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Abstract—Spectrum resource sharing strategies for uncoor-
dinated networks are investigated. The average capacity of 2-
pair device-to-device (D2D) communication systems is derived,
assuming a flat response of the frequency spectrum. Three
different frequency allocation strategies are considered: (i) sep-
arate spectral allocation; (ii) full spectral allocation; and (iii)
overlapped spectral allocation, considering deterministic and
random locations of the communication devices. The analytical
results, supported by simulations, show that at low to moderate
received SNR the throughput assigned to each communication
device can be enhanced by overlapping the frequency spectrum
allocations.

Index Terms—Uncoordinated networks, frequency allocation
strategies, D2D communication.

I. INTRODUCTION

Recently, device-to-device (D2D) communication has at-
tracted more attention for its promising results in enhanc-
ing the system capacity [1]. With the increasing demand
in establishing home networks, which connect a variety of
communication devices including mobile phones, laptops, or
other electronic appliances, D2D communication becomes
a common paradigm for establishing these connections [2].
D2D communication schemes require low power consumption,
cost, and human intervention [3]. Many studies have been
performed to investigate the capacity of specific uncoordinated
networks, i.e., cellular networks [4]. However, the results of
these investigations cannot be generalized to other types of
communication systems. Therefore, in this paper, we study the
capacity of uncoordinated networks using physical parameters
independent of the system specifications, such as the locations
of communication devices, the number of devices which can
co-exist in a certain region, and the environment.

We focus our study on 2-pair D2D communication systems
considering three different spectral allocation strategies: sepa-
rated, whole and overlapped spectral allocations. For tractabil-
ity, we consider channels with a flat frequency response.

First, in Section II, we present the sum capacity of 2-pair
D2D systems with deterministic locations. Then, in Section
III, we derive the average sum capacity considering random
locations of the communication devices. The results are intro-
duced in Section IV. Finally, Section V concludes the paper.

II. SUM CAPACITY OF 2-PAIR D2D SYSTEMS WITH
DETERMINISTIC LOCATIONS

In this section, we present the sum capacity of a circular
cell in which two pairs of transmitters, (i.e., Tx1 and Tx2) and
receivers (i.e., Rx1 and Rx2) are located in fixed positions
inside the cell as shown in Fig. 1. In this figure, the solid
lines represent the desired signals from the transmitters to
the desired destinations (i.e., Tx1-Rx1 and Tx2-Rx2), while
interfering signals (i.e., Tx1-Rx2 and Tx2-Rx1) are denoted
by dotted lines.
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Fig. 1. Positions of communication devices inside a cell.

For simplicity, the channels of the desired and interfering
communication links are modeled using the single-slope path
loss, where the received power at a distance r from the
transmitter is given by

Pr(r) ∝ Ptr
−α (1)

where Pt is the transmit power spectral density, and α is the
path loss exponent. We assume that Pt is the same for all links,
and α = 4. To simplify our analysis, we neglect the coefficient
of proportionality and consider the effective transmit power
density Pt such that (1) contains an equality.

Assuming that the frequency spectrum under investigation
has a flat response over different frequencies, we use an
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Fig. 2. Overlapped frequency spectrum allocations for 2-pair D2D commu-
nication systems.

overlapped spectral allocation strategy, where the bandwidth
assigned to each transmitter is extended with a specific ratio
over the neighboring frequency bands as shown in Fig. 2. The
parameters x1 and x2 represent the spectral overlapping ratios
of Tx1 on Tx2 and Tx2 on Tx1, respectively.

In this case, the average capacity of the 2-pair D2D com-
munication systems can be defined by

CT = CF1 + CF2 + CO1 + CO2 (2)

where CF1 and CF2 are the capacity of Tx1 and Tx2 in
the region of the spectrum which is free of interference,
respectively. The components CO1 and CO2 are the capacity
of Tx1 and Tx2 in the overlapped spectral region between the
two transmitters, respectively. The expressions corresponding
to these capacities are

CF1 = (1− x2)
B

2
log2
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rα11

N

)
(3)

CF2 = (1− x1)
B
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CO2 = (x2 + x1)
B
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where B is the total frequency bandwidth, and N is the
noise power spectral density. The distance {rij}, i, j ∈ {1, 2},
represents the length of the communication link between Txi
and Rxj. Also, {rij} takes values between rm and 2R, where
rm is the minimum distance between two communication
devices inside the cell, and R is the cell radius.

III. SUM CAPACITY OF 2-PAIR D2D SYSTEMS WITH
RANDOM LOCATIONS

Here, we assume that Tx1, Tx2, Rx1 and Rx2 are located
in random positions inside the cell. In this case, r11, r21, r12,
and r22 become variable parameters, which have independent
identical distributions defined as follows. Let r represent the
Euclidian distance between two points randomly located in a
circle of radius R. Then, the probability distribution function
of r is given by [5]

f(r) =
2r

R2

(
2

π
cos−1

( r

2R

)
− r

πR

√
1− r2

4R2

)
(7)
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Fig. 3. Distribution of r inside a unit circle (R = 0.5).

which is plotted in Fig. 3. The validity of this probability
distribution is investigated by Moltchanov in [5].

Using the closed-form expression of f(r) in (7), we can
estimate the average sum capacity of 2-pair D2D communica-
tions over a flat frequency response as follows

C̄T = C̄F1 + C̄O1 + C̄O2 + C̄F2 (8)

where

C̄F1 =

∫ 2R

rm

CF1(r11)f(r11)dr11 (9)

C̄F2 =

∫ 2R

rm

CF2(r22)f(r22)dr22 (10)

C̄O1 =

∫ 2R

rm

∫ 2R

rm

CO1(r11, r21)f(r11, r21)dr11dr21 (11)

C̄O2 =

∫ 2R

rm

∫ 2R

rm

CO2(r12r22)f(r12, r22)dr12dr22. (12)

In (9) and (10), the closed-form expression of C̄F1 and C̄F2

can be obtained by deriving the average capacity of 1-pair
D2D communication systems over bandwidths (1−x2)

B
2 and

(1− x1)
B
2 , respectively. The closed-form expressions of C̄O1

and C̄O2 can be obtained by deriving the average capacity of
1-pair D2D communication systems with one interferer over a
bandwidth (x1 + x2)

B
2 . In the following subsections, we will

show how the average capacity of the aforementioned cases
can be estimated.

A. Average capacity of 1-pair D2D communications with no
interference

This case is represented by (9) or (10), where CF1 is a
function only of r11, or CF2 is a function only of r22. First,
consider the derivation of C̄F1. Using (7), the average capacity
of 1-pair D2D communication systems over a frequency
bandwidth, B̃ = (1− x2)

B
2 , is given by

C̄F1 = B̃

(
4

πR2
c̄1 −

2

πR3
c̄2

)
(13)
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where

c̄1 =

∫ 2R

rm

log2 (1 + γr) r11 cos
−1
(r11
2R

)
dr11 (14)

c̄2 =

∫ 2R

rm

log2 (1 + γr) r
2
11

√
1− r211

4R2
dr (15)

where γr is the received signal-to-noise ratio (SNR) and given
by γr = γt

rα11
, where γt =

Pt

N . The mathematical derivations of
the integrations in (14) and (15) are not tractable; therefore,
we use the series expansions of the following mathematical
functions to reduce the complexity of these integrations [6].

For |γr| ≤ 1, the logarithmic function log2 (1 + γr) can be
expressed as
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1
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whereas for |γr| > 1,
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(16b)

where ln is the natural logarithm. Also, for
∣∣ r
2R < 1

∣∣,√
1− r211

4R2
= 1− r211

8R2
− r411

128R4
− . . . (17)

For |γr| ≤ 1, we substitute for log2 (1 + γr) using the
first three terms of the series expansion in (16a) since the
values of the remaining terms are small and can be neglected.
Accordingly, c̄1 can be approximated using

c̄1 ≈ 1

ln(2)

(
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c̄a2
2

+
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3

)
∀ |γr| ≤ 1 (18)

where
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t
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11
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When |γr| > 1, we also include up to the third-order term,
i.e., the first four terms of the series expansion in (16b), and
consequently c̄1 can be given by

c̄1 ≈ 1
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where
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Finally, we estimate c̄2 using the series expansion in (17)
as follows

c̄2 ≈ c̄e1 −
1

8R2
c̄e2 −

1

128R4
c̄e3 (27)

where

c̄e1 =
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log2
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)
r211dr11 (28)
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log2
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)
r411dr11 (29)

c̄e3 =
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rm

log2

(
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rα11
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The closed-form expression of the integrations in (19)-(21),
(23)-(26) and (28)-(30) can be obtained from handbooks
of integrations; however, due to the space limitation of the
paper, we refer the reader to [6]. Similarly, we use the same
mathematical derivations to get C̄F2 over bandwidth (1−x1)

B
2

from (10).

B. Average capacity of one-pair D2D communications with
one interferer

Now, we assume that there is an interfering signal to
the desired communication link from a randomly located
communication device. The average capacity of this case is
presented in (11) and (12). In the following, we first solve the
double integration in (11), and then we use the same procedure
to evaluate the integrations in (12). Assuming that the locations
of Tx1 and Tx2 inside the cell are statistically independent,
i.e., f(r11, r21) = f(r11)f(r22), (11) is reduced to

C̄O1 = B̃1

∫ 2R

rm

Φ̄(r11)f(r11)dr11 (31)

where B̃1 = (x1 + x2)
B
2 , and

Φ̄(r11) =

∫ 2R
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log2

(
1 +
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rα11(1 + γ−1
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)
f(r21)dr21

=

(
4

πR2
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2

πR3
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)
. (32)

In (32),

Φ̄1(r11) =
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log2
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rα21
rα11(1 + γ−1
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)
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× cos−1
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Φ̄2(r11) =
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log2

(
1 +

rα21
rα11(1 + γ−1

t rα21)

)
r221

×
√
1− r221

4R2
dr21. (34)

In (33), the integration can be simplified by substituting for
cos−1(θ) by the first two terms of its series expansion, which
is given by

cos−1(θ) =
π

2
− θ − . . . (35)
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Also, we evaluate these integrations for α = 4. Thus, the
integrations in (33) can be approximated by

Φ̄1(r11) ≈
π
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The integrations of (37) and (38) can be evaluated with the
aid of a handbook of integrations, e.g., [6]. Using the first two
terms of the expansion in (17) and considering α = 4, the
integration in (34) can be approximated as

Φ̄2(r11) ≈ Φ̄21(r11)−
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The integration in (40) is obtained using [6]. Substituting
(36) and (39) in (32), we derive the closed-form expression
of Φ̄(r11), and subsequently, we can perform the second
integration in (31) with respect to r11. However, due to the
high complexity of the resultant integrations, we obtain the
final estimate of C̄O1 using numerical integration techniques,
specifically, we used the adaptive Gauss-Kronrod quadrature
method [7].

IV. SIMULATION RESULTS

In this section, we examine the accuracy of the derived
expression of the average sum capacity in (8) of 2-pair D2D
systems considering different spectral allocation strategies. For
illustrative purposes, we perform our simulations using design
parameters similar to those of GSM systems: carrier frequency
fc = 2GHz, bandwidth B = 200kHz and cell with radius
R = 5km. The value of rm, which is the minimum distance
between two devices inside the cell to initiate transmission, is
taken as 1% of the cell diameter, i.e., rm = 0.02R. In other
words, the two devises are not allowed to communicate with
each other when r < rm. As noted previously, the channel
between different communication devices is modeled using the
single-slope path loss with α = 4. In our results, we present
the average capacity versus the received SNR at the median
distance re between Txi and Rxi, which is denoted as γm.
The value of re can be estimated from (7) or can be detected
from Fig. 3. With this value of γm, the transmit power density,
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Pt, can be determined from

Pt = Nrαe γm. (41)

In the following results, the average sum capacity C̄T is es-
timated by averaging (2) over 105 realizations of {rij}, i, j ∈
{1, 2}.

The average capacity of 1-pair D2D systems is shown in
Fig. 4 for two cases: (i) no interferer (0-Interferer); and (ii) 1-
Interferer. The analytical results, supported by the simulations,
show that the average capacity of 1-pair systems can be en-
hanced by increasing Pt; however, this enhancement becomes
limited when an interferer is present. The figure also shows
the accuracy of the analytical derivation of the scenario of
0-Interferer. Even for the 1-Interferer case, the error in the
derivations at high values of γm is less than 23%, which can
be reduced by adding more terms from the series expansions
in (17) and (35), but this requires additional mathematical
computations.
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Fig. 4. Average capacity of 1-pair D2D systems with (i) 0-Interferer, (ii)
1-Interferer (R=5km and B=200kHz).

The average sum capacity, i.e., C̄T , of different frequency
allocation strategies are shown in Fig. 5. The values of the
overlapping ratios, i.e., x1 and x2, vary from 0 to 1. The
case of x1 = x2 = 0 represents the separated spectral
allocation, while the values x1 = x2 = 1 refer to the
fully overlapped spectral allocation. The results show that
at low to moderate values of γm, C̄T can be enhanced by
overlapping the frequency bands assigned to each pair of
communication devices, which means that a fully-overlapped
spectral allocation can be the preferred strategy at low received
SNR values. At high values of γm, the interference power
increases and thus limits the capacity enhancement provided
by the overlapped spectral allocation.

V. CONCLUSION

We derived the average capacity of 1-pair and 2-pair D2D
communication systems assuming deterministic and random
locations of the transmitting and receiving devices. We found
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Fig. 5. Average capacity of 2-pair D2D systems (R=5km and B=200kHz).

that at low and moderate received SNR values, the average
system capacity can be enhanced by allowing an overlapping
between the frequency spectrum allocations. As future work,
it would be interesting to find the optimal overlapping ra-
tios, xopt

1 and xopt
2 , which maximize the average throughput

assigned to each user considering the limits on the transmit
power and the number of users which can co-exist in the area
under investigation.
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