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Abstract— In this paper, a design approach for gm-C complex 
filter for intermediate frequency (IF) is formalized. It is based 
on decoupled first order gm-C sections, each one centered at a 
different frequency with respect to the others that can be 
stacked in series to get the final band pass filter response, with 
order equal to the number of stages.  A simple case with two 
stages is presented to show selectivity improvement when 
difference between the two center-bands increase, with ripple 
increase as drawback. An optimal setup with good selectivity 
increment and still zero ripple (flat pass-band) is also shown. 
Then, the approach is extended to third order. The approach 
has been used for IF filtering in STMicroelectronics GNSS 
receivers, but it is applicable to other wireless receivers. 

Keywords- gm-C filter, complex filtering, low-IF receivers. 

I.  INTRODUCTION  

The complex intermediate frequency (IF) filters have 
been proposed for radio frequency (RF) front-end (especially 
for the low-IF ones) for their characteristic of rejecting both 
out-of-band and image signals, due to their asymmetrical 
transferring function [1].  Several implementations have been 
disclosed in technical literature, such as [1]-[8], mainly based 
on active circuits, while related impairments has been also 
analyzed in [9] and the references therein. Amongst these 
implementations, it has been chosen the one based on 
decoupled first order stacked stages with operational trans-
conductor amplifier (OTA) and frequency shift of low-pass 
prototype. This choice presents lower current consumption, 
good response at high frequency and simple, reconfigurable, 
modular design [10].  

In the state-of-the-art implementation of gm-C multistage 
complex IF filter, each stage is centered on the same 
frequency with the same bandwidth, as in [1], [4] and [15] 
and the references therein. In this contribution, we formalize 
an approach considering different center frequency for each 
stage (and eventually different bandwidth). These center 
frequencies will be placed symmetrically around the center 
frequency of the final filter. This approach achieves better 
performances, especially in terms of out-of-band attenuation, 
image rejection and flatness in group delay response with 
lower current consumption (as shown in [10]). Moreover, it 
allows more freedom in shaping the filter frequency response 
for a given filter order. We adopted it in designing an IF 
filter for Global Navigation Satellite Systems (GNSS) 
receivers described in [10]-[12]. 

Section II describes the complex IF filter architecture, as 
in [10]; Section III presents the proposed approach 
considering the second order complex filter case, providing 
equations for filter design, and comparing the behavior 
between coincident center and non-coincident center cases. 
Section IV gives a brief extension to third order, and the 
main conclusions are drawn in Section V. 

II. COMPLEX FILTER ARCHITECTURE 

Filter architecture is based on decoupled first order 
sections stacked in series to get the final band-pass filter 
order. Each single stage band-pass filter response is a 
frequency shifted version of a low-pass one, designed using 
active components with trans-conductors and capacitors (gm-
C or OTA-C). Fig. 1 shows the architecture used in [10]-[12] 
for the single-stage, where the first order low-pass frequency 
response is set by the OTA gm1 and capacitor C values, with 
bandwidth given by: fLP = (gm1/2πC). The structure with the 
gm2 OTA is a gyrator that creates a feedback between in-
phase (I) and quadrature (Q) branches performing the 
frequency shift of the low-pass prototype response, obtaining 
a band-pass centered at a frequency defined through gm2 and 
C values according to the formula: fcenter =(gm2/2πC). The 
transfer function can be obtained just putting the translation 

 jω→jω-jωcenter   (1) 

in the transfer function of the low pass version, [1],[13]-[14]: 
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with G = (gm3/gm1), where the third OTA, gm3, is used both to 
decouple each stage with the previous one and to provide a 
gain (as a free parameter).  

In [10], we performed several schematic level 
simulations for defining design parameters values as a better 
trade-off amongst requirements of bandwidth, in-band 
group-delay variation, image and out-of-band rejection. We 
considered a 3rd or 4th order filter comparing in detail two 
cases: 
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• stages with same center frequency and bandwidth; 
• stages with different center frequencies, same 

bandwidth. 
 

  
Figure 1.  Complex filter single-stage basic architecture.  

It was easily recognizable as the second case presents 
better performances, especially in terms of out-of-band 
attenuation, image rejection and flatness in group delay 
response. In fact, in [10], we have observed that, when all 
stages share the same center frequency, if wider bandwidth 
are needed with low-order filters, the properties of both out-
of-band and image rejection rapidly becomes not acceptable. 
On the contrary, the different center frequency configuration 
can achieve wider bandwidth while maintaining low-order IF 
filter with good rejection for both out-of-band and image 
signals. The drawback of this latter approach is that the 
implementation needs different gyrators, one for each stage, 
instead of only one type for all the stages. Once fixed the 
stages main parameters (fcenter, fLP and G), then gm1, gm2 and 
gm3 are fixed from the previous formulas and all the trans-
conductors can be designed. For the details of the circuit 
design and measurement results, see [10]-[12]. 

III.  COMPLEX FILTER FORMALIZATION  

To formalize what has been observed both by simulation 
and by measurements on the implemented IF filters, it is 
better to take into account a simplified version with only two 
stages, obtaining a second order filter (but the approach and 
the conclusions can be straightforwardly extended to higher 
order complex analog filters). In this case, the transfer 
function for two equal stages is  
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Meanwhile, for two stages with centers respectively in 
ωcenter1 and ωcenter2 is 
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For a final pass-band filter centered at ωcenter and band 
equal to 2ωB, ωcenter1 and ωcenter2 must be chosen symmetrical 
to ωcenter, that is ( ) 221 centercentercenter ωωω += . Normalizing 

all the frequencies with respect to ωB, (4) and (5) become: 
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where Bn ωωω = , Bcenterc ωωω = , BLPo ωωω = , 

Bcenterc ωωω 11 = , Bcenterc ωωω 22 = ,  and the normalized 
filter bandwidth is 2. In the same way the upper 3dB corner 
of the band is 1+cω  and the lower is 1−cω . 

A. Coincident Center Frequency Case 

Without losing general validity, we set 1)( =ccoinc jH ω , 

this lead to G=1. Now, we want calculate the single stage 
low-pass normalized band ωo needed for a final normalized 
bandwidth equal to 2 of the two stages filter. This happens 
when the magnitude at the normalized upper band corner 

1+cω  is 3dB lower than the center-band one, that is: 
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considering (6), condition (8) is verified for ωo=1.554. 
This means that in order to have a two coincident stages 

band-pass filter with bandwidth of 2ωB we need a low pass 
bandwidth of 1.554⋅ωB for each single stage. 

B. Different Center Frequency Case 

Setting ( ) 212 ccd ωωω −= , then ωc1=ωc-ωd and 

ωc2=ωc+ωd, and equation (7) may be written as: 
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Analyzing this function it is possible to distinguish two 
cases: 

• if  ωd<ωo then the filter frequency response has only 
one maximum (MAX) at ωn=ωc equal to  
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• if  ωd>ωo then the filter frequency response has one 
minimum (min) at ωn=ωc equal to 

 
( )2222)( odocNC GjHmin ωωωω +==  (11) 

and two equal maximum values at 

 
22
odcMAXn ωωωωω −±==  
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both with value 
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Considering the first case, we want to calculate, also for 
non-coincident center, the single stage low-pass normalized 
band needed for a final normalized bandwidth equal to 2 for 
the two-stage filter. In general, we obtain a different value 
respect the one calculated in section A; for this reason, let 
put oω′  instead of ωo to distinguish the new variable. Further, 

we set 1)( =cNC jH ω  obtaining from (9)  

 ( ) 2222
oodG ωωω ′′+=     (14) 

and 
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Then, setting (8) for 3dB cut off at 1+cω  we obtain:

 

 

 241 2422 +−±−=′ dddo ωωωω .    (16) 

These are valid when ;220 −≤≤ dω  and 

;22+≥dω  the plot of (16), ‘+’ case, results as in Fig. 2: 

all the negative values are not acceptable, so we can discard 

the values for 22+≥dω . Furthermore, we must discard 

the solutions not compliant with od ωω ′< ; plotting the 
square root of (16), it is easy to verify that only the solutions 
for  7596.00 ≤≤ dω  can be considered. Other solutions of 

(16) can be found in the ‘-‘ case, but the condition od ωω ′<  
is never satisfied and cannot be considered. So, final solution 
in od ωω ′<  case is  

 
241 242 +−+−=′ dddo ωωωω    (17) 

true for 7596.00 ≤≤ dω . Fig. 3 shows the needed low-pass 
bandwidth of each stage versus frequency distance of the 
responses of the two stages. Observing this plot, for ωd=0 we 
should have the previous coincident center case, and in fact 
we found the previous value 554.1==′ oo ωω ; when ωd 

increases then oω′ decreases: this means that each stage can 
have a narrower bandwidth for obtaining the desired 
resulting bandwidth of the whole two-stage filter, that is a 
normalized value equal to 2. This lead to higher slope of the 
out-of-band response, that is higher out-of-band attenuation 
with the same bandwidth, so it is possible to obtain a more 
selective filter. Just to make an example, choosing ωd =0.7, 

we obtain oω′ =1.0194, less than 554.1=oω in the coincident 

center case also satisfying condition: od ωω ′< . 
In order to evaluate the selectivity improvement, the out-

of-band attenuation can be calculated anywhere for both 
cases, e.g. in ωc+10. For not coincident case from (15), 
substituting ωd=0.7 and 0194.1=′oω , we have  

 ( ) dBA cNC 4.3610 =+ω   (18) 

for coincident center case, from (6), (8) and G=1, we have 

 ( ) dBA cC 5.3210 =+ω   (19) 

with 3.9dB of more attenuation in the not coincident case, 
resulting in more selectivity as both have same normalized 
bandwidth equal to 2. 

Choosing another value of out-band frequency, nearer the 
band of the filter, for example ωc+3, we have 

 ( ) ( ) dBAA CNC 5.25.130.1633 =−=−     (20) 

and that confirms the selectivity enhancement. 

 
Figure 2.  Plot of Eq. 16, plus case,  for the allowed values of ωd.  
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Figure 3.  Plot of Eq. 17, for the allowed values of ωd.  

Now, let’s consider od ωω ′> , still with not-coincident 
center, and set the values of the two peaks equal to MAX=1 
without losing general validity, so from (13) is 

 odG ωω ′= 22      (21), 

and (9) becomes 
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Then, once again, we impose a normalized bandwidth of 
the resulting filter equal to 2; this means that in 1±cω the 

response must be 21 times the maximum. From (22) 
imposing the condition (8) we obtain: 

 
12213 22 −±−=′ dddo ωωωω  (23) 

valid for 21≥dω . The plot of (23) results as in Fig. 4: as 
easily recognizable the ‘+’ case (dashed line) does not match 
the condition od ωω ′> , so can be discarded. Observing the ‘-
’ case (continuous line) is possible to split the curve in two 
parts: the first one, on which we focus our interest, with 

decreasing value of oω′ for 121 <≤ dω , up to 1=dω , 
that means when the center frequency separation of the two 
stage is equal to the bandwidth of the whole filter. In this 
point the oω′ required is zero, so it is only a theoretical limit. 

The second part for 1>dω , that is center frequency 
separation of the two stages greater than the bandwidth of the 
whole filter, lacks of interest because the response of each 
stage is completely separated from the other, so not useful to 
obtain an appropriate overall pass-band response. 

Returning to the range 121 <≤ dω  in (23), as noted 

before, the decreasing characteristic of oω′ suggests more 

selective behavior for higher ωd; further, the presence of two 
peaks, as formalized in (11), (12) and (13), means presence 
of in-band ripple: when ωd increases, the minimum in ωc 
becomes lower and the ripple increases. It is important to 
check when ripple is too big. 

If the difference between maximum and minimum 
becomes greater than 3dB then we can consider the response 
completely separated into two distinct lobes, non-acceptable 
as band-pass characteristic. The limit of the center 
frequencies separation dω  that still gives us a unique filter 
band is given for ripple equal to 3dB, that is: 
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Considering the (21) and the (22) then is 
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where oω′ has the value for a final band equal to 2,  given by 

(23) for 121 <≤ dω ; substituting it we have: 
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Plotting (26) (see Fig. 5) the condition in (24) is satisfied for 
ωd =0.77679; this value gives the maximum acceptable 
ripple. Observing the same plot is fine to note that for 

21=dω we found F(ωd)=1. This is the case with no 
ripple, because the minimum is equal to the two maximum 
values, and coincides with the case previously studied for 

od ωω ′< having only one maximum, where we observed that 

higher ωd brings to higher selective filter. 

 
Figure 4.  Plot of Eq. 23, for the allowed values of ωd.  
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Figure 5.  Plot of Eq. 26, for the allowed values of ωd.  

So, choosing �� = 1 √2		⁄  gives the resulting filter with 
higher selectivity and no ripple; if we can accept ripple, we 
can choose a greater value of ωd in the range 
1 √2 ≤ �� ≤ 0.77679⁄ . In particular we can choose values 
nearer to 0.77679 for better selectivity despite of worse 
ripple. If for example we choose ωd = 0.77 from (23), ‘-’ 
case, we have ��

� = 0.3389, very low compared with the 
one of the best values we can have for �� < ��

� , for example 
for ωd =0.7 from (16) we already found ��

� = 1.0194 ≫
0.3389; in this way, with so low ��

� , we have much more 
selectivity. If we compare it with the coincident center case, 
the difference is even bigger (from (9) it was 
1.554>>0.3389). Evaluating the attenuation in the same out-
of-band frequencies used in the examples in all the previous 
cases we obtain the values in Table I. 

Another interesting example can be considered for the 
“optimum” setup that gives maximum out-of-band 
attenuation with still zero ripple. As already discussed, it is 
for �� = 1 √2		⁄ in �� ≥ ��

�  case, and for about ωd =0.7596 
in �� < ��

� case. The values of ��
� are 1 √2⁄  and 0.7622 

respectively, while the related attenuations for ωc+3 and 
ωc+10 are in Table II. In both cases, the maximum 
attenuation with zero ripple is when the two-stages frequency 
separation, ωd, is equal to the single stage bandwidth ��

� . 

TABLE I.  COMPARISON OF OUT-OF-BAND ATTENUATIONS AMONGST 
NON COINCIDENT FREQUENCIES CASES AND COINCIDENT FREQUENCIES 

 Ripple ωωωωd=0.77 No ripple ωωωωd=0.7 Equal Freq. 
ωωωωc+3 ANC = 24.3 dB ANC = 16.0 dB AC = 13.5 dB 

ωωωωc+10 ANC = 45.6 dB ANC = 36.4 dB AC = 32.5 dB 
 

TABLE II.  MAXIMUM OUT -OF-BAND ATTENUATION WITH NO RIPPLE 

 No ripple od ωω ′≥  No ripple od ωω ′<  

ωωωωc+3 ANC = 19.1 dB ANC = 17.9 dB 

ωωωωc+10 ANC = 40.0 dB ANC = 38.7 dB 

Lastly, maximum selectivity, with 3dB ripple, is for ωd = 
0.77679, obtaining ANC(ωc+3)=24.6dB and ANC(ωc+10) = 
46.0dB. 

IV.  THIRD ORDER CASE 

In this section, we will give a brief look to the third order 
case. For three stages with normalized centers, respectively, 
in ωc1, ωc2 and ωc the transferring function is 
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where K=G1G2G3 is the filter gain, Bn ωωω = , 

Bcenterc ωωω = , Bcenterc ωωω 11 = , Bcenterc ωωω 22 = , 

BLPo ωωω =  and the normalized filter bandwidth is 2. 

Moreover, ωc1 and ωc2 must be chosen symmetrical to ωc, 
that is ( ) 221 ccc ωωω += . Setting ( ) 212 ccd ωωω −= , then 

ωc1=ωc-ωd and ωc2=ωc+ωd, equation (27) may be written as 
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Setting ( )cnx ωω −=  and developing denominator in 
(28) we obtain: 

 �������� = �� !

"� #� $%&'$(�)
$*(+'#&� $%'$(�)

$*, . (29) 

The square modulus becomes: 

 |��������|. = �$� /

0� $#� $%&'$(�)
$*$('$#&� $%'$(�)

$*$1
 (30) 

Maximum and minimum values will be related to 
minimum and maximum values of denominator in (30). So, 
let us consider the derivate of the denominator with respect 
to x equating it to zero (defining for which x there could be 
maximum and minimum values): 

 623 + 42&�3��
. − 2��

.� + 22�3��
. + ��

.� = 0 (31) 

The first solution is x=0 => ωn=ωc; other solutions from: 

 26 + .
& 2

.�3��
. − 2��

.� + 7
& �3��

. + ��
.� = 0 (32) 

setting x2=y, solution of (32) has the following expressions: 

 87,. = − 7
& �3��

. − 2��
.� ± 7

&��;��
. − 12��

.. (33) 

Solutions (33) are real for ��
. ≥ 12��

.. If this last holds, 
these are acceptable solutions for x if and only if y1,2≥0. In 
this latter case, both solutions are non-negative; so there are 
two couples of frequencies to be considered: 
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��7 = �< ±;87
��. = �< ±;8.

. (34) 

On the contrary, if y1,2<0, there will be only one real 
solution for (33) and for ωn=ωc the transfer function present 
only a  maximum and no ripple: 

 |������<�|. = �$� =

#� $(�)
$*$

 . (35) 

Considering y1,2≥0 for the frequencies in (34), the transfer 
function presents more solutions. In this case, we can have 
three maxima (one always from (35)) and two minima, and 
ripple will be present as in Fig. 6.  

 
Figure 6.  Third order complex filter transfer function (dot) and transfer 

function of each first order stage.  

For this case, we have to verify both that ωn=ωc+1 is cut-
off frequency and the in-band ripple; imposing the maximum 
value for this last parameter in order to verify if there are 
acceptable solutions for ω0 and ωd. For instance, for ω?

. =
12ω�

.  the ripple is not acceptable. Moreover, it can be 
observed that the selectivity increases as a function of ωd. 

V. CONCLUSIONS AND FUTURE WORK 

We have described an approach for multistage complex 
IF filter design able to reach a good tradeoff between in-band 
ripple and rejection of both out-of-band and image frequency 
using different center frequencies in each stage, also 
choosing properly their bandwidths. Formulas are also 
provided for the filter design in the two stages case, 
obtaining the desired selectivity and ripple just choosing the 
bandwidth and the center frequency of each stage. We have 
also briefly described the third order case and extension to 
higher order is quite straightforward. We have adopted this 
approach for IF filter design in STMicroelectronics GNSS 
receiver, [10]-[12].  

Future work could be the extension of the proposed 
approach to design filter where each stage shows different 
order, bandwidth and center frequency asymmetrically 
placed respect to the center of the passband. 
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