
High-Throughput Mail Gateways for Mobile E-mail Services

 based on In-Memory KVS

Masafumi Kinoshita, Gen Tsuchida

 Yokohama Research Laboratory

Hitachi, Ltd.

Yokohama-shi, Japan

{masafumi.kinoshita.rt, gen.tsuchida.qc}@hitachi.com

Takafumi Koike

 Information & Telecommunication System Company

Hitachi, Ltd.

Kawasaki-shi, Japan

takafumi.koike.kc@hitachi.com

Abstract—Mobile network operators providing e-mail services

require mail systems to process large volumes of e-mail traffic

to and from mobile terminals. Mail gateways, particularly

those that accept e-mail messages from external systems and

transfer them with store-and-forward communication, require

much higher throughput that conventional mail gateways

cannot provide. Mail gateways are also required to preserve

consistent data and to provide queued services in order. We

propose a mail gateway system for mobile e-mail services

based on a distributed in-memory key-value-store (KVS) to

meet four requirements of high-throughput, high-speed

responses, scalability, and availability. We propose KVS to

achieve these requirements, which can store messages

physically in a queue structure and preserve the consistency of

data in respective queues. We present a method of high-

throughput access to pipeline messages on an active TCP

connection that is linked to a queue on mail gateways and its

backup queue in KVS. The mail gateways have a management

function for each backup queue in KVS to both preserve

consistency and avoid problems in the system. We evaluated

the performance of the KVS we propose and a mail gateway

corresponding to the KVS. The results proved both the KVS

and mail gateway achieved the high throughput that was

required.

Keywords-MTA (mail transfer agent); KVS (key-value-store);

in-memory data grid.

I. INTRODUCTION

 The growth in the number of users of mobile e-mail
services has led to an explosion in the volumes of e-mail
traffic encountered by mobile network operators. For
example, one mobile network operator has more than 10
million active users and their e-mail system processes more
than 10,000 e-mail messages per second.

A large-scale e-mail system is composed of mailbox
servers storing the e-mails of their users and mail gateway
servers. Mail gateway servers function as mail transfer
agents (MTAs), process incoming e-mail messages from
external systems, and transfer them to their destinations, such
as MTAs on the Internet and mailbox servers. Architectures
with mail gateways proposed in [1] are flexible and
extendable, and these gateways can stabilize e-mail services
by controlling traffic [2]. Mail gateways in mobile e-mail
systems also serve to provide billing processes and e-mail
security, transcode e-mails, and provide other processes.

Mail gateways generally relay e-mail messages with
store-and-forward communication that incoming e-mails are
stored in a local queue located within non-volatile storage,
which are then forwarded to the destination server. The three
main advantages of store-and-forward communication are
quick response, control of traffic to avoid burst traffic, and
guaranteed e-mail delivery. The main disadvantage of this
communication is low throughput because non-volatile
storage, such as that in disk and a storage system is accessed,
which is a bottleneck in relaying e-mail messages.

 Mail gateways in mobile e-mail systems require high
throughput, high-speed responses, scalability, and
availability. High-throughput and high-speed responses are
particularly important for three reasons of: 1) preventing
mobile terminals from failing to send e-mails, 2) minimizing
connections between mail gateways and mobile terminals to
avoid congestion in both e-mail systems and wireless
networks, and 3) reducing the number of mail gateway
servers. We set the following target values from our
experience and expertise as a systems integrator of mobile e-
mail service, which has more than 10 million subscribers;
high-throughput means a mail gateway should process more
than 1,000 e-mails per second, and high-speed response
means a mail gateway should respond to a received message
within 100 milliseconds.

 Well-known MTA software, such as sendmail [3] and
postfix [4], fail to meet the high-throughput requirement
because their throughput is less than 100 e-mail messages
per second [5]. We proposed a method of improving
throughput where mail gateways used the method to reduce
access disk I/O requests and parallelized these requests while
attaching them to storage area network (SAN) storage
systems [5]. A mail gateway could process 850 e-mail
messages per second and have a response of 80 milliseconds
by adopting this method, but this approach failed to meet the
requirement for scalability because it was necessary to scale-
out too many configurations and too many operations for the
storage and servers of mail gateways. Moreover, its
performance has recently been insufficient for the
requirement for throughput.

Scalability and availability for e-mail systems have also
been proposed. Christenson et al. proposed an e-mail system
using a network file system (NFS) [7], and Saito et al. [8]
and Behren et al. [9] proposed an e-mail system using a
distributed storage system with a hash table. Koromilas et al.
[11] proposed an e-mail system using Cassandra [10], which
is a distributed key-value-store (KVS) software. However,

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

these proposed systems were mainly designed for the
functions of mailboxes, and few considerations were given to
mail gateways. These systems, therefore, failed to meet the
requirements of high throughput and high-speed responses.

 There have been many efforts in the last few years on
distributed in-memory KVS or in-memory store technology
for high throughput and high-speed responses. A distributed
in-memory KVS is composed of multiple nodes, and stores
replicated data in the memory of multiple nodes without
accessing non-volatile storage. It has been adopted in
banking systems [12], stock exchange systems [14],
telecommunications [15], and other fields. The systems using
it meet the four requirements of high throughput, high-speed
responses, scalability, and availability.

Here, we propose a distributed in-memory KVS designed
for mail gateways and mail gateways based on it. Four main
questions need to be answered in adopting in-memory KVS.

 What is an appropriate architecture for mail
gateways for mobile e-mail services to meet all four
requirements of high throughput, high-speed
responses, scalability, and availability?

 How do they achieve both consistent data and
preservation of order for in-order queues for several
KVSs? Mail gateways also require these properties
for mobile e-mail services.

 How do they efficiently store e-mail messages in
KVS to achieve the requirement for high
throughput? In other words, the method of storing
messages requires high write throughput.

 How do they avoid system problems and recover
quickly, without having impact on mobile terminals?
In addition, the process for mobile terminals should
be executed within several seconds.

The rest of the paper is organized as follows. The
background and related work are introduced in Section II.
Section III presents the system architecture and design.
Section IV describes the implementation and the results
obtained from evaluating performance. Section V concludes
the paper.

II. BACKGROUND AND RELATED WORK

Fig. 1 outlines an example of the system structure for a
mobile e-mail service. One function of mail gateways (GWs)
is that they can accept e-mail messages from external
systems, such as mobile terminals and MTAs on the Internet,
via messaging protocols, such as simple mail transfer
protocol (SMTP) and multimedia messaging services (MMS).
They can also relay e-mail messages to MTAs or internal
mailboxes. Their traffic to MTAs is generally larger than the
traffic to mailboxes. Mobile terminals can also access mail
gateways to retrieve e-mail messages from the mailboxes,
via the Internet message access protocol (IMAP), post office
protocol (POP), and MMS.

 Mail gateways adopt store-and-forward communication
to relay messages via SMTP and MMS. They can also adopt
this communication to transfer other message data, such as
billing data and notification messages related to e-mails,
while processing messages via IMAP and other protocols.

Mail gateways with store-and-forward communication store
e-mail messages on their disks while waiting for relays.
Therefore, they can respond to acceptance of e-mail
messages promptly after storing them. This efficiently
reduces receipt errors for e-mail messages from mobile
terminals, and reduces their impact in both e-mail systems
and wireless networks.

Relaying messages may be instantaneous, but this may
also be delayed if the destination MTA is unavailable or
cannot be reached due to network error. Mail gateways will
keep re-trying to make deliveries for a certain period, such as
several hours or a few days.

 Mail gateways control congestion in MTAs with a
destination queue of e-mail messages. Mail gateways also
manage queues that have billing data and other messages.
Mail gateways are required to manage many queues and
have consistent messages in these queues.

Mobile

terminal

MTA

Mail GW

Mailbox

MTA

Wireless

network

INTER

-NET

SMTP

/MMS

POP/

IMAP/

MMS

Mobile carrier network

Figure 1. Example of system structure for mobile e-mail service.

We briefly overview related work in what follows. First,
we explain studies on conventional mail systems and then we
describe some efforts on in-memory KVS.

A. Mail system architecture

 Jeun et al. proposed an architecture for a cluster-based e-
mail system with an MTA-MDA structure [1] on
conventional mail gateways, which equals the mail
gateways-mailbox structure discussed in this paper. This
architecture was highly scalable, highly available,
inexpensive to develop, and had low maintenance costs.
Since this system used sendmail [3] and postfix [4] with a
network file system (NFS), it did not perform satisfactorily
to satisfy the requirement for throughput.

The scalability and availability of e-mail systems have
been discussed [8], [9], [11], where scalability has been
achieved by using distributed storage systems. The
performance of one e-mail system with distributed KVS, i.e.,
Cassandra [11], is superior to some others, but it is still
inadequate to meet the requirement for throughput. Using
distributed KVS instead of a conventional storage system
provides easy scalability and availability. KVS distributes its
data to multiple servers with a consistent hash method [17],
[18], which is similar to the methods proposed by Saito et al.
[8] and von Behren et al. [9].

Facebook [19] uses distribute KVS, i.e., HBase [20], for
its messaging service [21]. They selected it for its scalability,
consistency, performance, and other reasons. However, they
did not evaluate it.

 KVS is a major approach to achieving requirements such
as scalability, high performance, and availability.

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

B. In-memory store efforts

Many efforts have been expended on distributed in-
memory KVS or in-memory technology for high throughput
and high-speed responses. In–memory KVS memcached
[16], which is known as high throughput KVS, is used as a
cache by many companies, such as Facebook and Twitter
[22]. As memcached is a single server and is not replicated in
multiple servers, it cannot be a persistent data store.
However, distributed in-memory KVS, such as the IBM
WebSphere eXtreme Scale [12], can store replicated data in
the memory of multiple nodes for persistent storage. They
have higher performance than disk-based KVS, such as
Cassandra and HBase. Nevertheless, they have two
disadvantages compared with disk-based KVS. The first is
data are lost if all nodes having replicated data are down at
the same time. However, as power supplies are duplicated at
the data center and data are backed up to disks periodically,
there is little probability that data will be lost. The second
disadvantage is that their storage capacity is smaller because
memory is more expensive than disks.

As previously mentioned, mail gateways are required to
manage queues and keep data consistent. There are a few
KVSs storing data in a queue structure, but WebSphere
provides a queue service [13]. Its function of queuing was
developed as a thin layer on top of a typical KVS structure,
which can store one simple set of key values. It stores a
meta-data managing queue in KVS, and does not physically
store data in a queue structure. However, there are no
solutions to resolving the issues with mail gateways
described in Section I.

III. PROPOSED ARCHITECTURE AND DESIGN

 We first present the mail gateway architecture based on
distributed in-memory KVS and the KVS architecture for it
in this section. We then propose methods of resolving the
issues described in Section I.

A. Architecture for Mail Gateway System

The architecture for the mail gateway system is outlined
in Fig. 2. There are mail gateway (GW) modules and in-
memory KVS modules in each node. These modules are
independent of each other, and communicate with other
modules in other nodes. The load balancer (L4 switch)
dispatches incoming message to mail gateway modules and
monitors a TCP port of the mail gateway modules to switch
over the path to a non-responding one.

Mail gateway modules receive incoming messages and
process them in their memory without accessing their disks.
Mail gateway modules back them up (store) in two KVS
modules on request. In addition, mail gateway modules also
store them in their own queue. Thus, three replicated
messages are in memory in respective nodes to avoid them
from being lost. Backup in the in-memory only enables high-
speed responses.

Mail gateway modules provide consistency and tolerance
against partitioning in the consistency, availability and
partition-tolerance (CAP) theorem [6]. In addition,
availability is important for e-mail services. In this

architecture, the availability of a whole system composed of
many mail gateway modules is provided by the load balancer
switching over a path to mail gateway modules. In addition,
there is no single point of failure in the system.

Fig. 2 shows the queue in mail gateway modules are
backed up in two KVS modules. KVS modules have a queue
structure that physically store messages in queues in their
memory. (Details on KVS are described below.) In other
words, a queue in mail gateway modules synchronizes two
backup queues in a KVS module. Mail gateway modules
have many queues of messages to guarantee their order (first
in, first out) and they manage the flow to avoid congestion.
KVS modules also have the same queues of mail gateway
modules for backup. These mail gateway systems attached to
KVS have a scalable structure, because they make it easy to
add nodes.

Mail gateway modules relate their own queue to backup
queues in two KVS modules. They select KVS modules
from a group of KVS modules with a set configuration, not
using hash distribution on request such as that with
Cassandra. Next, they send parameters such as queue length
and access accounts, and create backup queues. After that,
the mail gateway modules start the service to relay messages
with store-and-forward communication. The mail gateway
modules store a message in backup queues and its queue.
Next, they forward the message to its destination and delete
it from the backup queues and its own queue. They
occasionally replace messages to back up intermediate states
to process messages. These communications (i.e., storing,
deleting, and replacing messages) achieve queue data are
synchronized between mail gateway modules and KVS
modules.

Mail gateway modules monitor backup queues in KVS
modules with responses of synchronization and heart-beat
health checks. If they detect faults in a backup queue, they
isolate it and replicate another backup queue in another KVS.
If a mail gateway module’s service is down, it reboots, and
obtains all data in the backup queue in KVS modules to
continue e-mail services. If it cannot reboot, the KVS
module moves messages from the backup queue to a
program to continue sending them in the same node.

Mail GW- 1
KVS–1

Mail GW- 2
KVS–2

Mail GW- 3
KVS–3

L
o

a
d

 b
a

la
n

ce
r

[Node 2]
Incoming

messages

[Node 1]

[Node 3]

Figure 2. Architecture for mail gateway system.

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

B. Architecture for KVS with in-order queues structure

As previously mentioned, KVS modules have a queue
structure in memory to back up queues in mail gateway
modules. Mail gateway modules synchronize their own
queue to two backup queues in respective KVS modules.
KVS modules support that messages are stored in queues in-
order and they retrieve them in-order.

Mail gateway modules have functions of distributing
messages to KVS modules having backup queues. KVS
modules allow them to access the queue. They can access a
message in the structure with a queue’s name key and
message-id key. This is different from WebSphere [12] in
that data in a queue are physically located in respective KVS
modules.

This structure where data in queues are physically stored
in respective KVS modules has the following advantages.
The first advantage is that the number of communication
messages is reduced while mail gateway modules and KVS
modules are synchronized. That has an impact on the
throughput of mail gateways systems. An order index (i.e.,
metadata for queues) has to be built to preserve the order for
in-order queues. The metadata in general KVS, such as
WebSphere, are stored as KVS data to preserve queues [12].
Therefore, they have to access a message and several
metadata while synchronizing one message. The proposed
KVS modules, on the other hand, physically have the
metadata as a table in their own memory, and they only have
to access one message while synchronizing themselves.

The second advantage is that queue data can be quickly
recovered if there is trouble, such as network error or nodes
are down. For example, if a mail gateway module reboots, it
retrieves all data in queues from a KVS module
synchronized with it. It can immediately obtain a block
including many messages in queues. If a typical KVS were
used instead of the proposed KVS modules, mail gateways
could only obtain one message immediately and they would
have to access metadata in the queue every time they
obtained it. In addition, since these messages are distributed
to KVS (respective nodes) with the hash table, mail
gateways access many nodes with respect to each message
and metadata. Thus, the queue structure can significantly
reduce recovery time.

The third advantage is the availability of mail gateway
systems. As previously mentioned, their availability is
provided by the load balancer switching over a path to mail
gateway modules. Mail gateway modules without
synchronized KVS modules close their own TCP ports and
suspend their own services. If a KVS module has some fault,
the load balancer can definitely isolate mail gateway
modules by closing their ports. If typical KVS were used
instead of the proposed KVS modules, all mail gateway
modules could access these KVS modules while faulty KVS
modules would not be isolated, and the impact of these faults
would spread to whole systems.

C. High-throughput method to access KVS

To preserve order in in-order queues and achieve the
requirement for high throughput, mail gateway systems
adopt the following method of communication. Fig. 3

outlines the flow for the method of communication between
a mail gateway module and a KVS module. A mail gateway
communicates with a KVS module with persistent
transmission control protocol (TCP) connections. One queue
of a mail gateway module and one queue of a KVS module
are linked with two connections; these are via a respective
path in different network segments. One connection is active
for the communication message, and the other is on standby
when network error occurs in the active path. Since one TCP
connection is used to achieve communication in order, the
order in the queue is preserved.

First, a mail gateway module connects to a KVS module
with an authentication message, and it sends a request
creating a queue whose parameters, e.g., queue length and
access accounts, are requested by it. After a KVS module
accepts the request, it creates a queue in its memory and this
queue is related to the connection in its management table of
queues. This sequence means the mail gateways have
obtained ownership of the queue.

The mail gateway module sends pipelined-requests on an
active connection to the KVS module. The KVS module
immediately receives pipelined requests and processes them.
Finally, the KVS module immediately sends pipelined
responses on the connection. The KVS module obtains an
internal queue lock while processing messages from the
connection. The requests and the responses include a
“transaction number”, i.e., the number it has already
processed, and a “sequence number”, i.e., the number it
requires for matching requests and responses. The number of
transactions is checked to preserve the order in queues.

(b)Processing

& storing data

Mail-GW KVS

Pipelining on

connection

Receiving

buffer

Req.1

Req.2

Req.3

Req.4

Req.5

Req.1

Req.2

Req.3

(a)Receiving

in block

(c)Responding

in order

Req.4

Req.5

(d)Receiving

in block

Rep.1

Rep.2

Rep.3

Req.1

Req.2

Req.3

Keeping another

connection for

switchover

(e)Processing

& storing data

Figure 3. Method of comunication between mail gateways and KVS

Thus, this method of communication can provide high-
throughput and consistent storage in queues. Typical KVS,
such as memcached, Cassandra, and Dynamo are generally
used in systems that have many low-performance clients that
access KVS with many connections. However, the mail
gateway modules in the proposed system are high
performance and there are an equal number of mail gateway
modules and KVS modules. There are two ways of
efficiently communicating data via networks; the first is by
communicating with many connections, and the second is by
multi-communicating with several connections. The former
in this mail gateway system can decrease performance
because KVS modules control (obtain and release) internal
locks by processing one message from each connection. The
latter reduces the number of locks that are controlled.

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

However, the latter is susceptible to the control of TCP flows
because there are large message traffic flows on the
connections. There is the method of avoiding this impact, i.e.,
a mail gateway module can use a sufficient number of
queues to adjust message traffic on the connection. Therefore,
we selected the latter, which we evaluated and explain below.

The above issue is similar to those with the method of
communication between parallel and serial communications.
In other words, our proposed method of communication
between mail gateway modules and KVS modules is similar
to serial communication on TCP connections.

D. Mail Gateway’s Management of KVS

Mail gateway systems require consistency for e-mail
services. Mail gateway modules have a management table
for each backup queue in KVS modules to preserve
consistency (summarized in Table. I). They manage two
states of one queue, i.e., a “network state” and a
“synchronized state”. The network state indicates the state of
a network path. Network state (A) means the state of the
active connection, and (S) means the state of the standby one.
The network state is updated in these two cases, where mail
gateways are connecting and network error is caused during
synchronization or heart-beat health checks. Mail gateway
modules switch over to standby connection in seconds when
active connections are unavailable.

The synchronization state indicates whether the queue is
synchronized or not. Mail gateway modules check the
number of transactions to monitor the synchronization state,
(which is the number KVS has already processed to preserve
the order of queues), in responses from KVS. A mail
gateway module uses this table in synchronization, heart-beat
health checks, and other processes. If the synchronization
state is no good (NG), a mail gateway deletes all data in this
backup queue in KVS and re-synchronizes the data in the
entire queue.

When mail gateway modules store a message in a queue,
they send a message to the KVS modules indicated in this
table. They succeed in storing the message after receiving all
responses from KVS modules. If they cannot receive all
responses before timeout, which is seconds, they retry to
send the message on a standby connection and change the
network state. Finally, when they fail to store it in KVS, they
isolate this backup queue, and create a backup queue in
another KVS by using any conditions.

TABLE I. MANAGEMENT TABLE FOR BACKUP QUEUES

Queue Name
(dst.domain)

KVS Network
State (A)

Network
State (S)

Sync.
State

Number of
Transactions

hitachi.com NodeB Run Ready Sync 18000

NodeC NG NG NG -

xxxxxx.com NodeD NG Run Sync 3000

NodeE NG Run Sync 3000

IV. IMPLEMENTATION AND EVALUATION

 We first present the implementation of the proposed
system in this section and the methodology we used to

evaluate it. We evaluated the throughput of one KVS module,
the throughput of mail gateway modules corresponding to
two KVS modules, and the process time for recovery.

A. Implementation and methodology for evalution

Mail gateway modules and KVS modules were
implemented with event driven architecture [23] developed
in the C language. We designed their performance,
especially throughput that could be scaled up with increasing
CPU frequency.

 Mail gateway modules support SMTP, IMAP, and other
protocols. Mail gateway modules can have 1,000 queues at
maximum. Although the length of a queue can be configured
for more than a million messages, it is limited by the
memory size of each module. These queues are used for
storing e-mail messages, billing their data, and storing and
forwarding their notification messages and other messages.
The queues for e-mail messages via SMTP services can also
provide several functions; a control function for the e-mail
traffic of each destination MTA or mailbox server, a control
function for rates, which shows how many messages to send
per second, a function for regulating the receipt and sending
of e-mail messages, and a function for timeout to transfer
them.

First, we evaluated the transaction throughput for a single
KVS module. Second, we evaluated throughput via the
SMTP of mail gateway modules corresponding to KVS
modules. Next, we evaluated how quickly the system
recovered from server incidents.

B. Throughput of proposed KVS

There were two nodes that had dual processor dual cores
and 4 GB of RAM, and they were connected to two Gigabit
Ethernet networks. One node includes a KVS module, and
the other included a test program. The test program
generated the workload to the KVS modules, received
responses, and evaluated throughput, i.e., the number of
transactions per second. One transaction was a set where a
message was stored and deleted because the transaction of
relaying an e-mail message with storage and forwarding
includes a set.

We evaluated the KVS module for different-sized
messages from 0.4 to 20 KB. The reason we evaluated these
sizes for messages is that they represent the greatest volume
of e-mail traffic in mobile e-mail services from our
experience. The KVS module had one queue and the test
program sent messages to the queue with one active
connection.

We also evaluated memcached [16] to compare it with
the evaluation of the proposed KVS module. Memcached has
a very simple KVS that does not have lock control, a queue
structure, or other functions; therefore, its throughput is
known to be high.

Fig. 4 plots the transaction throughput for a single KVS
for different sized messages. The throughput for the
proposed KVS modules for 0.4 KB is 200,000 transactions
per second, which is twice the throughput of memcached.
The throughput for the proposed KVS for 1 KB is 100,000
transactions per second, which is 1.4 times the throughput of

150Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

memcached. The throughput for the proposed KVS for more
than 2 KB is limited by the 1-Gbps network, just like it is for
memcached. Thus, the experimental results proved the
proposed KVS modules met the requirement for high
throughput to store messages. In addition, it proved the
method of communicating messages with pipelining on one
active connection was efficient.

0

50,000

100,000

150,000

200,000

250,000

300,000

0 2 4 6 8 10T
h

ro
u

g
h

p
u

t
[t

r
a

n
sa

c
ti

o
n

s/
se

c
]

Message size [KB]

NW Limits(1 Gbps)

Proposed KVS

Memcached

Figure 4. Transaction throughput of KVS for different sized messages

C. Throughput of mail gateways attached to KVS

There were two nodes that had six processor dual cores
and 32 GB of RAM, and they were connected to two Gigabit
Ethernet networks. One node included a mail gateway
module, and the other included two KVS modules and two
kinds of test programs. All programs are connected via
Gigabit Ethernet network. The first was a test client program
that generated the workload of e-mail messages to the mail
gateway modules via SMTP, received responses, and
evaluated throughput, i.e., the number of messages per
second. The second was a test server program that received
e-mail messages from the mail gateway module. The mail
gateway module received an e-mail message from the test
client program and stored it in backup queues in two KVS
modules. After that, the mails gateways sent a response to
the message to the test client program and concurrently
transferred it to the test server program.

We evaluated a mail gateway with a workload composed
of 70 percent 1KB-messages and 30 percent 10KB-messages,
to simulate realistic message traffic for mobile e-mail
services.

We compared our evaluations of the proposed method
using KVS modules with a conventional method where mail
gateways used a redundant array of independent disks
(RAID) storage with a method of streamlining disk I/O
requests [5]. Accessing disks to store messages is a
bottleneck for throughput when the conventional method is
adopted. A past experiment by Kinoshita et al. [5] adopted
the conventional method to compare its performance with
well-known MTA software; the throughput for sendmail [3]
was less than 20 messages per second, and the throughput for
postfix [4] was 80 messages per second.

Fig. 5 compares the throughput and average response
times of the proposed and conventional methods. The
throughput for the proposed mail gateway module is 3,600 e-
mail messages per second, which is 4.4 times the throughput

of the conventional method. The throughput is less than that
of a single KVS, i.e., 11,000 transactions per second. This
means accessing KVS modules no longer creates bottlenecks
in throughput. The average response time for the proposed
mail gateway module is 14 milliseconds, which is an fifth of
the response with the conventional method. Thus, the
experimental results prove that the proposed mail gateway
module meets both the requirements of high throughput and
high-speed response described in Section I.

0

10

20

30

40

50

60

70

80

90

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

System with RAID
storage

Proposed system
(with KVS)

R
es

p
o

n
se

 t
im

e
[m

se
c]

T
h

ro
u

g
h

p
u

t
[m

sg
/s
e
c] 3600

850

Figure 5. Throughput and average response time.

D. Time for Recovery

As previously mentioned, one advantage of the proposed
system is its quick recovery of queue data. A mail gateway
module or a KVS module can reduce the time for recovery to
immediately obtain a block that includes many backup
messages for queues. We evaluated the time for recovery for
different numbers of messages in the block.

There were two nodes that had six processor dual cores
and 32 GB of RAM, and they were connected to two Gigabit
Ethernet networks. One node included a mail gateway
module, the other included KVS modules and a stored e-mail
program. First, the program stored messages in the mail
gateway module. The mail gateway module stored a number
of messages in the backup queues in two KVS modules and
its own local queue. We then shut down the mail gateway
module to simulate the server down, and rebooted it. After
that, the mail gateway module obtained all its messages from
a backup queue in a KVS module. This process meant
recovery from trouble with mail gateway modules.

We evaluated the time it would take for this recovery
process where the mail gateway module obtained all
messages from a backup queue in a KVS module. The
message size was 1 KB and the queue had 500,000 messages.

The experimental results are given in Fig. 6, which prove
that the more messages there are in a block, the shorter the
recovery time is. The recovery time for 1,000 messages was
5.9 seconds, which is a fourteenth of the recovery time for
one message. The case of one message in a block was the
same as the method of recovery for a typical KVS, such as
memcached or WebSphere (with a thin layer of queue
service implemented) [12]. In addition, if a typical KVS is
used instead of the proposed KVS modules, there is more
than double the access to the metadata of queues in KVS.

151Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

Therefore, the recovery time for using typical KVS is more
than 160 seconds; which cannot be adopted for mobile e-
mail services. Thus, the experimental results proved the
proposed system met the requirement for rapid recovery
described in Section I.

0

20

40

60

80

100

1 10 100 1000

R
e
c
o

v
e
r
y

 t
im

e
 [

se
c
]

Number of messages in block

Figure 6. Recovery time for different numbers of messages in block

E. Potential for Lost Messages

This system stores messages only in the memory of
multiple nodes. If all nodes having replicated data are down
at the same time, this system loses messages. Therefore, it
has to be located in a data center that has a stable power
supply. The power supplies of all nodes are generally
duplicated in the data centers of mobile network operators. In
addition, mail gateway modules have to store messages for
several hours, or days at maximum. Thus, there is a very low
probability of messages being lost in this system.

V. CONCLUSION

We presented a mail gateway system based on distributed
in-memory KVS to satisfy the four requirements of high
throughput, high-speed responses, scalability, and
availability for mobile e-mail services.

We proposed KVS, which can store messages physically
in a queue structure and provide consistent data in respective
queues. To preserve order in in-order queues and achieve the
requirement for high throughput of backup to KVS, we
proposed a method of pipelining messages on an active TCP
connection that linked a queue in mail gateway modules and
its backup queue in KVS modules. In addition, mail gateway
modules switched over to standby connection in different
network segments in seconds when active connection was
unavailable. The mail gateway modules had a management
table for each backup queue in KVS to avoid system
problems. The system recovered almost immediately within
seconds to obtain a block including many backup messages
for queues.

We evaluated the performance of one KVS module, the
performance of a mail gateway module that corresponded to
two KVS modules, and the process time for recovery. The
results proved both the KVS modules and the proposed
system met the requirement for high throughput. The
throughput for the proposed KVS module was 200,000
transactions per second with 0.4-KB messages, which is

superior to memcached. The throughput for a proposed mail
gateway module was 3,600 e-mail messages per second,
which is 4.4 times the performance of the conventional
method. Since the proposed KVS was adopted for mail
gateways instead of conventional storage, the process of
persistently storing messages was no longer a bottleneck to
throughput.

REFERENCES

[1] W.-C. Jeun, Y.-S. Kee1, J.-S. Kim, and S. Ha, “ High
Performance and Low Cost Cluster-Based E-mail
System”, Parallel Computing Technologies, pp. 482–496,
2003.

[2] M. Grubb., “How to Get There From Here: Scaling the
Enterprise - Wide Mail Infrastructure”, In the Proceedings
of the Tenth USENIX Systems Administration
Conference (LISA '96), Chicago, pp. 131–138, 1996.

[3] sendmail: http://www.sendmail.com/sm/open_source/
April.6.2012

[4] postfix: http://www.postfix.org/ April.6.2012

[5] M. Kinoshita, M. Nakahara, and T. Sagara, “An
Implementation and Evaluation of Multiprotocol
Message Gateway”, The 71th National Convention of
IPSJ , March 2009.

[6] E. A. Brewer, “Towards robust distributed systems”, In
Proceedings of the 19th Annual ACM Symposium on
Principles of Distributed Computing, p. 7, 2000.

[7] N. Christenson, T. Bosserman, and D. Beckemeyer,
EarthLink Network, Inc., “Highly Scalable Electronic
Mail Service Using Open Systems”, Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, Monterey, California, December 1997.

[8] Y. Saito, B. N. Bershad, and H. M. Levy, “Manageability,
availability and performance in Porcupine: A highly
scalable, cluster-based mail service”, 17th ACM
Symposium on Operating System Review, 34 (5) pp. 1–
15, 1999.

[9] J. R. von Behren, S. Czerwinski, A. D. Joseph, E. A.
Brewer, and J. Kubiatowicz, “NinjaMail: the Design of a
High-Performance Clustered, Distributed E-mail System”,
In Proceeding of International Workshops on Parallel.
Processing 2000, pp. 151–158, 2000.

[10] apach cassandra: http://cassandra.apache.org/
April.6.2012

[11] L. Koromilas and K. Magoutis, “CassMail: A Scalable,
Highly-Available, and Rapidly-Prototyped E-Mail
Service”, Lecture Notes in Computer Science, Volume
6723/2011, pp. 278–291, 2011.

[12] IBM WebSphere eXtreme Scale: http://www-
01.ibm.com/software/webservers/appserv/extremescale/
April.6.2012

[13] Y. Wang, H. Chen, B. Wang, J. M. Xu, and H. Lei,
"Scalable Queuing Service Based on an In-Memory Data
Grid", IEEE 7th International Conference on e-Business
Engineering (ICEBE 2010), pp. 236–243, November 2010.

[14] Y. Hashidume, K. Takasaki, T. Yamazaki, and S.
Yamamoto, “Ultra-high-speed In-memory Data
Management Software Achieving High-speed Response
and High Throughput”, Fujitsu Scientific & Technical
Journal, Vol. 62, pp. 57–64, January 2011.

[15] S. Kondoh, Y. Miyagi, M. Kaneko, T. Fukumoto, and K.
Ueda, “A Study of Data Arrangement for Various
Retrieval and Effective Redundancy”, IECE Technical
Report, NS2011-63, pp. 11–16, September 2011.

[16] memcached: http://memcached.org/ April.6.2012

152Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

[17] G. DeCandia et al. ,“Dynamo: Amazon’s Highly
Available Key-value Store”, Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP’07), pp. 205–220, October 2007.

[18] A. Lakshman and P. Malik, “Cassandra -A Decentralized
Structured Storage System”, Cornell, 2009.

[19] Facebook: http://www.facebook.com/ April.6.2012

[20] HBase: http://hbase.apache.org/ April.6.2012

[21] D. Borthakur et al., “Apache hadoop goes realtime at
Facebook”, Proceedings of the 2011 International
Conference on Management of Data, SIGMOD '11, pp.
1071–1080, 2011.

[22] Twitter: http://www.twitter.com/ April.6.2012

[23] M. Welsh, D. Culler, and E. Brewer, “SEDA: An
architecture for well-conditioned, scalable Internet
services.”, In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP '01), ACM Press,
pp. 230–243, October 2001.

153Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

