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Abstract—Exploiting the channel state knowledge can play a
fundamental role in improving security, hence a wiretap channel
model with distinct channel state information is considered. In
particular, it is assumed that the channel between the transmitter,
the legitimate receiver and the eavesdropper is a function of three
different states. One of the states is an unknown state, the second
one is known to the legitimate receiver and the third state is
non-causally known to the encoder. For this setting, a secrecy
rate is shown to be achieved using a coding scheme based on
structured binning in conjunction with a time-sharing argument.
The secrecy capacity for this model is established for the specific
case when the legitimate receiver’s observation is a deterministic
function of the the channel input and the states.

Index Terms—Wiretap channel, state information, secrecy
capacity, random binning, time-sharing.

I. INTRODUCTION

In the race towards setting and defining the grounds for 5G
wireless networks, information-theoretic security is steering
lot of attention in recent years as a major player to safeguard
data confidentiality. The 5G heterogeneous networks and the
massive MIMO architecture call for a new security paradigm
which is less dependent on secret key exchange; a problem
with an order of complexity that increases with the ubiquity
of the network [1].

Shannon in [2] introduced the channel state information
to information theoretic models, wherein he considered the
channel state to be a side information which is causally known
to the transmitter. In [3], the side information was considered
to be non-causally known to the transmitter and the capacity
for the corresponding channel was obtained using a Gel’fand-
Pinsker (GP) binning scheme.

In the context of information-theoretic security, there has
been many attempts to investigate the role of state information
on the secrecy performance of wiretap channels. A transmitter
is attempting to send a confidential message to a designated re-
ceiver, through a channel governed by a certain state sequence,
while a wiretapper is getting hold of the encoded message
as a result of the openness nature of the communication
channel. In [4], Chen & Vinck considered the problem of
wiretap channel where the transition probability depends on
a state sequence non-causally known to the encoder, and the
wiretapper’s signal is a degraded version of the legitimate
receiver’s signal. The achieved secrecy rate was based on a
double-binning scheme; a synthesis of the wiretap codes used

in [5], [6] for wiretap channels and the GP coding used in [3].
Interestingly, looking into the Gaussian model, it was shown
that secrecy rate can actually be enhanced in the presence of
known side information [4]. In [7],Chia & El-Gamal studied
the problem of wiretap channel with causal side information,
where an achievable secrecy rate was obtained using block
Markov coding, Shannon strategy, and key generation from
common state information.

In this paper, we propose a variant of the wiretap channel
with state information problem. In our model, the signal
received by the legitimate receiver depends on two state
sequences S1 and S2, such that S1 is non-causally known
to the transmitter and S2 is known to the receiver, while the
signal received by the wiretapper depends on one unknown
state sequence S3. A model where the wiretap channel depends
on two-sided state sequences was addressed in [8], where a
rate-equivocation region was established using a time-sharing
argument, whereas the assumption of the wiretapper’s signal
being affected by an unknown state sequence was treated in
[9]. In this sense, our model can be viewed as a generalization
of the previous two models and provides more insight on
the impact of different kinds of side information on secure
communication. In addition, we propose an upper bound on
the secrecy capacity of the wiretap channel with three state
information, and show that the secrecy rate achieved by our
coding scheme matches the upper bound for the case when the
legitimate receiver is a deterministic function of the channel
input and the states.

The paper is organized as follows. Section II reviews the
capacity of the channel with two-sided state information and
the capacity for the corresponding deterministic channel. Sec-
tion III introduces the problem and present the model. Section
V presents the coding scheme and the achieved secrecy rate
for the wiretap channel with three state information. Section
IV derives an upper bound on the secrecy capacity. Section VI
proves the secrecy capacity of the semi-deterministic model.
Section VII summarizes the main results and the contribution
of the paper.

II. CHANNEL WITH TWO-SIDED STATE INFORMATION

In this section we review the building block for our model,
which is the channel with two-sided state information intro-
duced in [10], and derive the capacity for the corresponding
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Figure 1. Channel with two-sided state information; S1 non-causally known
to the encoder, state S2 known to the decoder.

deterministic channel. The conditional probability distribution
depends on two correlated channel states S1 and S2 with joint
probability distribution p(s1, s2); the state S1 is non-causally
known to the receiver and the state S2 is known to the receiver.
See Figure. 1.

The capacity of this channel was obtained by Cover et.al in
[10] and we restate the result in the following theorem.

Theorem 1. The capacity C of the memoryless channel
p(y|x, s1, s2), with channel state S1 non-causally known at
the encoder as side information and channel state S2 known
to the decoder, is given by

C = max
p(u,x|s1)

[I(U ;Y, S2)− I(U ;S1)] . (1)

where U is an auxiliary random variable verifying the follow-
ing Markov chain: U → (X,S1)→ (Y, S2).

Proof: See proof in [10].
We now characterize the capacity of the deterministic chan-

nel with two-sided states. In this case the channel output is a
deterministic (bivariate) function of the channel input X and
the channel states S1 and S2:

Y = f(X,S1, S2) with probability 1 (2)

Theorem 2. The capacity of the deterministic channel with
two-sided states is given by

C = max
p(x|s1)

H(Y |S1, S2) (3)

Proof: Upper bound. An upper bound on the channel
capacity for the model represented in Figure. 1, corresponds to
the capacity of the channel where the states S1 and S2 are both
fed to the encoder and the decoder. The capacity of this chan-
nel is given in [10, Corollary. 1] by max

p(x|s1,s2)
I(X;Y |S1, S2).

Hence, an upper bound on the capacity of the deterministic
channel is

C ≤ max
p(x|s1)

I(X;Y |S1, S2)

= max
p(x|s1)

[H(Y |S1, S2)−H(Y |X,S1, S2)]

= max
p(x|s1)

H(Y |S1, S2) (4)

where (4) is due to (2).
Lower bound. As the channel output is a deterministic function
of (X,S1, S2), we can choose U = (Y, S2) and substitute back

in (1). This gives the following lower bound on the capacity
of the deterministic channel

C ≥ max
p(x|s1)

[I(Y, S2;Y, S2)− I(Y, S2;S1)]

= max
p(x|s1)

H(Y, S2|S1)

= max
p(x|s1)

[H(S2|S1) +H(Y |S1, S2)]

= max
p(x|s1)

H(Y |S1, S2) (5)

where (5) is obtained by choosing S1 and S2 to be fully
correlated. The matching between the upper bound and the
lower bound proves the theorem.

III. PROBLEM FORMULATION AND SYSTEM MODEL

Consider the discrete-time memoryless wiretap channel
shown in Figure. 2. The transmitter wishes to send a message
W from a message set M reliably to the legitimate receiver,
while keeping it perfectly secured from an eavesdropper. The
transition probability of the main channel and the wiretap
channel depends on three state sequences Sn1 , Sn2 and Sn3 ,
with values in a finite set (S1,S2,S3). The state sequence Sn1
is non-causally known at the encoder, while Sn2 is known to
the legitimate receiver and Sn3 is unknown.

Stochastic
Encoder

Legitimate
Receiver

Wiretapper

Figure 2. Wiretap channel with three channel state information; S1 non-
causally known to the encoder, state S2 known to the legitimate receiver and
state S3 unknown to the wiretap channel

Using Sn1 , the encoder maps W to an n − tuple channel
input Xn ∈ Xn and sends it over the main channel and the
wiretap channel. The main channel depends on the transition
probability p(yn|xn, sn1 , sn2 ), with Y n ∈ Yn being the legiti-
mate receiver observation. The wiretap channel depends on the
transition probability p(zn|xn, sn3 ), with Zn ∈ Zn being the
wiretapper’s observation. The channels are memoryless,i.e.,

p(yn|xn, sn1 , sn2 ) = Πn
i=1p(yi|xi, s1i, s2i)

p(zn|xn, sn3 ) = Πn
i=1p(zi|xi, s3i)

We assume at different instances (S1, S2, S3) to be indepen-
dent identically distributed (i.i.d) random variables with joint
probability distribution p(s1, s2, s3). The legitimate receiver
aims at recovering Ŵ ; its estimate of the transmitted message,
based on the received signal Y n. The average decoding error

29Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)



probability is defined as P (n)
e =

1

|M|

|M|∑
t=1

Pr{W 6= Ŵ |W =

t}. A secrecy rate Rs is achievable if there exists a sequence
of length n code, such that the average error probability at the

intended receiver and the leakage rate
1

n
I(W ;Zn) between the

message W and the the received signal Zn, both approach zero
as n→∞. The secrecy capacity is defined as the supremum
of all achievable rates.

It is important to note that the considered formulation is
a special instant of the general problem where all sorts of
state information could affect the communication between the
receiver and transmitter.

IV. UPPER BOUND

We start by deriving an upper bound on the secrecy capacity
for the model shown in Figure. 2. The upper bound will prove
to be equal to the secrecy capacity for the semi-deterministic
model in Section VI.

Proposition 1. The secrecy capacity Cs of the discrete
memoryless wiretap channel with three state information
p(y, z|x, s1, s2, s3) with channel state S1 non-causally known
at the transmitter as side information, S2 known to the
legitimate receiver, and S3 unknown to the wiretapper, can
be bounded from above as

Cs ≤ max
p(x|s1)

min {I(X;Y |S1, S2, S3), I(X,S1, S3;Y, S2|Z)} .
(6)

Proof: We start by noting that max
p(x|s1)

I(X;Y |S1, S2, S3)

is an upper bound on the Shannon capacity of the legitimate re-
ceiver channel by creating a fictitious channel which gives the
channel states S1, S2 and S3 to the legitimate receiver as well
as to the transmitter and uses the result from [10, Corollary. 1].
On the other hand, the term max

p(x|s1)
I(X,S1, S3;Y, S2|Z) is an

upper bound on the secrecy capacity of the wiretap channel,
as it allows the channel state S1, known to the transmitter,
and the channel state S3 to encode the transmitted message
W , thus getting three encoded copies of the message instead
of one (i.e.,fully action-dependent state [11]), and also by
giving the signal received by the wiretapper Z to the legitimate
receiver through a fictitious channel (i.e., Sato-like upper
bound [12]). In order to move the maximization outside of
the minimization, we need to recur to a single-letterization
technique introduced in [13], which we apply as follows: By
Fano’s inequality, any achievable secrecy rate Rs must satisfy

n(Rs − εn)

≤ I(W ;Y n)

≤ I(W ;Y n, Sn1 , S
n
2 , S

n
3 )

≤ I(Xn;Y n|Sn1 , Sn2 , Sn3 )

= H(Y n|Sn1 , Sn2 , Sn3 )−H(Y n|Xn, Sn1 , S
n
2 , S

n
3 )

= H(Y n|Sn1 , Sn2 , Sn3 )−
n∑
i=1

H(Yi|Xi, S1i, S2i, S3i)

≤
n∑
i=1

H(Yi|S1i, S2i, , S3i)−
n∑
i=1

H(Yi|Xi, S1i, S2i, S3i)

= n[H(YQ|S1Q, S2Q, S3Q, Q)

−H(YQ|XQ, S1Q, S2Q, S3Q, Q)]

≤ n[H(YQ|S1Q, S2Q, S3Q)−H(YQ|XQ, S1Q, S2Q, S3Q)]

= n · I(XQ;YQ|S1Q, S2Q, S3Q)

where εn → 0 in the limit as n → ∞, and Q is a standard
time-sharing variable. Similarly, for any achievable secrecy
rate Rs we have

n(Rs − εn)

≤ I(W ;Y n)− I(W ;Zn)

≤ I(W ;Y n, Zn)− I(W ;Zn)

= I(W ;Y n|Zn)

≤ I(Xn, Sn1 , S
n
3 ;Y n, Sn2 |Zn)

= H(Y n, Sn2 |Zn)−H(Y n, Sn2 |Xn, Sn1 , S
n
3 , Z

n)

= H(Y n, Sn2 |Zn)−
n∑
i=1

H(Yi, S2i|Xi, S1i, S3i, Zi)

≤
n∑
i=1

H(Yi, S2i|Zi)−
n∑
i=1

H(Yi, , S2i|Xi, S1i, S3i, Zi)

= n[H(YQ, S2Q|ZQ, Q)−H(YQ, S2Q|XQ, S1Q, S3Q, ZQ, Q)]

≤ n[H(YQ, S2Q|ZQ)−H(YQ, S2Q|XQ, S1Q, S3Q, ZQ)]

= n · I(XQ, S1Q, S3Q;YQ, S2Q|ZQ).

Note that the channel states are memoryless, so S1Q, S2Q and
S3Q have the same distribution as Sj,i for any i = 1, . . . , n
and j = 1, 2, 3. The channel is also memoryless, so the con-
ditional distribution of (YQ, ZQ) given (XQ, S1Q, S2Q, S3Q)
is given by the channel transition probability p(y|x, s1, s2)
and p(z|x, s3). Letting XQ = X , S1Q = S1, S2Q = S2,
S3Q = S3, YQ = Y1, ZQ = Z, and n → ∞ completes the
proof.

V. ACHIEVABLE SECRECY RATE

The following theorem presents an achievable rate Rs for
our model.

Theorem 3. An achievable rate for the wiretap channel with
three states information is

Rs = max
p(u,x|s1)

I(U ;Y, S2)−max{I(U ;S1, S3), I(U ;Z)}
(7)

where U is an auxiliary random variable such that U →
(X,S1, S2, S3)→ (Y, Z).

Proof: We fix pU (u), pX|U,S1
(x|u, s1) and ε1, ε2, ε3 > 0.

Let Rs
.
= I(U ;Y, S2)−max{I(U ;S1, S3), I(U ;Z)}−ε1−ε3

and R .
= max{I(U ;S1, S3), I(U ;Z)} − I(U ;Z) + ε3 + ε2.

Codebook: Generate 2I(U ;Y,S2)−ε1 identically independent
sequences un, each according to p(u) = Πn

i=1p(ui). We
distribute the un sequences randomly into 2nRs bins, in-
dexed by m ∈ {1, ...,M = 2nRs}. Now each bins has
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2n[max{I(U ;S1,S3),I(U ;Z)}+ε3]. Further we randomly distribute
the sequences in each bin into 2nR subbing, indexed by
j ∈ {1, ..., J = 2nR}. Thus each subbing has 2n[I(U ;Z)−ε2].

Encoding: To send message m, the transmitter looks into the
m-th bin and select a un(m) such that un(m) and the interfer-
ing sequence sn1 are jointly typical; (un(m), sn1 ) ∈ Tnε (pUS1).
If there are more than one pair, then we randomly select one.
We generate the channel input xn according to the mapping
pxn|un,sn1

(X|U, S1).
Decoding: The decoder chooses m so that

(un(m), sn2 , y
n) ∈ Tnε (pUS2Y ) if such m exists and is

unique; otherwise, an error is declared.
Performance Analysis: We start by analyzing the error

probability. There are three types of errors relating to encoding
and decoding:

1) E1: error event corresponding to encoding; given the
message bin m and the state sequence sn1 , there is no
jointly typical (un(m), sn1 ) in bin m.

2) E2: error event corresponding to decoding; given the
received sequence yn and the state sequence sn2 , there is
no un(m) such that (un(m), yn, sn2 ) is jointly typical.

3) E3: error event corresponding to decoding; given the
received sequence yn and the state sequence sn2 , there
is un(m′) such that (un(m′), yn, sn2 ) is jointly typical,
where m′ 6= m.

Without loss of generality, we assume that message m = 1
was sent. Since the probability that (un(m), sn1 ) is jointly
typical is larger than (1 − ε)2−nI(U ;S1), and that there are
2n[max{I(U ;S1,S3),I(U ;Z)}+ε3] sequences per bin, we have the
following

Pr(E1)

≤ [1− (1− ε)2−N [I(U ;S1)+3ε]]n[max{I(U ;S1,S3),I(U ;Z)}+ε3]

≤ exp{−(1− ε)2−N [I(U ;S1)+3ε]}n[max{I(U ;S1,S3),I(U ;Z)}+ε3]

= exp{−(1− ε)2n[max{I(U ;S1,S3),I(U ;Z)}−I(U ;S1)+ε3−3ε]}
≤ δ(1)ε (n)

Having the Markov chain: U → (X,S1, S2, S3)→ (Y,Z), we
then have U → (X,S1)→ (Y, S2). Hence, if (un(m), xn, sn1 )
is jointly typical, then (un(m), xn, sn1 , s

n
2 , y

n) is jointly typi-
cal. As a result,

Pr(E2) ≤ δ(2)ε (n)

Denoting by E
′

3 the event that we can find a un(m′) (m′ 6= m)
which is jointly typical with yn, then

Pr(E3) ≤ Pr{E
′

3}
≤

∑
un 6=un(m)

2−n[I(U ;Y )]−3ε

=
(

2n[I(U ;Y,S2)−ε1] − 1
)

2−n[I(U ;Y )−3ε]

≤ 2n[I(U ;Y,S2)−I(U :Y )−ε1+3ε]

≤ δ(3)ε (n)

By the union bound on these three probabilities of error,
the average probability of error Pne → 0 as n → ∞ This

concludes the proof of reliability. Now we turn into verifying
the secrecy performance of our code, through the calculation
of the leakage rate between the transmitted message W and
the received signal Zn.

I(W ;Zn)

= H(W )−H(W |Zn)

= H(W )−H(W,Zn) +H(Zn)

= H(W )−H(W,J, Zn) +H(J |W,Zn) +H(Zn)

= H(W )−H(W,J, Zn, Un) +H(Un|W,J, Zn)

+H(J |W,Zn) +H(Zn)

= H(W )−H(W,J |Zn, Un)−H(Un, Zn)

+H(Un|W,J, Zn) +H(J |W,Zn) +H(Zn)
a
≤ log |M| −H(Un|Zn) +H(Un|W,J, Zn)

+H(J |W,Zn)
b
≤ log |M| −H(Un|Zn) +H(Un|W,J, Zn)

+ log |J |+H(Un|Y n, Sn2 )

= nRs −H(Un|Zn) +H(Un|W,J, Zn)

+n[max{I(U ;S1, S3); I(U ;Z)} − I(U ;Z)]

+n(ε2 + ε3) +H(Un|Y n, Sn2 )
c
= nRs − n[I(U ;Y, S2)− I(U ;Z)]

+H(Un|W,J, Zn) + nmax{I(U ;S1, S3); I(U ;Z)}
−nI(U ;Z) + n(ε3 + ε2)

= n(ε3 + ε2) +H(Un|W,J, Zn)
d
≤ n(ε3 + ε2) + h(p̄) + np̄[I(U ;Z)− ε2] (8)

where,

(a) follows from H(W ) ≤ log |M| and H(W,J |Zn, Un) =
0.

(b) follows from H(J |W,Zn) ≤ H(J) ≤ log |J | and
H(Un|Y n, Sn2 )) ≥ 0.

(c) follows from I(Un|Y n, Sn2 ) = nI(U |Y, S2) and
I(Un;Zn) = nI(U ;Z).

(d) follows from applying Fano’s inequality to the wiretap
channel whose input is Un in the codebook consisting
of the subbin j in bin m.

Applying the common random channel coding argument to
(8), p̄→ 0 as n→∞, hence

lim
n→∞

1

n
I(W ;Zn)→ 0 (9)

This concludes the achievability proof for our coding scheme.

VI. SEMI-DETERMINISTIC WIRETAP CHANNEL WITH
THREE STATE INFORMATION

In this section we characterize the secrecy capacity of
the semi-deterministic wiretap channel with three states, for
the case where legitimate receiver output is a deterministic
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(bivariate) function of the channel input X and the channel
states S1 and S2:

Y = f(X,S1, S2) with probability 1 (10)

For the semi-deterministic model, the lower bound (7) and the
upper bound (6) coincide, leading to a precise characterization
of the secrecy capacity. The result is summarized in the
following theorem.

Theorem 4. The secrecy capacity of the semi-deterministic
wiretap channel with three states is given by:

Cs = max
p(x|s1)

min{H(Y |S1, S2, S3), H(Y, S2|Z)} (11)

Proof: As the legitimate receiver output is a deterministic
function of the channel input X and the channel states S1

and S2, and we have the following Markov chain U →
(X,S1, S2, S3) → (Y,Z), we can let the auxiliary random
variable U = (Y, S2).By substituting back in (7), we get the
following

I(U ;Y, S2)− I(U ;S1, S3)

= H(Y, S2)−H(Y, S2|Y, S2)−H(Y, S2)(12)
+H(Y, S2|S1, S3)

= H(Y, S2|S1, S3)

= H(S2|S1, S3) +H(Y |S1, S2, S3)

= H(Y |S1, S2, S3) (13)

where (13) is obtained by choosing the channel states to be
fully correlated.Similarly,

I(U ;Y, S2)− I(U ;Z) = H(Y, S2|Z)

Thus

Cs ≥ max
p(x|s1)

min {H(Y |S1, S2, S3), H(Y, S2|Z)}

The converse part of the theorem follows from the upper
bound (6) and the fact that Y is a deterministic function of
(X,S1, S2), so we have

I(X;Y |S1, , S2, S3) = H(Y |S1, S2, S3)−
H(Y |X,S1, S2, S3)

= H(Y |S1, S2, S3)

and

I(X,S1, S3;Y, S2|Z) = H(Y, S2|Z)−H(Y, S2|X,S1, S2, Z)

= H(Y, S2|Z).

This completes the proof of the theorem.

VII. CONCLUSION

For a number of channels, the conditional probability dis-
tribution is affected by certain channel state information. The
state information could be available to the transmitter, or to
the receiver or not available to either one of them. Also, the
state information could be causally-known or non-causally
known. This motivated the inspection of a special instant of the
general problem, where the conditional probability distribution
at the channel’s output depends on three state information; one
of unknown nature, another always available at the receiver
as side information, and a third state non-causally known
at the encoder. The paper suggests the use of a structured-
binning scheme along with a time sharing argument to achieve
a certain secrecy rate, which meets the upper bound and
the achieves the secrecy capacity under the assumption that
the channel is semi-deterministic. It is conjectured that this
scheme can be used under any other assumptions on the nature
and the number of state information affecting the conditional
probability distribution of the channel. The author aims at
tacking the same scenario under the assumption of constrained
stochastic encoding, wherein the encoder is generating pseudo-
randomness which is limited rather than being unlimited.
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