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Abstract—In this paper, the blind subspace channel estimation 
using the block matrix scheme is proposed for multiple-input 
multiple-output (MIMO) orthogonal frequency division 
multiplexing (OFDM) systems. Based on the Toeplitz structure, 
the block matrix scheme collects a group of the received 
OFDM symbols into a vector, and then partitions it into a set 
of equivalent signals. The number of equivalent signals is 
about N times of OFDM symbols, where N is the size FFT 
operation. The proposed blind subspace channel estimation 
can converge within a small amount of OFDM symbols. 
Besides, the semi-blind channel estimation is also examined by 
combining few pilot sequences with the subspace method. 
Simulation results show that the proposed blind and semi-
blind algorithms outperform the compared methods. 

Keywords-MIMO-OFDM; blind subspace channel estimation; 
Toeplitz; AIC; MDL. 

I.  INTRODUCTION  

Wideband wireless communication systems have been 
extensively studied in recent years for the demands of high 
data rate and high quality transmission. Orthogonal 
frequency division multiplexing (OFDM) and multiple-input 
multiple-output (MIMO) are two key techniques to fulfill 
those demands appeared in the long-term evolution (LTE) 
and the future fourth-generation (4G) communication 
systems [1]-[3]. Channel estimations are necessary for 
coherent detection in MIMO-OFDM systems. There are in 
general three categories in channel estimations which are 
training-based, blind and semi-blind methods, respectively. 
The training-based method requires extra bandwidth to 
accommodate the periodic known symbols and thus reduces 
the spectral efficiency [4][5]. The blind method saves the 
spectral efficiency by utilizing the statistics of received 
signals. But, this method requires a large amount of received 
signals to obtain accurate statistics [6][7]. Semi-blind 
methods, on the other hand, combine the blind method with 
few training symbols to solve the ambiguity problem 
occurred in blind methods [8][9]. 

In this paper, we discuss the blind and semi-blind 
subspace channel estimation for MIMO OFDM systems with 
much fewer received symbols. Blind subspace channel 
estimation has been widely examined for various precoding 
OFDM systems. For example, Ali et al. studied the subspace 
channel estimation for cyclic-prefix (CP)-OFDM, zero-
padding (ZP)-OFDM and CP-free OFDM systems, 

 
Fig.1. MIMO CP-OFDM block transmission systems. The system has Mt 
transmit and Mr receive antennas. 

 
respectively [10]. Li and Roy proposed subspace channel 
estimation based on exploiting the presence of virtual 
carriers for single-input single-output OFDM systems [11]. 
Zeng and Ng investigated in [12] the subspace channel 
estimation for multi-user and multi-antenna ZP-OFDM 
systems. Shin et al. extended the work in [11] to MIMO-
OFDM systems [13]. The subspace channel estimation often 
converges in a large amount of received OFDM symbols. To 
enhance the convergence of the subspace channel estimation, 
Yu [14] presented the block matrix scheme (BMS) to SIMO 
CP-free OFDM systems. This approach can obtain a group 
of equivalent signals which is about N times of OFDM 
symbols where N is the size of FFT operation. By exploiting 
the idea from [14], a new block matrix scheme is applied to 
MIMO CP-OFDM systems, in which the number of 
equivalent samples is increased and the channel estimation 
error is lowered. 

Notation: Vectors and matrices are denoted by boldface 
lower and upper case letters, respectively; superscripts of ()T 
and ()H denote the transpose and conjugate transpose, 
respectively; I denotes an identity matrix; 0 denotes a zero 
vector or matrix with all zero entries; E[] denotes the 
statistical expectation;   denotes the matrix or vector 

Frobenius norm. 
The rest of this paper is organized as follows. In Section 

II, we introduce the signal model of the MIMO CP-OFDM 
systems. The subspace channel estimation is briefly 
described in Section III. In Section IV, the blind and semi-
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blind subspace channel estimations are presented with the 
assistance of block matrix scheme. The computer simulations 
are performed in Section V. Finally, conclusion and future 
work are given in Section VI. 

II. SYSTEM MODEL 

Fig. 1 shows the quasi-synchronous MIMO CP-OFDM 
system with Mt transmit antennas and Mr receive antennas. 

Let    ( ) ,0 , , , 1
T

q q qn b n b n N   b   be the n-th block 

frequency domain symbol for the q-th transmit antenna. 
Transmitted symbol bq(n,k) is assumed to be independent 
and identically distributed (i.i.d.) complex random variable 
with zero-mean and variance 2

s . After multicarrier 
modulation implemented by IDFT, the time domain signal 
vector is given by 

   ( ) ( ) ,0 , , , 1
TH

q N q q qn n s n s n N    s W b   where WN 

is the N-point DFT matrix with the (n,m)-th element 
(1/ ) exp( 2 ( 1)( 1) / ).N j n m N    Appending CP 

components at the front of ( )q ns
 
yields 

( ) ( ,0), , ( , 1)
T

q q qn x n x n Q   x  , where Q=N+Lc and Lc 

is the length of CP. Denote by 

    1

0 0
( , )

Q

n j
m n j m nQ j 

 
   x x the transmitted 

vector among all transmit antennas where 

1( , ) ( , ), , ( , )
t

T

Mn j x n j x n j   x  . The discrete-time 

received signal at the p-th receive antenna is given by 

       
1 0

tM L

p pq q p
q l

r m h l x m l v m
 

                  (1) 

where  pqh l , l=0,…,L represents the composite channel 

impulse response between the q-th transmit antenna and the 
p-th receive antenna with maximum channel order L, and 

( )pv m  is the additive white Gaussian noise (AWGN) with 

zero-mean and variance 2
n . Noise is assumed to be spatially 

and temporally white, and be uncorrelated with transmitted 
symbols. In order to avoid the inter-symbol interference (ISI), 

we assume that CL L . Let      1 , ,
T

Mrm r m r m   r   

and stack r(m), m=nQ+Lc,…, nQ+Q-1 as rn. Then we have 

( ), , ( 1)
TT T

n c N n nnQ L nQ Q       r r r H x v
   

 (2) 

where vn is the noise vector and 
( ) 1( , ), , ( , 1) t

T N L MT T
n cn L L n Q       x x x   

( ) (0)
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Note that HN is a NMr(N+L)Mt block Toeplitz matrix. 
To consider a tall and skinny matrix for HN, we assume that 
Mr>Mt. If it is not the case, the fractionally spaced receiver 
could be used here. In (2), we assume the channel order is 
known a priori derived from Akaike information theoretic 
criterion (AIC) or minimum description length (MDL) [15]. 
Based on the signal model in (2), we discuss the subspace 
channel estimation in the next section. 

III. SUBSPACE CHANNEL ESTIMATION 

With the signal model in (2), various subspace channel 
estimation techniques have been presented based on 
different assumptions. We briefly describe the channel 
estimation in [12] for the purpose of comparison. Let WN 

=[w(0) … w(N-1)] and define WCP and WCP,Mt respectively 
by 

  ( )

( )
,

( ), , ( 1)  

t t

N N L
CP N

NM N L M
CP Mt CP Mt

N L N  

 

   

  

W w w W

W W I

 


 

The signal vector xn can be rewritten as 

,
H

n CP Mt nx W b
                                 

 (4) 

where 
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Substituting (4) into (2), yn can be expressed by 
 

,
H

n N CP Mt n n W n n   r H W b v H b v
                

 (5) 

where ,
H

W N CP MtH H W . In the subspace channel estimation, 
the channel is identifiable if the matrix HW is of full column 
rank. A necessary and sufficient condition for this full 
column rank requirement is given in [12], which is stated as 
follows. 

Theorem 1 [12]: In the case of Mr >Mt, the matrix HW is 
of full column rank if and only if rank(H(z))=Mt at 

2 /j k Nz e  , k=0,…,N-1, where 
0

( ) ( )
L n

n
z n z


 H h .  

From Theorem 2, we can calculate the signal and noise 
subspaces from rn in (5) if the assumptions of Mr >Mt and 
rank(H(ej2πk/N))=Mt are satisfied. To find the noise subspace, 
the correlation matrix of rn is first computed by  

2 2 2[ ] [ ]H H H H
r n n W n n W n s W W nE E       R r r H b b H I H H I

 
(6) 

Performing the eigenvalue-eigenvector decomposition 
(EVD) onto Rr yields the eigenvectors U. The eigenvectors 
can be divided into two sets U=[Us Un] according to their 
eigenvalue spread, where ( )r tNM N L M

s
 U  is the signal 

subspace spanning the same subspace as HW, and 
( ( ) )r r tNM NM N L M

n
  U  is the noise subspace which is 
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orthogonal to the signal subspace. Let Un=[u1,…,uNMr-(N+L)Mt] 
and uk be partitioned into a block vector 

[ (1) ( )]H H H
k k k Nu u u  where uk(j) is a Mr1 vector. Then 

from the subspace orthogonal principle, we have [12] 
*  or  H H

k W CP k u H 0 W V h 0
                  

 (7) 

where (0), , ( )
TT T L   h h h  and kV  is a  1 rL M Q   

matrix 
(1) ( )

(1) ( )

(1) ( )

k k

k k
k

k k

N

N

N

 
 
 
 
 
 

0 0 u u

u u 0
V

0

u u 0 0

 
  

    
 

 

It is shown in [12] that the equations in (7) can 
determine the channel matrix h up to an ambiguity matrix. 
In practical, the correlation matrix in (6) is computed from 
the sample correlation matrix of rn. If there are K OFDM 
symbols available, the sample correlation matrix is given by 

1

ˆ (1/ )
K

H
r n n

n

K


 R r r
                     

 (8) 

From (8), the eigenvectors ˆ ku  and matrix ˆ
kV  can be 

obtained. With the constraint that h has a full column rank, 
the channel matrix can be estimated by the least square 
minimization technique 

ĥ
( ) 2

*

1

ˆarg min
r t

H

NM N L M
H

CP k F
k

 

 

 
h h I

W V h
              

(9) 

IV. BLIND CHANNEL ESTIMATION BY BLOCK MATRIX 

SCHEME 

The estimation performance in (9) is heavily depended 
on the biasness of the sample correlation matrix. Let 

ˆ ˆ
r r r  R R R

 
be the bias sample correlation matrix. It is 

shown in [16] that the norm of the bias matrix is proportional 
to the dimension of rn, and inversely proportional to K. 
Therefore, the subspace channel estimation generally 
requires a large amount of received blocks to achieve a small 
perturbation of sample correlation matrix and a low channel 
estimation error. The block matrix scheme is proposed in this 
section to improve the subspace channel estimation. With the 
assistance of block Toeplitz structure in the received signal, 
the block matrix scheme segments the stacked OFDM 
symbols into a group of equivalent sub-vectors. The number 
of equivalent sub-vectors is about Q times of OFDM 
symbols. Therefore, the biasness of the sample correlation 
matrix is reduced considerably. 

A. Block Matrix Scheme 

We first observe that the channel matrix in (2) has a 
block Toeplitz form. The block matrix scheme is proposed 
here to increase the number of equivalent samples and then 
to enhance the performance of channel estimation. By 
collecting K consecutive received OFDM symbols, the 
signal vector is given by 

  (0), (1), , ( 1)
TT T T

K QK K KKQ     r r r r H x v        (10) 

where 0 1 1[ ( 1, ), ( 1, 1), , , , ]T T T T T T
K KQ L Q     x x x x x x    

is a (QKMt+LMt)×1 vector with 1 x 0  and HQK is a 

QKMr×(QK+L)Mt block Toeplitz matrix which has a similar 
form to (3). Because of the block Toeplitz structure in HQK, 
we can select a proper parameter G such that HQK is 
expressed by  

      

      

G

QK

G

 
 

  
 
  

H 0

H

0 H

                 (11) 

where HG is also a block Toeplitz matrix with dimensions 
GMr×(G+L)Mt. Using (10) and (11), a sub-vector ,K gr  of 

GMr×1 is defined by , ( ), , ( 1)
TT T

K g g g G    r r r  , 

which is obtained as 

, , , ,   0, ,K g G K g K g g KQ G   r H x v              (12) 

where  , ( ), , ( 1)
T

K g g L g G   x x x   and ,K gv  contains 

the noise components.  
From the sub-vectors in (12), the subspace channel 

estimation can be performed if the channel matrix HG has a 
full column rank. A tall and skinny matrix is only a 
necessary but not a sufficient condition for the block 
Toeplitz matrix to be of full column rank. That is  
GMr>(G+L)Mt can not guarantee that HG has a full column 
rank. More precisely, a necessary and sufficient condition 
for this requirement has been presented in [17]. 

Theorem 2 [17]: Assume that h(0), h(L) and H(z) have 
a full column rank for all z. The block Toeplitz matrix HG 
has a full column rank if and only if G is no less than the 
degree of orthogonal complement polynomial matrix of 
H(z).  

If the assumptions in Theorem 2 are satisfied such that 
HG has a full column rank, the subspace channel estimation 
is developed as follows. We first show that the symbols in 

,K gx  are uncorrelated. Since ( ) ( )H
q N qn ns W b , we find that 

( )q ns  is also an i.i.d. random vector because of 
2[ ( ) ( )] [ ( ) ( )]H H H

q q N q q N sE n n E n n  s s W b b W I . Denote by 

, ,[ ]H
G K g K gER r r   the correlation matrix of ,K gr . If we 

properly choose the parameter G such that the symbols in 

,K gx  are uncorrelated, the noise subspace can be computed 

from the EVD of , ,[ ]H
G K g K gER r r    

2 2 2H H H
G s G G n s s s n n n      R H H I E E E E           (13) 

where sΣ  is a diagonal matrix consisting of (G+L)Mt 

eigenvalues larger than 2
n , Es is the signal subspace which 

equals the range space of HG, and En is the noise subspace. 
Using the orthogonal property between signal subspace and 
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noise subspace, we have H
n G E H 0 . Let qi be the i-th 

column of En and partition qi into a G×1 block vector 

(0), (1), , ( 1)
TT T T

i i i i G   q q q q                   (14) 

where ( ) ,  0, , 1.rM
i j C j G  q   Exploiting the block 

Toeplitz structure of HG, H
n G E H 0  is rewritten by 

0,   1, , ( )H
i r ti GM G L M   Q h                  (15) 

where  ( 1) ( )rL M G L
i C   Q  

   

   

1 0

1 0

i i

i

i i

G

G

 
   
  

q q 0

Q

0 q q

  
     

  
 (16) 

A theorem is given in [17] that (15) can determine the 
channel matrix h up to an ambiguity matrix. 

Theorem 3 [17]: Let h  be a matrix that has the same 
size as that of h, GH  be constructed from h  in the same 

form as HG is constructed from h. Assume that h(0), h(L) 
and H(z) have a full column rank for all z, and G is no less 
than the degree of orthogonal complement polynomial 
matrix of H(z). Then h  is equal to hΩ where Ω is an Mt 

Mt invertible matrix if and only if h  has a full column 
rank and span ( )GH  is equal to span(HG).  

In a finite sample scenario, we use the sample 

correlation matrix ˆ
GR  instead of the ensemble average 

correlation matrix RG to compute the noise subspace. Due to 
the biasness of the sample correlation matrix, the 
homogeneous equations in (15) will not be satisfied. The 
constrained least square optimization criterion is adopted to 
find the channel matrix  

  1
|| || 1

ˆ ˆ ˆ[ ] arg min
i

H H
Mt i i

 
h

h h h h QQ h           (17) 

where 1 ( )r tGM G L M    Q Q Q . The estimates of h in (17) 

are the eigenvectors associated with the Mt smallest 

eigenvalues of the matrix QQH. From Theorem 3, ĥ  differs 
from h by an ambiguity matrix Ω. In the blind channel 
estimation, the assistance of pilot sequences is a practical 
way to solve the ambiguity and alleviate the phase rotation 
in the symbol detection.  

 

B. Semi-blind Approach 

The semi-blind estimation technique estimates the 
channels by combining the blind method with the pilot 
information [18]. From (2), rn can be rewritten as  

n cir n n r H s v  

where Hcir is a NMr×NMt block circular matrix, and 
( )H

n N Mt n s W I b . Performing DFT operation onto rn 

yields ( ) [ ( ,0) ( , 1)]T T T
n nDFT n n N  y r y y  where  

( , ) ( ) ( , ) ( , )n k k n k n k y H b η
 
                   (18) 

, 2 /

0
( ) ( )

L j lk N

l
k l e 


 H h  is a Mr×Mt matrix and η(n,k) is 

the noise. Assume that there are A OFDM symbols and each 
one contains B pilots at k1, k2, … ,kB subcarriers. Define Y(n) 
and B(n) and η(n) respectively by  

 
 
 

1 2

1 2

1 2

( ) ( , ), ( , ), , ( , )

( ) ( , ), ( , ), , ( , )

( ) ( , ), ( , ), , ( , )

T

B

T

B

T

B

n n k n k n k

n n k n k n k

n n k n k n k







Y y y y

B b b b

η η η η






 
           (19) 

Then from (18) and (19), Y(n) is given by 

0

( ) ( ) ( ) ( ) ( ) ( )
L

l T

l

n n l n n n


   Y Φ B h η D h η
 
       (20) 

where 12 / 2 /( , , )Bj k N j k Ndiag e e  Φ  , 

[ (0), , ( )]TLh h h  , 1( ) [ ( ), ( ), , ( )]Ln n n nD B Φ B Φ B . 

Stacking Y(n) for n=n1, n2,…, nA produces 

1 1 1( ) ( ) ( )

( ) ( ) ( )A A A

n n n

n n n

     
              
     
     

Y D η

Y h Dh η

Y D η

   
 
       (21) 

To solve the ambiguity problem in the subspace channel 
estimation, we integrate linear equations in (15) and (21) 
together. Denote by vec(.) the vectorization of a matrix by 
stacking its columns in order. Let ( ),v vecy Y

 
( ),v vech h 

 
( ),v vech h  and ( )v vecη η . Then (15) and 

(21) become 
0,H

Mt v

v Mr v v



 

Q h

y D h η                              (22) 

where Mt Mt Q I Q  and Mr Mr D I D . We further 

observe that vh  and hv have the same components with 

different arrangement. After carefully simplification, we 
obtain v v vh P h  where Pv is a MrMt(L+1)× MrMt(L+1) 

permutation matrix.  
( 1) ( 1) ,

1, ( 1) ( 1)
( , )

0 , 1 , 1

0, otherwise

t t

r r
v

t r

x r M L lM t

y t M L lM r
x y

l L t M r M

    
         


P
  

       (23) 

Thus the semi-blind approach can find the estimates of h by 
the following minimization criterion,  

22ˆ arg min  
v

H
v v Mr v v Mt v  

h
h y D P h Q h          (24) 

where   is a weighting constant. The solution of the 
problem in (24) is given by 

1ˆ ( )H H H H H
v v Mr Mr v Mt Mt v Mr v  h P D D P Q Q P D y          (25) 

C. Discussions 

The parameter G needs to be selected properly such that 
HG is of full column rank. Two possible considerations are 
examined as follows. Firstly, the symbols in ,K gx  are 
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required to be uncorrelated explained in Sec IV.A. Since 
x(n,i)= x(n,i+N) for i=0,…,Lc, those identical components 
will not appear in ,K gx  at the same time if G+L≤N. Secondly, 

from Theorem 2, the necessary and sufficient condition for 
HG has a full column rank is that G is no less than the degree 
of orthogonal complement polynomial matrix of H(z). We 
can show that a more practical selection to ensure that G is 
sufficiently large to satisfy this requirement is G≥MrL. 
Therefore, the selectable range of G is given by MrL≤G≤N-L. 

Besides, comparing with ˆ
rR  in (8), the sample 

correlation matrix for the proposed method is calculated by 

, ,
0

1ˆ
1

KQ G
H

G K g K g
gKQ G






  R r r 

                     
 (26) 

Therefore, ˆ
GR  is averaged by (KQ-G+1) equivalent signals 

with dimension of GMr×1, while ˆ
rR  is averaged by K 

OFDM symbols with dimension of NMr×1. According to 
the analysis in [16], the biasness of the sample correlation 
matrix for the proposed method is reduced considerably.  

V. COMPUTER SIMULATIONS 

Computer simulations are given here to verify the 
performances of the proposed channel estimations (CE). 
The number of subcarriers is set N=64 and number of 
CP=16. The 16QAM modulation scheme is applied. The 
input signal-to-noise ratio (SNR) is defined as the bit SNR 
at single receive antenna. The independent Rayleigh channel 
with exponentially decaying power delay profile of channel 
order L=5 is used in simulations. In the semi-blind approach, 
we use A=2, B=8 and 100  . The normalized root mean-
squared error (NRMSE) between the estimated and true 
channels is given by 

2

2
1

ˆ|| ( ) ( ) ||1

( 1) || ( ) ||

mN
F

pm r t F

p p
NRMSE

N M M L p




  h h

h
          (34) 

where the subscript p refers to the p-th simulation run and 
Nm denotes the number of Monte Carlo runs. 

We first examine in Fig. 2 the influences of block matrix 
size G varied from 12 to 80 for the BMS-based channel 
estimators. The selectable range of G suggested in Sec IV is 
10≤G≤59. It is observed from Fig. 2 that the selection of G 
is very robust for the proposed BMS-based methods even G 
is larger than 59. When G≥60, there are a portion of 
equivalent signals suffer from the correlated transmitted 
signals due to CP components. However, the amount of the 
correlated signals is small such that it has insignificantly 
influence on the channel estimation. Besides, the blind 
method uses pilot sequences to correct the ambiguity matrix 
while the semi-blind method integrates the subspace 
information with pilot sequences in calculation of channel 
estimation. Therefore, the semi-blind method outperforms 
the blind one. 

The RNMSE versus the input SNR for the compared 
channel estimation methods is plotted in Fig. 3. With the 
selection of G=64, the proposed methods produce almost 
Q=80 times of equivalent signals while the method in [14] 
has only 17 times of equivalent signals. Therefore, the 
proposed methods outperform the other two channel 
estimation methods. Furthermore, combining with 16 pilot 
signals for each transmit antenna, the semi-blind method 
obtains the lowest MSE values. Fig. 4 shows the RNMSE 
versus the number of OFDM symbols. As the number of 
OFDM symbols increases, the proposed BMS-based 
methods decrease the RNMSE on a steeper slope than the 
methods in [12] and [14]. Especially the semi-blind method 
converges to the lowest MSE after about K>50.  

With the estimated channels in Figs. 3 and 4, we 
examine the BER performances of the minimum mean-
square error (MMSE) equalizers. For the sake of 
comparison, the BER with real channel coefficients is also 
plotted. The BERs versus the input SNR are discussed in 
Fig. 5. Since the proposed BMS-based methods produce a 
lower estimation error than the compared methods, the 
equalizers with the former methods outperform those with 
the latter ones. The semi-blind method almost achieves the 
same BER performance as the equalizer with real channels. 
Finally, the BERs versus the number of OFDM symbols are 
examined in Fig. 6. The proposed BMS-based methods 
converge faster than the other two methods. Interestingly, 
the semi-blind method reaches the error floor of the BER at 
about K=50 in which the lowest MSE is also met.  

VI. CONCLUSION AND FUTURE WORK 

We proposed in this paper the blind and semi-blind 
subspace channel estimation for MIMO CP-OFDM systems. 
Inspired by the block Toeplitz structure, the block matrix 
scheme is first presented to increase the number of 
equivalent signals. The block matrix scheme decreases the 
biasness of the correlation matrix, noise subspace and then 
the channel estimation. The identifiability of the proposed 
channel estimation is further studied, where the estimated 
channels differ from the true channels by an invertible matrix. 
With the assistance of few pilot sequences, the semi-blind 
method combining the subspace method with pilot 
information is provided at the end. Computer simulations 
verify the superiority of the proposed blind and semi-blind 
CE over the compared ones.   

We will extend the work in this paper to the OFDM 
systems with the virtual carriers (VCs). The VCs are often 
properly distributed on the dedicated band with zero values 
in OFDM systems for shaping the transmission spectrum and 
alleviating the adjacent channel interference (ACI). With the 
existence of VCs, the property that the symbols in ,K gx  are 

uncorrelated is not hold. Additional work will be required to 
make the block matrix scheme applicable to OFDM systems 
with VCs. 
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Fig. 2. NRMSE vs. Parameter G for different BMS-based channel 

estimation methods with SNR=20dB, K=400. 
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Fig. 3. NRMSE vs. SNR for compared channel estimation methods with 

G=64, K=200. 
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Fig. 4. NRMSE vs. the number of OFDM symbols for compared channel 

estimation methods with G=64, SNR=20dB. 
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Fig. 5. BER vs. SNR for compared channel estimation methods with G=64, 

K=200.. 
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Fig. 6. BER vs. the number of OFDM symbols for compared channel 

estimation methods with G=64, SNR=20dB. 
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