
Fault-Tolerant Breach-Free Sensor Barriers

Jorge A. Cobb

Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080-3021
U.S.A.

Email: cobb@utdallas.edu

Chin-Tser Huang

Department of Computer Science and Engineering
University of South Carolina at Columbia

Columbia, SC 29208
U.S.A.

Email: huangct@cse.sc.edu

Abstract—Consider an area that is covered by a wireless sensor
network whose purpose is to detect any intruder trying to cross
through the area. Given the limited battery power of wireless
sensor nodes, the length of time during which intrusion-detection
is possible can be maximized by dividing the sensors into disjoint
sets, known as barriers. The area remains protected, or covered,
by a sensor barrier if there exists a subset of sensors that divide
the area into two regions, such that no intruder can move from
one region into the other and avoid detection. By having only
one barrier active at any time, the duration of the coverage is
maximized. However, sensor barriers may suffer from breaches,
which may allow an intruder to cross the area while one barrier is
being replaced by another. This is dependent not on the structure
of an individual sensor barrier, but on the relative shape of
two consecutive sensor barriers. Centralized heuristics exist in
the literature that separate sensors into breach-free barriers.
In this paper, we present a distributed version of the best-
performing heuristic for breach-free barriers. In addition to being
distributed, the protocol is stabilizing, i.e., starting from any state,
a subsequent state is reached and maintained where the sensors
are organized into breach-free barriers.

Keywords–Stabilization; Sensor networks; Sensor barriers.

I. INTRODUCTION

We consider a wireless sensor network consisting of a large
number of sensor nodes distributed over a geographical area.
Each sensor has a limited battery lifetime, and is capable
of sensing its surroundings up to a certain distance. Data
that is collected by the sensors is often sent over wireless
communication to a base station [1].

The type of coverage provided by the sensors is either full
or partial. In full-coverage, the entire area is covered at all
times by the sensor nodes, and thus, any event within the
area is immediately detected [2]–[5]. Partial coverage, on the
other hand, has regions within the area of interest that are not
covered by the sensors [6]–[8].

One form of partial coverage that received significant
attention due to its application to intrusion detection is barrier
coverage [9]–[16]. A barrier is a subset of sensors that divide
the area of interest into two regions, such that it is impossible
to move from one of the regions to the other without being
detected by at least one of the sensors. Figure 1(a) highlights
a subset of sensors that provide barrier coverage to the area.

In the specific case of intrusion detection, providing full
coverage is not an efficient use of the sensor resources, and
leads to a reduced network lifetime. Instead, multiple sensor

barriers can be constructed, as illustrated in Figure 1(b). Only
one barrier needs to be active at any moment in time; the
remaining barriers can remain asleep in order to conserve
energy. When a barrier is close to depleting all of its power,
another barrier is placed in service. Given a set of sensors
deployed in an aera of interest, finding the largest number of
sensor barriers is solvable in polynomial-time [11].

Sensor barriers are susceptible to a problem, known as a
barrier-breach, in which it is possible for an intruder to cross
an area during the time that one barrier is being replaced
by another [17], [18]. The existence of a barrier-breach is
dependent not on the structure of an individual sensor barrier,
but on the relative shape of two consecutive sensor barriers.
The complexity of obtaining the largest number of breach-free
sensor barriers is an open problem. Thus, heuristics have been
presented in [17], [18].

In [19], we presented a heuristic which outperforms those
of [17], [18]. This heuristic, as well as those in [17], [18],
are centralized. In this paper, we transform our heuristic
from [19] into a distributed solution, where the sensor nodes
organize themselves into breach-free barriers. In addition to
being distributed, our solution is self-stabilizing [20]–[23], i.e.,
starting from any state, a subsequent state is reached and
maintained where the sensors are organized into breach-free
barriers. A system that is self-stabilizing is resilient against
transient faults, because the variables of the system can be
corrupted in any way (that is, the system can be moved into an
arbitrary configuration by a fault) and the system will naturally
recover and progress towards a normal operating state.

The paper is organized as follows. Section II reviews the
concept of a barrier breach, and our heuristic for breach-
free barriers. In Section III, we discuss the basic mechanisms
necessary to obtain a distributed version of the heuristic.
Notation for our specification is given in Section IV, followed
by the specification itself in Section V. Remarks on smaller
components necessary to obtain a complete protocol are given
in Section VI. An overview of the correctness proof is given in
Section VII, followed by concluding remarks in Section VIII.

II. BARRIER BREACHES

A. Motivation
We first overview the problem of a barrier breach through

the example in Figure 1(b). The figure shows four different
sensor barriers, with each barrier displayed with different line
types.

63Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications



intruder	  

users	  

(a) Sensor Barrier

intruder	  

users	  

B1	  

B2	  

B3	  

B4	  

(b) Multiple Sensor Barriers

intruder	  

users	  

B1	  

B2	  

B3	  

B4	  

(c) Barrier Breaches

Figure 1. Sensor Barriers

Let us assume that the lifetime of each sensor is one
time unit. Furthermore, assume all sensor nodes are operating
simultaneously. In this case, the lifetime of the network is
simply one time unit, after which an intruder is able to
penetrate the area and reach the users.

An alternative approach is to divide the sensors into multi-
ple barriers. In the example above, we can divide the sensors
in four barriers, B1 through B4. Each of these barriers divides
the area into two horizontal sections. If we use the barriers in
a sequential wakeup-sleep cycle (B1, B2, B3, and finally B4),
the users are protected for a total of four time units.

Although advantageous in terms of network lifetime, there
is a potential drawback to this approach. Consider Figure 1(c),
where specific points in the plane have been highlighted.

(a) The order in which the barriers are scheduled makes a
significant difference, in particular, for barriers B1 and B2.
If B2 is scheduled first, followed by B1, then an intruder
could move to the point highlighted by a diamond, and
after B2 is turned off, the intruder is free to cross the
entire area.

(b) Only one of B3 and B4 is of use. To see this, suppose that
we activate B3 first. In this case, the intruder can move to
the location of marked by the black star. Then, when B4

is activated and B3 deactivated, the intruder can reach the
users undetected. The situation is similar if B4 is activated
first, and the intruder moves to the location of the grey star.

B. Definitions
We begin by presenting the definition of a barrier breach,

as originally proposed in [17].
Definition 1: (Barrier-Breach). An ordered pair (B1, B2)

of sensor barriers have a barrier breach if there exists a point
p in the plane such that:

(a) p is outside the sensing range of B1 and B2,
(b) B1 cannot detect an intruder moving from the top of the

area to p, and
(c) B2 cannot detect an intruder moving from p to the bottom

of the area.

Before presenting our heuristic from [19], we begin with
some definitions also introduced in [19].

Definition 2: (Ceilings and Floors) Given that a sensor
barrier B divides the area of interest into an upper region and
a lower region,

• The ceiling of B consists of all points p along the
border of the sensing radius of each sensor in B such
that one can travel from p to any point in the upper
region without crossing the sensing area of any sensor.

• The floor of B consists of all points p along the border
of the sensing radius of each sensor in B such that
one can travel from p to any point in the lower region
without crossing the sensing area of any sensor.

As an example, consider the sensor barrier depicted in
Figure 2(a). The ceiling and floor of this barrier are depicted
in Figure 2(b), where the ceiling is depicted with a solid line
and the floor with a dashed line.

Using these definitions, we can obtain a condition that
guarantees that a breach is not present [19].

Lemma 1: (Breach-Freedom) An ordered pair (B1, B2) is
breach-free iff the floor of B2 is below the ceiling of B1.

Theorem 1: (Non-Penetrable) A schedule (sequence)
(B1, B2, . . . , Bn) of sensor barriers is non-penetrable iff, for
each i, 1 ≤ i < n, the ordered pair (Bi, Bi+1) is breach-free
[19].

Consider for example Figure 1(c). The pair (B1, B2) does
not have a barrier breach because the floor of B2 never crosses
over the ceiling of B1. The pair (B2, B1) does have a breach.

Note also that both (B3, B4) and (B4, B3) have a breach.
Thus, they cannot be scheduled one after the other. This, how-
ever, does not preclude them from being in a schedule together
(although not in the network in Figure 1). For example, assume
that we can add more sensor nodes that form a barrier (that
is, from the left border to the right border of the area) and
the sensors run along the middle of B3 and B4, closing the
gaps between these barriers. If this new barrier is B′, then the
schedule (B3, B

′, B4) is a non-penetrable schedule.

C. Ordered Ceilings Heuristic

Our heuristic is based on the following observation, which
follows from the above theorem.

64Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications



Upper	  region	  

Lower	  region	  

(a) Sensor Set (b) Ceiling and Floor

B1#

B2#

B3#

(c) Barriers Obtained

Figure 2. Ceiling-First Method

Observation 1: If a set of m sensor barriers does not
have a pair of barriers whose ceilings intersect, then a non-
penetrable schedule exists of duration m by scheduling the
sensor barriers in order from top to bottom.

Our heuristic simply finds each barrier iteratively as fol-
lows. Consider the set of all sensor nodes as a barrier, and
obtain its ceiling. The first barrier consists of all sensor nodes
that take part of this ceiling. These nodes are then removed
from the network, and a new ceiling is obtained, which yields
a new barrier, etc.. Figure 2(c) shows a sample sensor network
and the three barriers resulting from the heuristic.

III. DISTRIBUTED IMPLEMENTATION

We next discuss how to obtain a distributed implementation
of our heuristic described above. We begin by making some
assumptions about the network.

A. Model
Each sensor node is assumed to be equipped with a global

positioning system (GPS) or other means by which it can infer
its location. We assume the sensing area of each node forms a
circle, or can be approximated by the largest circle within its
sensing area. The area of interest is assumed to be rectangular,
as shown in Figure 1, and each sensor is able to determine if
its sensing area overlaps either the left or right border of the
area of interest. Finally, we assume that nodes whose sensing
range overlaps are able to communicate wirelessly with each
other, i.e., the transmission range is greater than the sensing
range.

Self-stabilizing systems are assumed to run continuously,
otherwise, they would not have time to recover from a transient
fault. In our system, we assume that the batteries of the
sensors can be recharged, such as by solar cells or by a
station transmitting microwaves, and thus the network can
run continuosly. However, being actively sensing depletes the
battery of the sensor. Sensors must therefore have a period of
rest to recharge.

From the above, we assume that the network operates as
follows. If there are n barriers constructed, then each barrier,
from top to bottom, is activated sequentially. By the end of the
lifetime of network n, we assume that the first barrier has had
enough time to recharge to be reactivated, and the schedule
continues.

There is of course a period of vulnerability when switching
from barrier n to barrier 1, since an intruder that moved
closed to barrier n could reach the users once the barrier
switch is performed. We assume that the users are aware of
this vulnerability and will take additional protection measures
during this small interval of time.

Finally, since nodes need to communicate to maintain their
relationships, we assume that nodes, whether actively sensing
or not, wake up at specified intervals and exchage messages
with their neighbors to maintain or correct their state.

B. Method
Consider Figure 3(a). Any two sensor areas that overlap

each other will intersect at only two points. We view these two
points as “edges” (P,Q) and (Q,P ). These edges are directed
according to clockwise order, as indicated in the figure. Hence,
the top dark circle corresponds to edge (P,Q) (from P to Q),
while the bottom dark circle corresponds to edge (Q,P ) (from
Q to P ).

To form a barrier, a node whose sensing range overlaps the
left border finds the outgoing edge clockwise that is closest to
the point on the left border. This edge points to the next node
on the barrier. This is process is then repeated. That is, the
second sensor node chooses the edge that is closest clockwise
the the incoming edge of the previous node, and so on. The
process continues until the right border is found.

As an example, consider again Figure 2(a). The node
overlapping the border begins by choosing as the next barrier
node its neighbor higher up as opposed to its neighbor below.
This is because the edge to the higher up neighbor occurs
first clockwise, with respect to the point on the border, than
the edge to the neighbor below. The process repeats, with the
node higher up choosing the first clockwise outgoing edge
(relative to the incoming edge of the previous node). The
border obtained is given in Figure 2(b), which corresponds
to the ceiling of the nodes.

An interesting observation is that the ceiling may come
back to the original node. This is the case in Figure 2(a), but
not in Figure 2(c). This is illustrated more clearly in Figure
3(b). Consider the barrier drawn with solid lines. When the
filled circle, R, is reached, the next barrier node is directly
above it. As the barrier continues to be built, the barrier
returns back to R. The next node is to the right of R, which
immediately returns back to R. The barrier then proceeds along

65Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications



Q	  

P	  

(a) Sensing Intersection

R	  

(b) Detours

R	  

from	  

to(1)	  

to(2)	  

to(3)	  

back(1)	  

back(2)	  

(c) Pointers to Neighbours

Figure 3. Neighbor Relationships

the bottom circle. Thus, we can say that there are two “detours”
at R before continuing on with the barrier. These detours have
to be taken into consideration when designing the distributed
algorithm for barrier construction below.

Another observation from Figure 3(b) is that some sensors
at the left border are unable to find a path to the right border.
This is the case with the barrier attempt with dashed lines.
However, it is still possible for a node further below to reach
the right border.

C. Variables and Neighbor Relationships

To implement the above scheme, the main variables (point-
ers) of a sensor node R are shown in Figure 3(c). Variable from
contains the identity of the previous sensor node in the barrier.
Variables to and back are parallel sequences that contain the
identities of the neighbors that follow node R in the barrier. In
Figure 3(c), to(1) and back(1) correspond to the pair of nodes
of the first detour of node R, and similarly, to(2) and back(2)
correspond to the pair of nodes for the second detour of R.
Finally, to(3) corresponds to the next node in the barrier that is
not part of a detour. Hence, in a stable state, |to| = |back|+1,
and the last element of to corresponds to the next node in the
barrier.

Assume a node R must choose between two neighbors, P
and Q, to become its from neighbor. That is, P and Q are both
pointing towards R, and R must be able to distinguish which
one is “best”. If P ’s barrier originated at a higher point on the
border than Q’s barrier, then R will choose P . However, if both
have the same origin point (especially during a stabilization
phase), more information is needed to break the tie. Also, R
must be able to determine if P and Q are pointing at it not
because they occur before R in the barrier, but because they
are returning to R from a detour of several hops.

One approach could be for neighbors to exchange the entire
path from the border node to themselves when communicating
with each other. This is sufficient but somewhat excessive,
especially since detours are likely to be either short or non-
existent in a barrier, and communication should be minimized

in a wireless system. We choose instead to have each node
maintain an abbreviated version of its path as follows.

For a node on the left border of the area, its path is simply
the pair (d, 1), where d is the distance from the top of the
area to the point on the border where the barrier begins. The
second number in the pair is a hop count. Thus, assuming the
barrier has no detours, then a node h hops from the left border
will have a path equal to (d, h). Also, notice that if there are
no detours, then variable to(1) always points to the next node
on the barrier.

Assume now that detours do exist. Let S = R.to(3), i.e.,
S is the beginning of the third detour of R. Then

S.path = R.path : (2, 1)

where colon denotes concatenation. The first number denotes
the number of complete detours in its predecessor, R, and the
second number denotes the hop count from the point of the
detour. Hence, the number of pairs in a path correspond to the
number of nodes encountered that had at least one complete
detour. In consequence, if there are no detours after S, then
the nodes after S have the same path as S, except that the hop
count in the last pair increases with each hop.

Given the paths of two nodes, R and S, we denote by
R ≺ S if R occurs first in the barriers before S. That is,
either R occurs in a barrier above the barrier of S, or they
occur in the same barrier and R occurs first in the barrier. This
is straightforward to determine from the paths as follows.

• If R.path and S.path are equal except in the hop
count of the last pair, then R ≺ S if the hop count of
R is smaller.

• Let (d, h) and (d′, h′) be the first pair in R.path and
S.path where d 6= d′. Then, R ≺ S if d < d′.

IV. PROTOCOL NOTATION

We choose to specify our protocol using the notation from
[22], [23]. The behavior of each node is specified by a set
of inputs, a set of variables, a set of parameters, and a set of
actions.

66Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications



The inputs declared in a process can be read, but not
written, by the actions of that process. The variables declared
in a process can be read and written by the actions of that
process. For simplicity, we assume a shared memory model,
i.e., each node is able to read the variables of its neighbors. We
discuss how this can be relaxed to a message passing model
in the concluding remarks. Parameters are discussed further
below.

Every action in a process is of the form:

<guard> → <statement>.

The <guard> is a boolean expression over the inputs, vari-
ables, and parameters declared in the process, and also over the
variables declared in the neighboring processes of that process.
The <statement> is a sequence of assignment statements that
change some of the variables of the node.

The parameters declared in a process are used to write a
set of actions as one action, with one action for each possible
value of the parameters. For example, if we have the following
parameter definition,

par g : 1 .. 2

then the following action

x = g → x := x+ g

is a shorthand notation for the following two actions.

x = 1 → x := x+ 1

x = 2 → x := x+ 2

An execution step of a protocol consists in evaluating the
guards of all the actions of all processes, choosing an action
whose guard evaluates to true, and executing the statement of
this action. An execution of a protocol consists of a sequence
of execution steps, which either never ends, or ends in a state
where the guards of all the actions evaluate to false. We assume
all executions of a protocol are weakly fair, that is, an action
whose guard is continuously true must be eventually executed.

We say a network stabilizes to a predicate P iff, for every
execution (regardless of the initial state) there is a suffix in
the execution where P is true at every state in the suffix [22],
[23].

To distinguish between variables of different nodes, we
prefix the variable names with node names. For example,
variable x.v corresponds to variable v in node x. If no prefix
is given, then the variable corresponds to the node whose code
is being presented.

V. PROTOCOL SPECIFICATION

Below, we present the specification of a stabilizing protocol
that organizes sensors into breach-free barriers. The sensor
barrier of a node can be obtained by following its pointer
variables, i.e., the left node is indicated by variable from and
its right node is indicated by the last entry in its variable to.

The code below does not organize the barriers, i.e., assign
to each a natural number to indicate its position on the schedule
of barriers. This is a simple addition that will be overviewed
in Section VI.

To simplify the presentation of the code, we do not directly
have actions for the case when a node’s sensor area overlaps
the borders, i.e., when a node is a potential endpoint of a
barrier. Instead, we assume that there are two virtual nodes S
and T , where S is beyond the left border and T is beyond the
right border. Any sensor node P overlapping the left border
is assumed to have an incoming edge (S, P ). Furthermore, the
path that S advertises to P is of the form (d, 0), where d is
the depth of the point where P ’s sensor range overlaps the left
border. That is, the distance from the top of the region to this
point. In this way, no two sensors on the border will have the
same path. In the case when sensors are located right next to
each other, ties can be broken by node id’s.

The inputs and variables of a sensor node u are as follows.
We will describe the actions further below.

node u
inp

G : set of node id’s {sensing neighbors}
L : natural number {max. barrier length}

var
from : element of G;
to : sequence of element of G;
back : sequence of element of G;
path : sequence of (N+, 1 . . . L);

par
g : element of G {g is any neighbor of u}
i : 1 . . . |G|

begin
<actions>

end

The node has two inputs. Input G is the set of neighboring
sensor nodes. We assume a sensor can determine its neighbor
set via a simple hello protocol. The second input, L, is the
maximum number of hops that is allowed in a barrier. I.e., the
sum of the hop counts of all elements of a path should be at
most L. This bound is not necessary to break loops, but it may
be used to speed up convergence.

The variables of each process are as described earlier.
Variable from points to the previous node on the barrier, and
variable to is a sequence pointing to the next nodes on the
barrier: one entry for every detour and the final entry points
to the true next node. Variable back contains the return nodes
from the detours, and path is the abbreviated path of the node.

Each node has ten actions, which we present in groups.
The first two actions are as follows.

from = nil ∨ u /∈ from.to ∨
¬coherent(from, to, back)) ∨HC(path) > L →

from := nil;
to := ∅; back := ∅; path := ∅;

from.to(i) = u ∧
path 6= extend-one-hop(from.path, i) →

from := nil;
to := ∅; back := ∅; path := ∅;

These actions are sanity actions for variables from, to,
and path. In the first action, if there is no previous node
(from = nil), then all variables should be set to nil and

67Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications



empty, because all values depend on having a previous node.
Also, the values are reset when coherent(from, to, back) is
false. This is a function that checks that the values of from,
to, and back, follow the clockwise pattern as shown in Figure
3(c), i.e., starting at variable from, we have an alternating
clockwise sequence of to and back pointers. The hop count of
the path is also checked.

In the second action, we have a sanity check on the path
variable. In particular, the path should be derived from the path
of the previous node (pointed by from), according to the rules
of Section III-C. This is obtained from function

extend-one-hop(path, i)

that returns the same path with an increased hop count of 1
when i = 1, or returns path : (i− 1, 1) when i > 1.

The third, fourth, and fifth actions check sanity on variables
to and back.

g = to(i) ∧ back(i) 6= nil ∧ u 6= g.from →
to := to(1 : i− 1);
back := back(1 : i− 1);

g = back(i) ∧ u /∈ g.to →
to := to(1 : i);
back := back(1 : i− 1);

back(i) = g ∧ g.path /∈ extend-multiple-hops(path, i) →
to := to(1 : i);
back := back(1 : i− 1);

In the third action, if u has a detour whose first node is
neighbor g, but g is not selecting u as its left neighbor, then the
detour, and any that follow it, are invalid and must be deleted.

In the fourth action, if a detour appears to return via
neighbor g, and g is not pointing towards u at all, then also
this detour, and any that follow it, are invalid and must be
deleted.

Finally, the fifth action ensures that if there is a detour,
then the node from where the detour is returning (neighbor g)
has a path that is an abbreviated extension of the path of u.
The set of all possible extensions of the path of u are denoted
by the function extend-multiple-hops(path, i).

The sixth action below attempts to find a more suitable left
neighbor, as follows.

from 6= g ∧ u = g.to(i) ∧
extend-one-hop(g.path, i) � path ∧HC(g.path) < L →

from := g;
to := ∅;
back := ∅;
path := extend-one-hop(g.path, i);

In this action, if the a neighbor g is pointing at node u, and
the path that u would obtain via g is better than its current
path, and the hop-count is not violated by the new path, then
g is chosen as the new left neighbor. Since all other variables
depend on the left neighbor, the to and back variables are reset.

The seventh and eighth actions below find the next element
in the to and back sequences, as follows.

from 6= nil ∧ |to| = |back| ∧
extend-one-hop(path, |to|) � g.path ∧HC(path) < L ∧
(back(|to|), u) (u, g) (from, u) →

to := to : g;

|to| > |back| ∧ u ∈ g.out ∧
g.path ∈ extend-multiple-hops(path, |to|) ∧
(from, u) (u, to(|to|)) (g, u) →

back := back : g;

In the seventh action, if all detours are complete (|to| = |back|)
and the path u offers to g is better than whatever path g
currently has, and g is in the correct clockwise order (denoted
by  ), i.e., it is between the end of the last detour and before
the from neighbor, then u points to g as a possible next
neighbor in the barrier.

In the eighth action, a neighbor g is checked to see if it
completes the last detour, and if so it is added to the back
sequence.

The remaining ninth and tenth actions below attempt to
improve upon neighbors that have been chosen in the to and
back arrays.

|to| ≥ i ∧ extend-one-hop(path, i) � g.path ∧
HC(path) < L ∧ (from, u) (u, g) (u, to(i)) →

to := to(0 : i− 1) : g;
back := back(0 : i− 1);

|back| ≥ i ∧ u ∈ g.out ∧
extend-one-hop(path, i) � g.path � back(i).path ∧
(u, to(i)) (g, u) (from, u) →

to := to(0 : i);
back := back(0 : i− 1) : g

In the ninth action, if a neighbor g is to be chosen to replace
to(i), then the path of g must improve with the change, and g
has to be in the correct clockwise order. In particular, it must
occur before the current to(i) node.

In the tenth action, if a node g is chosen to replace back(i)
(that is, the node completing the ith detour) then the path of
g must be better than that of back(i), and it must also occur
in the correct clockwise order.

Given that detour j, where j > i, depends on detour i, all
detours greater than i are deleted.

VI. COMPLETING THE PROTOCOL

The protocol presented in Section V organizes the sensors
into disjoint breach-free barriers, but it does not organize them
into a schedule. However, each sensor node must know the
number of its barrier (counting from top to bottom) to be able
to turn its sensing feature at the right time.

To accomplish the above, the nodes at the right barrier
can organize themselves in a simple sequence from top-to-
bottom. Any of these nodes that is pointed by a to entry of
a neighbor becomes the end point of the barrier. A simple
diffusing computation from top to bottom can assign numbers
to all the nodes that are the end point of a barrier. These
numbers can then be propagated to the other sensor nodes in

68Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications



the direction of the left border by following the from variable
at each node.

VII. CORRECTNESS

Due to space limitations, the proof of correctness of the
protocol is deffered to [24]. The proof follows the following
overall steps.

First, due to the sanity actions, predicate
coherent(from, to, back) will hold and continue to hold, in
addition to |back| ≤ |to| ≤ |back + 1|. That is, the variables
satisfy what is depicted in Figure 3(c).

Next, although the upper bound L on the hop count is
enforced, the bound L is not necessary to break loops. A loop
exists if we follow the from variables and reach the same
node a second time. Loops are broken quickly, because the
hop counts must be consistent (differ by exactly one) between
nodes, or otherwise all variables are reset to nil and empty
values. The total order � on paths prevent new loops to be
formed.

The following step is to show that all nodes only contain
abbreviated paths that have as their first entry a non-fictitous
entry point along the left border. The path with a fictitous first
entry and with the smallest hop count will not match the path
of its from neighbor, and thus will reset its values. Thus, in
L steps all path with fictitious first entries disappear.

Next, due to the total order of �, the nodes along the top
barrier will overcome any other path value in the system, thus
completing the top barrier in L steps. The remaining barriers
will be constructed similarly in top-down order.

VIII. CONCLUDING REMARKS

Our execution model is based on shared memory. However,
a message passing implementation is straightforward using the
techniques described in [22] due to the low level atomicity of
the actions, that is, each action refers to variables of only a
single neighbor at a time.

One possible weakness is the case in which the sensor
nodes are so sparse that the nodes bordering the right wall
form a disjoint network, and thus cannot coordinate with each
other the number that should be given to each barrier. This
could be mitigated if barrier numbers originate also from the
nodes on the left border. Another mitigating factor is that even
though two barriers may not be able to communicate with each
other at the borders, they might be able to do so in the middle
of the area of interest if their respective sensors are close to
each other. This may provide aid in coordinating the numbers.
We leave these issues for future work.

REFERENCES
[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network

survey,” Computer Networks, vol. 52, no. 12, Aug 2008, pp. 2292–
2330.

[2] C. Huang and Y. Tseng, “The coverage problem in a wireless sensor
network,” in ACM Int’l Workshop on Wireless Sensor Networks and
Applications (WSNA), 2003, pp. 115–121.

[3] H. Zhang and J. Hou, “On deriving the upper bound of α-lifetime for
large sensor networks,” in Proc. of The 5th ACM Int’l Symposium
on Mobile Ad-hoc Networking and Computing (MobiHoc), 2004, pp.
121–132.

[4] Cardei, M., Thai, M.T., Y. Li, and W. Wu, “Energy-efficient target
coverage in wireless sensor networks,” in INFOCOM 2005, vol. 3,
March 2005, pp. 1976–1984.

[5] M. Thai, Y. Li, and F. Wang, “O(log n)-localized algorithms on
the coverage problem in heterogeneous sensor networks,” in IEEE
Int’l Performance, Computing, and Communications Conference, 2007.
IPCCC 2007., April 2007, pp. 85–92.

[6] S. Gao, X. Wang, and Y. Li, “p-percent coverage schedule in wireless
sensor networks,” in Proc. of 17th Int’l Conference on Computer
Communications and Networks, 2008. ICCCN ’08., Aug 2008, pp. 1–6.

[7] C. Vu, G. Chen, Y. Zhao, and Y. Li, “A universal framework for partial
coverage in wireless sensor networks,” in Performance Computing and
Communications Conference (IPCCC), 2009 IEEE 28th Int’l, Dec 2009,
pp. 1–8.

[8] Y. Li, C. Vu, C. Ai, G. Chen, and Y. Zhao, “Transforming complete
coverage algorithms to partial coverage algorithms for wireless sensor
networks,” Parallel and Dist. Systems, IEEE Trans. on, vol. 22, no. 4,
April 2011, pp. 695–703.

[9] S. Kumar, T. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” in Proc. of the 11th Annual Int’l Conference on Mobile
Computing and Networking (MobiCom), 2005, pp. 284–298.

[10] A. Saipulla, C. Westphal, B. Liu, and J. Wang, “Barrier coverage of
line-based deployed wireless sensor networks,” in INFOCOM 2009,
April 2009, pp. 127–135.

[11] S. Kumar, T. Lai, M. Posner, and P. Sinha, “Maximizing the lifetime of
a barrier of wireless sensors,” Mobile Computing, IEEE Transactions
on, vol. 9, no. 8, Aug 2010, pp. 1161–1172.

[12] H. Yang, D. Li, Q. Zhu, W. Chen, and Y. Hong, “Minimum energy
cost k-barrier coverage in wireless sensor networks,” in Proc. of the 5th
Int’l Conf. on Wireless Algorithms, Systems, and Applications (WASA),
2010, pp. 80–89.

[13] H. Luo, H. Du, D. Kim, Q. Ye, R. Zhu, and J. Zhang, “Imperfection
better than perfection: Beyond optimal lifetime barrier coverage in
wireless sensor networks,” in Proc. of The IEEE 10th Int’l Conference
on Mobile Ad-hoc and Sensor Networks (MSN 2014), Dec 2014, pp.
24–29.

[14] D. Li, B. Xu, Y. Zhu, D. Kim, and W. Wu, “Minimum (k,w)-angle
barrier coverage in wireless camera sensor networks,” Int’l Journal of
Sensor Networks (IJSNET), vol. 19, no. 2, 2015.

[15] L. Guo, D. Kim, D. Li, W. Chen, and A. Tokuta, “Constructing belt-
barrier providing quality of monitoring with minimum camera sensors,”
in Computer Communication and Networks (ICCCN), 2014 23rd Int’l
Conference on, Aug 2014, pp. 1–8.

[16] B. Xu, D. Kim, D. Li, J. Lee, H. Jiang, and A. Tokuta, “Fortifying
barrier-coverage of wireless sensor network with mobile sensor nodes,”
in Proc. of the 9th Int’l Conference on Wireless Algorithms, Systems,
and Applications (WASA 2014), Jun 2014, pp. 368–377.

[17] D. Kim, J. Kim, D. L. abd S. S. Kwon, and A. Tokuta, “On
sleep-wakeup scheduling of non-penetrable barrier-coverage of wireless
sensors,” in Proc. of the IEEE Global Communications Conference
(GLOBECOM 2012), Dec 2012, pp. 321–327.

[18] H. B. Kim, “Optimizing algorithms in wireless sensor networks,” Ph.D.
dissertation, The U. of Texas at Dallas, Advisor: J. Cobb, May 2013.

[19] J. A. Cobb, “Improving the lifetime of non-penetrable barrier cover-
age in sensor networks,” in International Workshop on Assurance in
Distributed Systems and Networks, 2015, pp. 1–10.

[20] M. Schneider, “Self-stabilization,” ACM Computing Surveys, vol. 25,
no. 1, March 1993, pp. 45–67.

[21] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, vol. 17, no. 11, 1974, pp. 643–644.

[22] S. Dolev., Self-Stabilization. Cambridge, MA: MIT Press, 2000.
[23] M. G. Gouda, “The triumph and tribulation of system stabilization,”

in WDAG ’95: Proceedings of the 9th International Workshop on
Distributed Algorithms. London, UK: Springer-Verlag, 1995, pp. 1–18.

[24] J. A. Cobb and C. T. Huang, “Stabilizing breach-free sensor barriers,”
in Technical Report, Dept. Computer Science, The University of Texas
at Dallas, May 2015.

69Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications


