

Since the turn of the 21st century, zero-day worms have
constituted a considerable threat to the Internet. Since 2005
there has been a reduction in the number of worm outbreaks,
which can be attributed to a shift in the motivation of attackers
from a period of experimentation and discovery to that of
criminal activity. As such activity is better suited to the use
of other types of malware, such as trojans, this reduction is
reasonable. With the advent and increase in prevalence of
cyberwarfare, worms once against become a weapon of choice
for attackers, owing to their fast propagation and ability to
cause considerable damage.

This paper explored the contemporary availability of
wormable vulnerabilities and discusses the increased pro-
portion of susceptible hosts made available by exploiting
operating system vulnerabilities, highlighting the common
techniques used in order bypass the most common techniques
for preventing the exploitation methods used by zero-day
worms. Furthermore, it highlights the opportunity that has
arisen for attackers with the end of extended support, and
future end of anti-malware support, for the Windows XP
operating system.

REFERENCES

[1] B. Ediger, “Simulating Network Worms - NWS Network Worm Sim-
ulator,” http://www.stratigery.com/nws/, Sep. 2003, retrieved: 28th July
2014.

[2] C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation
modeling and analysis,” in Proceedings of the 9th ACM conference on
Computer and communications security. ACM, 2002, pp. 138–147.

[3] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “The spread of the sapphire/slammer worm,” IEEE Security
and Privacy, vol. 1, no. 4, pp. 33–39, 2003, retrieved: July, 2014.

[4] C. Shannon and D. Moore, “The spread of the witty worm,” Security &
Privacy, IEEE, vol. 2, no. 4, pp. 46–50, 2004.

[5] L. Tidy, S. Woodhead, and J. Wetherall, “A large-scale zero-day worm
simulator for cyber-epidemiological analysis,” vol. 3, no. 1. Universal
Association of Computer and Electronics Engineers, 2013, pp. 69–73.

[6] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy
of computer worms,” in Proceedings of the 2003 ACM workshop on
Rapid malcode. ACM, 2003, pp. 11–18.

[7] J. Nazario, T. Ptacek, and D. Song, “Wormability: A description for
vulnerabilities,” Arbor Networks (October 2004), 2004, retrieved: July,
2014.

[8] P. Li, M. Salour, and X. Su, “A survey of internet worm detection
and containment,” Communications Surveys & Tutorials, IEEE, vol. 10,
no. 1, pp. 20–35, 2008.

[9] C. Smith, A. Matrawy, S. Chow, and B. Abdelaziz, “Computer worms:
Architectures, evasion strategies, and detection mechanisms,” Journal of
Information Assurance and Security, vol. 4, pp. 69–83, 2008.

[10] M. Corporation. (2014, April) CVE - common vulnerabilities
and exposures. Online. Retrieved: July, 2014. [Online]. Available:
https://cve.mitre.org/

[11] N. Weaver, “Warhol Worms: The potential for very fast inter-
net plagues,” http://www.iwar.org.uk/comsec/resources/worms/warhol-
worm.htm, 15 Aug. 2001, retrieved: July, 2014.

[12] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The top speed of
flash worms,” in Proceedings of the 2004 ACM workshop on Rapid
malcode. ACM, 2004, pp. 33–42.

[13] L. Tidy, S. Woodhead, and J. Wetherall, “Simulation of zero-day
worm epedimiology in the dynamic heterogeneous internet,” Journal
of Defense Modeling and Simulation, 2013, in Press.

[14] E. H. Spafford, “The internet worm program: An analysis,” ACM
SIGCOMM Computer Communication Review, vol. 19, no. 1, pp. 17–57,
1989.

[15] Panda Security. (2013, May) Pandalabs q1 report: Trojans
account for 80malware infections, set new record. Online.
Panda Security. Retrieved 28 July 2014. [Online]. Avail-
able: http://press.pandasecurity.com/news/pandalabs-q1-report-trojans-
account-for-80-of-malware-infections-set-new-record/

[16] K. Stevens and D. Jackson, “Zeus banking trojan report,” Atlanta, DELL
Secureworks. http://www. secureworks. com/research/threats/zeus, 2010,
retrieved: July, 2014.

[17] C. Wilson, “Botnets, cybercrime, and cyberterrorism: Vulnerabilities and
policy issues for congress.” DTIC Document, 2008.

[18] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” Tech.
Rep., 2011.

[19] S. Cherry, “How stuxnet is rewriting the cyberterrorism playbook,”
IEEE Spectrum. http://spectrum. ieee. org/podcast/telecom/security/how-
stuxnet-is-rewriting-the-cyberterrorism-playbook, 2012.

[20] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 2, pp. 39–53, 2004.

[21] Awio Web Services LLC. (2012, November) W3counter - global web
stats. Retrieved: July, 2014. [Online]. Available: http://www.w3counter.
com/globalstats.php

[22] B. Krebs. (2012, October) Service sells access to fortune 500
firms. Online. Retrieved: July, 2014. [Online]. Available: https://
krebsonsecurity.com/2012/10/service-sells-access-to-fortune-500-firms/

[23] VMWare Inc. (2013, October) Vmsa-2013-0006.1 vmware security
updates for vcenter server. Online. VMWare Inc. Retrieved: July,
2014. [Online]. Available: https://www.vmware.com/security/advisories/
VMSA-2013-0006

[24] D. Goldman, “Shodan: The scariest search engine on the internet,”
Webseite, Stand, pp. 01–21, 2014.

[25] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space aslr,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 191–205.

[26] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on ios:
when benign apps become evil,” in Proceedings of the 22nd USENIX
conference on Security. USENIX Association, 2013, pp. 559–572.

[27] S. Röttger, “Malicious code execution prevention through function
pointer protection,” 2013.

[28] A. Cugliari, L. Part, M. Graziano, and W. Part, “Smashing the stack in
2010,” no. July, pp. 1–73, 2010.

[29] N. Stojanovski, M. Gusev, D. Gligoroski, and S. Knapskog, “Bypassing
data execution prevention on microsoftwindows xp sp2,” in Availability,
Reliability and Security, 2007. ARES 2007. The Second International
Conference on. IEEE, 2007, pp. 1222–1226.

[30] V. Katoch. Whitepaper on bypassing aslr/dep. Online. Secfence
Technologies. Retrieved: July, 2014. [Online]. Available: http://www.
exploit-db.com/wp-content/themes/exploit/docs/17914.pdf

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

[31] H. Marco-Gisbert and I. Ripoll, “Preventing brute force attacks against
stack canary protection on networking servers,” in Network Computing
and Applications (NCA), 2013 12th IEEE International Symposium on.
IEEE, 2013, pp. 243–250.

[32] Net Applications. (2014, April) Desktop operating system market share.
Online. Net Applications. Retrieved: July. 2014. [Online]. Available:
http://www.netmarketshare.com/

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

