
Energy Efficiency in MC-DS/CDMA Cooperative Networks:

Centralized and Distributed Solutions

Lucas D. Hiera Sampaio and Taufik Abrão

State University of Londrina, Brazil

Email: dr.lucas.sampaio@ieee.org; taufik@uel.br
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Abstract—The energy efficiency (EE) maximization on the uplink
of multi-carrier direct sequence code division multiple access
(MC-DS/CDMA) cooperative wireless networks is an NP-hard
optimization problem of great interest for future networks sys-
tems. This paper presents three centralized solutions and two
distributed ones: the centralized solutions include an iterative
solution based on the Dinkelbach method and two heuristic
approaches, i.e., the Firefly algorithm (FA) and the Particle
Swarm Optimization (PSO) algorithm. The distributed solutions
are based on a game theory framework and employ two differ-
ent algorithms for resource allocation: the classical waterfilling
algorithm adapted to the discussed problem and the Verhulst
distributed power control algorithm (V-DPCA). Simulations were
conducted in order to establish which technique has the best EE,
spectral efficiency (SE) and complexity tradeoff.

Keywords–Cooperative Networks; MC-DS/CDMA; Energy Effi-
ciency; Spectral Efficiency; Game Theory; Dinkelbach.

I. INTRODUCTION

Energy-efficient telecommunications systems is of great
importance in terms of design and implementation due to
carbon emission reduction and cost. Besides, in wireless
communications the transmission power usually is not linearly
proportional to the transmitter-receiver distance, which makes
cooperative networks often more energy-efficient than non-
cooperative networks. In such networks each mobile terminal
(MT) communicates with one or multiple relay stations (RS)
that forward the MT message to its respective base station
(BS). Besides the increase in EE, this sort of networks may also
be used to increase spectral efficiency (SE), system throughput
or decrease the average transmission power.

MC-DS/CDMA networks are characterized by the division
of the total available spectrum into uncorrelated CDMA non-
selective sub-channels. This characteristic improves granularity
which usually enhances system throughput, capacity, SE and
EE as well as lower the average transmission power (ATP).
Each one of the sub-channels is interference limited, thus bet-
ter interference cancellation techniques may be implemented
in order to further improve the system. In addition, MC-
DS/CDMA networks may carry out adaptive modulation or
multiprocessing gain techniques to support different multime-
dia services increasing the system flexibility from voice service
to high data rate services.

1) Related Work: Many studies have been conducted re-
cently aiming to find implementable resource allocation (RA)
algorithms for cooperative networks, among them [1]–[6]. RA
procedures are directly related to user satisfaction, company
profits and environment issues. The work in [1] presents
a game theoretic approach for power control and receiver
design in cooperative direct sequence (DS)/CDMA networks.

A performance analysis for wireless cooperative networks
using amplify and forward (AF) protocol is presented in
[2] while a method for energy efficiency maximization with
minimum transmission rate requeriments is presented in [3].
Meanwhile, in [4] a concave fractional programming approach
for EE maximization in orthogonal frequency division multiple
access (OFDMA) cooperative networks is presented while in
[5] an analysis on EE-SE tradeoff for DS/CDMA networks is
offered. Furthermore, in [6] three different distributed solution
methods for the EE maximization problem in MC-DS/CDMA
cooperative networks are discussed.

2) Contributions: The main contribution in this work is to
analyse different algorithms, methods and approaches that can
be deployed in resource allocation of the uplink (UL) cooper-
ative MC-DS/CDMA networks. In order to find a good solu-
tion/algorithm for power allocation and EE in MC-DS/CDMA
cooperative networks, which compromises both performance
and computational complexity, this paper extends the work
presented in [6] and incorporates two centralized heuristic al-
gorithms to solve the RA problem. All five algorithms/methods
are briefly presented and analyzed under the same scenario
which consists of a single cell with one fixed relay station,
directional antennas and cooperative communications aiming
to expand the coverage area without expensive costs for the
telecommunications company.

This paper is organized as follows. Section II presents the
system model and description; EE and SE, as well as the
problem formulation are presented in Section III. Furthermore,
Section IV discusses centralized solutions while Section V
presents the game theoretic approach. Numerical examples and
results are offered in Section VI. Conclusions and future work
are addressed in Section VII.

II. SYSTEM DESCRIPTION

On the UL of MC-DS/CDMA cooperative systems each
MT communicates with the BS using a RS to forward its mes-
sage. In this paper we consider a single cell environment with
one fixed RS (FRS) as shown in Fig. 1. The complex channel
gain for the MT-FRS link is described as hi(k) where i and k
are the MT and subcarrier indexer, respectively. Equivalently,
the complex channel gain for the FRS-BS channel is denoted
as g(k). Therefore the power channel gain vector for the MT-
FRS path is:

h(k) = [h1(k)h2(k) · · ·hU (k)]
⊤

k = 1, . . .N (1)

where U is the system loading and N the number of parallel
non-overlaping subcarriers. The power channel gain vector for
the FRS-BS path is:

g = [g(1) g(2) · · · g(k) · · · g(N)] (2)
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Figure 1. MTs, FRS and BS positioning in a uplink MC-DS/CDMA system
with a single fixed-RS.

In cooperative scenarios, the signal received at the relay
may go through different procedures before it is forwarded to
the next destination. The relay may use amplify-and-forward
(AF) protocol, decode-and-forward (DF) protocol or compress-
and-forward (CF) protocol. We only consider the AF protocol.
Hence, the signal received at the FRS is first normalized by
the square root of the average received power and afterwards
amplified by the U×U amplification matrix A constrained by
tr(AAH) ≤ pR where pR is the available power at the FRS.

In interference limited multiple access networks an impor-
tant QoS measure is the signal-interference-plus-noise ratio
(SINR) since all users transmit over the same channel at the
same time causing multiple access interference (MAI). In a
MC-DS/CDMA system, the post-detection SINR, considering
the adoption of linear receivers, may be generically expressed
for the ith user, kth sub-carrier as [7]:

δi(k) = Fi(k)
pi(k)hi(k)g(k)|dH

i Asi(k)|2

Ii(k) +NT(k) + σ2g(k)||AHdi||2
(3)

where hi(k) = |hi(k)|2 is the channel power gain between
user i and the single FRS and g(k) = |g(k)|2 is the channel
power gain from single FRS to BS, and di is the linear filter
at receiver, such as single-user matched filter (MF) or multi-
user Decorrelator, minimum mean square error (MMSE) filter
and so forth; following the results of [5] only the Decorrelator
will be considered herein since it had the best results in terms
of complexity-performance trade off. Hence, the Decorrelator
filter may be mathematically expressed as:

dDEC = [d1, . . . ,di, . . . ,dU ] = S(STS)−1 = SR−1 (4)

where di is the linear filter for the i-th user, S is the spread-
ing sequence matrix with each column representing an user
spreading code and R is the spreading sequence correlation
matrix. Furthermore, the Ii(k) in (3) is the amplified MAI at
the FRS forwarded to the BS:

Ii(k) = g(k)
U
∑

j=1

j 6=i

pj(k)hj(k) |d
H
i Asj(k)|

2 (5)

and NT(k) is the normalized noise at the BS and treated
through the linear multiuser receiver:

NT(k) =

[

U
∑

i=1

pi(k)hj(k) + Fi(k)σ
2

]

σ2||di||
2 (6)

where pi(k) is the allocated power, associated to the respective
users (i) and sub-carrier (k), and σ2 is the power noise.

III. ENERGY AND SPECTRAL EFFICIENCIES AND

PROBLEM FORMULATION

The SE of each user through the N sub-channels can be
computed as the number of bits per second that may be trans-
mitted for a single Hertz. Considering a practical approach for
the theoretical bound obtained through the Shannon channel
capacity equation, the SE of the ith user can be defined as:

Si =

N
∑

k=1

log2 (1 + δi(k)) , i = 1, . . . , U

[

bits

s ·Hz

]

(7)

Finally, the user rate at each sub-channel is given by:

ri(k) = w · Si = w log2 (1 + δi(k))

[

bits

s

]

(8)

In MC-DS/CDMA systems with a single FRS, the EE
function for user i can be formulated as [8]:

ξi =

N
∑

k=1

ri(k)ℓi(k) · f(δi(k))

̺ pi(k) + ̺R pR + pC + pCR

[

bit

Joule

]

, (9)

∀i = 1, . . . , U , where i and k are the user and sub-channel
indexers respectively; ℓ ≤ 1 is the code rate. pi(k) is the MT
transmission power, pR is the re-transmission power from the
FRS to the BS, assumed a fixed and equal power quantity
per user overall the subcarriers; pC and pCR

are the circuitry
power consumption at MT and FRS, respectively; ̺ > 1 and
̺R > 1 are the power amplifier inefficiency factors at MT and
FRS, respectively. The efficiency function f(δi(k)) expresses
the probability of error-free packet reception. Considering M-
QAM square constellation modulations of order M = Mi(k)
and Gray coding, the bit error rate is approximately [9], [10]:

BERi(k) =
2(
√
M − 1)√

M log2 M

(

1−

√

3δi(k) log2 M

2(M − 1) + 3δi(k) log2 M

)

(10)

A. Problem Formulation

To maximize the EE of each user in the MC-DS/CDMA
system with a single FRS, the overall EE maximization prob-
lem with MT’s power constraint is posted as:

maximize
P∈℘

U
∑

i=1

ξi =
U
∑

i=1

N
∑

k=1

ri(k)ℓi(k)f(δi(k))

̺ pi(k) + ̺R pR + pC + pCR

≡
U
∑

i=1

N
∑

k=1

ℓi(k)w log2 [1 + δi(k)] · (1− BERi(k))

pC + pCR
+ ̺R pR + ̺

N
∑

k=1

pi(k)

,

s.t.(C.1) δi(k) ≥ δi,min(k), ∀ k, i (11)

where the total transmit power of the U mobile terminals
across N subcarriers must be bounded (and be nonnegative)

139Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-514-2

ICWMC 2016 : The Twelfth International Conference on Wireless and Mobile Communications (includes QoSE WMC 2016)



for any feasible power allocation policy, with the correspondent
power allocation matrix described by:

P ∈ ℘
def
= {[pi(k)]U×N | 0 ≤ pi(k) ≤ Pmax } (12)

where N ·Pmax represents the maximum total transmit power
available at each MT transmitter.

IV. CENTRALIZED RA SOLUTIONS

Analytical-iterative Dinkelbach method, as well as a heuris-
tic PSO-based and Firefly-based algorithms are explored to
solve the RA problem in a centralized way.

A. Dinkelbach Method

The Dinkelbach method is an iterative method to solve
quasi-concave problems in a parameterized concave form [11].
The optimization problem in (11) is divided into N sub-
problems representing the EE problem in each subcarrier k:

maximize
C(p)

U(p)
=

U
∑

i=1

ℓi(k)w log2 [1 + δi(k)] · (1− BERi(k))

pC + pCR
+ ̺R pR + ̺

N
∑

k=1

pi(k)

s.t.(C.1) δi(k) ≥ δi,min(k), ∀ i (13)

(C.2) 0 ≥ pi(k) ≥ pmax, ∀ i

Each subproblem (13) is a quasi-concave problem [6]. The
following parametric concave program is associated with the
EE maximization problem in each subcarrier [12]:

maximize
p∈X

C(p) − λU(p) (14)

where X = {p ∈ X|0 ≤ pi(k) ≤ pmax ∀i = 1, . . . , U}.
The objective function of the parameterized problem, denoted
by F(λ) is a convex, continuous and strictly decreasing
function. Without loss of generality, the maximum EE λ∗ of
the parameterized problem is [12]:

λ∗ =
C(p∗)

U(p∗)
= maximize

p∈X

C(p)

U(p)
(15)

which is equivalent to find F(λ) = 0. According to [13] the
Dinkelbach method is the application of Newton’s method to
a nonlinear fractional program converging with a super-linear
rate. The goal at each iteration of the method is to solve:

F(λn) = max
p∈X

{C(p − λn U(p)} @nth iteration. (16)

Fig. 2 depicts a pseudo-code for Algorithm 1 based on iterative
Dinkelbach’s method. Moreover, in order to solve problem (16)
we have deployed CvX tools [14].

B. Particle Swarm Optimization (PSO)

Created by Kennedy and Eberhart in [15] the PSO algo-
rithm is based on flocks behaviour when searching for food.
In this algorithm each possible solution is analogously put as a
particle in the swarm and each member of the population has
two main attributes: position and velocity. Position itself is the
candidate solution to the optimization problem and velocity is
the parameter used to move each individual according to the
best solution found by him and by the whole group.

Algorithm 1 Dinkelbach’s Method

Input: λ0 satisfying F(λ0) ≥ 0; tolerance ǫd

Initialize: n ← 0,
repeat

Solve problem (16) with λ = λn to obtain p
∗

n

λn+1 ←
C(p∗

n
)

U(p∗

n
)
;

n ← n+ 1

until |F(λn)| ≤ ǫd;
Output: λn; p∗

n

Figure 2. Pseudo-Code for the Dinkelbach’s Method

In order to deal with unfeasible solutions the implemented
algorithm discards any individual which leaves the problem do-
main or does not satisfy at least one of the problem constraints
as in (11). Hence, at each iteration the M individuals move
through the search space, being eliminated from the population
if they leave the problem domain. At the t-th iteration the PSO
updates particle m position through:

Xm[t+ 1] = Xm[t] +Vm[t+ 1] (17)

where Xm[t] is the particle m position at iteration t and it
is a U ×N non-negative valued real matrix. Vi[t+ 1] is the
velocity U ×N matrix which can be computed by:

Vm[t+ 1] = ωVm[t] + c1 U
1
m[t] ◦

(

Vbest
m [t]−Vm[t]

)

+ c2 U
2
m[t] ◦

(

Vbest
g [t]−Vm[t]

)

(18)

where ◦ is the Hadamard product, Vbest
m [t] is the best solution

found by individual m up to iteration t, Vbest
g [t] is the best

solution found by all individuals up to iteration t, c1 and c2 are
weights for local and global solution candidates, ω is the inertia
coefficient, U1

m[t] and U2
m[t] are random matrices uniformly

distributed on the interval [0, 1].

It is important to note that the best solution is stored based
on which candidate solution has the best outcome in terms
of objective function. The objective function herein for both
heuristics is the system effective capacity in (11).

The PSO algorithm is the recurrent computation of equa-
tions (17) and (18) and updating process of Vbest

i and Vbest
g

up until convergence or when a maximum number of iterations
has been reached.

C. Firefly Algorithm (FA)

Another bio-inspired heuristic, the FA was created by Yang
in 2008 [16]. It is based on the collective intelligence of
fireflies and their light emission patterns. Firefly algorithm
dynamics include two main properties of fireflies in some arbi-
trary environment: the distance between the firefly population
individuals and the light intensity of their bioluminescence.

There are different species of fireflies that use their bi-
oluminescence for different purposes. Fireflies attract each
other for reproduction purposes and therefore they are more
attracted by the most intense flash pattern. Therefore, the link
between the firefly behaviour and the optimization problem
is that their flash pattern increases its intensity the better the
solution represented through the individual of the population
which leads the population to improved solutions that yield
better objective function outcomes.
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To become a useful tool, three basic rules about the
individual fireflies are assumed: a) fireflies have no gender
definition, hence any firefly can attract any other firefly; b)
attractiveness is proportional to the bioluminescence intensity
such that less intense flash patterns fireflies are moved on the
direction of more intense glints; c) if a particular individual has
the most intense flash pattern then it moves randomly in the
search universe. Instead of being an intrinsic characteristic to a
firefly, the attractiveness is, in fact, a correspondence between
firefly i and j which is mathematically defined as [16]:

βij = β0 e
−γ d2

ij (19)

where j attracts i with intensity β0 and an exponential decay
with the distance between them. The parameter β0 is the base
attractiveness at null distance, common for all individuals of
the population, and γ is the medium permissiveness or light
absorption coefficient; dij is the Euclidean distance between
the fireflies. Hence, at each iteration t, each pair i, j – where
firefly j has a larger light intensity than i – performs a move
such that i moves in the direction of j according to [16]:

Xi[t+1] = Xi[t]+β0 e
−γ d2ij (Xj [t]−Xi[t])+αf

(

Uf [t]− 0.5
)

(20)

where Xi[t] is the firefly i position at the t-th iteration and,
in this paper, is a U × N matrix of power allocation, αf is
a random step coefficient parameter and Uf [t] is a random
matrix at iteration t uniformly distributed on the interval [0, 1].

V. GAME THEORETIC APPROACH

We have adopted two approaches to solve the optimization
problem in (11) in a distributed fashion: a) solving N non-
cooperative games aiming to find the best SINR response to
a given interference level at each sub-channel and using the
Verhulst based distributed power control algorithm (V-DPCA)
[17] afterwards; b) considering a non-cooperative game and
an average channel gain across N sub-carriers. The problem
is solved also in two steps: finding the best SINR response
and allocating the same power to all sub-channels using the
V-DPCA. Note that in all power control algorithms analyzed
herein system users adjust their own transmission power level
selfishly.

A. Solving N Non-Coalitional Games

A different game for each sub-channel such that N non-
coalitional games must be solved in order to find the best SINR
response. The EE maximization game at the k-th subcarrier is:

G(k) =
[

U , {Ai(k)}, {u
k
i }
]

, k = 1, 2, . . . , N (21)

where U = {1, 2, . . . , U} is the player set, {Ai(k)} =
[0, pmax,i] is the strategy set for user i in the kth sub-channel
where pmax,i is the maximal resource (transmission power)
available at the ith MT; and {uk

i } is the utility function for
the ith user at kth sub-carrier; in this case {uk

i } is given by:

uk
i = ri(k)ℓi(k)

(1− BERi(k))
Vi(k)

̺ pi(k) + ̺R pR + pC + pCR

, (22)

with BERi(k) defined as Eq. (10). Consider the power allocated
to the ith user at the kth sub-channel. The vector:

p−i(k) = [p1(k), · · · , pi−1(k), pi+1(k), · · · , pU (k)] (23)

is the allocated power vector considering all users but user i.
Thus, given the power allocated to all except ith user at the
kth sub-carrier the best response for user i in a non-coalitional
fashion may be expressed as [18]:

p∗i (k) = arg max
pi(k)

uk
i [pi(k),p−i(k)] (24)

Non-coalitional games can be easily solved finding the
Nash Equilibrium (NE) of the problem [19]. An NE is a set
of strategies such that any unilateral change will not increase
the user utility function without decreasing the other players
payoffs. Let p∗

−i(k) be the set of optimal strategies for all
users but user i. The vector p∗(k) is a NE if and only if:

∀pi(k) 6= p
∗

i (k) ⇒ u
k
i [pi(k),p

∗

−i(k)] ≤ u
k
i [p

∗

i (k),p
∗

−i(k)] (25)

Note that in the context of distributed energy-efficient
power allocation problem the strategy set for each user is
pi(k) ∈ [0, Pmax]; thus, it is non-empty, compact and convex.
Furthermore, if the utility function is quasi-concave it has
been proved in [20] using Glicksberg generalization of the
Kakutani fixed point theorem [21] that the non-cooperative
game has at least one Nash Equilibrium. As a consequence,
distributed energy-efficient power allocation problem under
non-cooperative game perspective may be posed as:

max
pi(k)

u
k
i = ri(k)ℓi(k)

(1− BERi(k))
Vi(k)

̺ pi(k) + ̺R pR + pC + pCR

(26)

s.t. (C.1) 0 ≤ pi(k) ≤ Pmax

(C.2) δi(k) ≥ δi,min(k), ∀ k, i

where BERi(k) function is defined in Eq. (10).

Since function uk
i in Eq. (22) depends on both the user

allocated power and its SINR from Eq. (3) follows the relation:

pi(k) = δi(k)
Ii(k) +NT(k) + σ2

g(k)||AHdi||
2

Fi(k)·hi(k)g(k)|dH
i Asi(k)|2

= δi(k)Γi(k)

(27)

The fact that the power domain is an interval, i.e., pi(k) ∈
[0, pmax], and the relation between power and SINR is linear
over the optimization window as shown in (27), the SINR
domain is also an interval such that δi(k) ∈ [0, δmax], where
δmax is related to the SINR level when transmitting with the
highest power level allowed. So, utility function is rewritten:

uk
i = ri(k)ℓi(k)

(1− BERi(k))
Vi(k)

̺ δi(k)Γi(k) + ̺R pR + pC + pCR

, (28)

Finding the best response strategy for each user is equiv-
alent to maximize the utility function Functions maxima have
a null derivative; hence, applying the derivative in (28):

∂uk
i

∂δi(k)
= 0 (29)

Fig. 3 presents the proposed Algorithm 2 for finding
the best SINR response, while simultaneously allocating the
corresponding transmission power levels for each user i and
subcarrier k.
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Algorithm 2 Iterative EE-Maximization Algorithm

Input: p, I , ǫ; Output: p∗

begin

1. initialize first population and set n = 0;

2. while n ≤ I or error > ǫ

3. find δi(k), ∀i = 1, . . . , U k = 1, . . . , N through (29)

4. allocate pi(k) for all i and k in order to achieve δi(k)
5. calculate error = ||pi[n]− pi[n− 1]||2
6. n = n+ 1
7. end while

—————————————-

p = initial power vectors;

p[n] = power vector at the nth iteration;

p
∗ = power vector solution;

I = maximum number of iterations;

ǫ = least expected precision;

Figure 3. Pseudo-Code for the Iterative EE-Maximization Algorithm

B. Solving One Non-Coalitional Game (M-DPCA)

As a second approach, the problem is simplified by taking
the average channel gain over all N subcarriers. Thus, all
variables which had a subcarrier indexer k are now identified
by the operator ·̄, indicating that the variable takes the average
value over N subcarriers. Hence, the problem (11) can be re-
written as:

maximize
P̄∈℘

U
∑

i=1

ξ̄i =
U
∑

i=1

r̄iℓ̄i f(δ̄i)

̺ p̄i + ̺R p̄R + pC + pCR

=
U
∑

i=1

ℓ̄i w log2
[

1 + δ̄i
]

· (1− ¯BERi)
V̄i

pC + pCR
+ ̺R p̄R + ̺ p̄i

, (30)

s.t. (C.1) p̄i ≤ pmax,i, i = 1, . . . , U

(C.2) δ̄i ≥ δ̄i,min, i = 1, . . . , U

Problem (30) does not have the sub-carrier dimension, thus
it is easier to solve when compared to the first approach.
To find the best power allocation policy to (30) the same
game theoretic approach presented in Section V-A is adopted.
Therefore, one may solve this approach through our proposed
Algorithm 2 depicted in Fig. 3 in combination with the V-
DPCA. This approach will be referred hereafter as M-DPCA.

VI. NUMERICAL RESULTS

Simulations where conducted using MatLab 7.0 Mathworks
to establish which are the best parameters for both heuristics.
The scenario parameters values used in the simulations are
presented in Table I. Before comparing the different methods’
performance it is necessary to find the best parameters for
both heuristics. Results from 1000 trials with at least 5
different values for each parameters shown that, for FA the best
reference light intensity is β0 = 1, the best light absorption
coefficient is γ = 1 and the best random step coefficient is
αf = 10−3. While for the PSO, the local best and global best
coefficients are c1 = c2 = 2.

The effect of population size for both PSO and FA was
analyzed in Fig. 4. The population size and the maximum
number of iterations impact was analysed in terms of the

average EE obtained for both PSO and FA; also, such heuristic
distributed solutions was compared to the centralized solution
based on Dinkelbach method (Max EE). As shown, increasing
the maximum number of iterations as well as population size
leads to better EE results with the only counter effect being
the increase on complexity. Furthermore, FA has a significant
advantage in terms of achieve EE when compared to the
PSO under small population sizes (5 to 10). This gap among
each algorithms’ solution is reduced when the population
size increases and is almost equivalent when it reaches 50
individuals.

TABLE I. MULTIRATE DS/CDMA SYSTEM PARAMETERS

Parameters Adopted Values

MC-DS/CDMA System

Noise Power Pn = −90 [dBm]

MT Circuitry Power pc = 0.1 [W]

Relay Circuitry Power pcR
= 0.5 [W]

Relay Transmission Power pR = 25 [W]

Power Amplifier Inefficiency ̺ = ̺R = 2.5

Codification Rate ℓ =
3

4
Processing Gain F = 128
Sub-carriers N = 16
Users U = 5
Amplification Matrix A = IF ∗ (

pR
F

) [1]

Bits per Packet V = 1
Sub-channel Bandwidth w = 78 KHz

Max. power per user Pmax = 125 [mW]

# mobile terminals U = 5
cell geometry rectangular, with xcell = 10Km

ycell = 5 Km

mobile term. distrib. ∼ U [0.5 ∗ xcell, ycell]
Channel Gain

path loss ∝ d−2

shadowing uncorrelated log-normal, σ2 = 6 dB

fading Rayleigh

User Types

User Rates ri,min = [256; 512; 1024] [Kbps]

Modulation (For BER purposes) M = [4, 16, 64]

Tolerable BER per class [10−3; 10−5; 10−8]
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Figure 4. Effect of population size M and maximum number of iterations
on the average Energy Efficiency.

For simulation purposes all users have been separated into
three different QoS requirement classes. Basically, each class
represents one type of multimedia service; thus, users may
require low, average or high throughput associated with high,
medium and very low maximal tolerable BER, respectively.
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To effectively compare the performance of each method
one must consider the computational complexity of each
method. Some assumptions must be done: a) all algorithms
are assumed to execute the same amount of iterations, hence
the algorithm with the simplest iteration yield the simplest
algorithm of all; b) computational complexity of Dinkelbach’s
method solution obtained via CvX tool is not considered in
the analysis since its complexity cannot be securely obtained;
c) number of users in the system is considered U < N and
therefore has no impact on the complexity asymptotically.

At each iteration of the V-DPCA algorithm a fixed number
of operations are conducted which leads, in asymptotic terms,
to a O(1) complexity. Hence, the M-DPCA approach has a
static complexity while the V-DPCA is executed one time at
each subcarrier which leads to linear complexity O(N). It is
also easy to show that at each iteration of the PSO algorithm
operations are computed for each of the individuals of the
population which represents an asymptotic linear dependence
of the population size, i.e., O(M). Finally, the complexity of
the FA is directly related to the fact that it must compare every
possible pair of fireflies which gives an asymptotic complexity
of O(M2) where M is the population size. Furthermore, the
performance comparison in terms of how close to the optimal
solution (on average) each algorithm finds itself is sumarized
in Table II. Such results represent the average over a thousand
channel realizations and MTs geographical distribution.

TABLE II. AVERAGE EE AND ITERATION COMPLEXITY.

Algorithm % of the Optimal EE Complexity

Dinkelbach Method 100% -
V-DPCA 57% O(N)
M-DPCA 96% O(1)
FA 96% O(M2)
PSO 95% O(M)
N is the number of subcarriers in the system.
M is the population size of the heuristic method.

VII. CONCLUSION

Five different approaches solving the energy-efficient de-
sign in MC-DS/CDMA cooperative networks with FRS were
analyzed. Also, the algorithms’ complexity issues were briefly
addressed. Our findings indicate that the best average EE-
complexity tradeoff is achieved by the M-DPCA. The M-
DPCA algorithm takes into account the average observed
interference while performing the power control of the non-
cooperative game in a distributed fashion, which is of
paramount importance in uplink scenarios. Indeed, such algo-
rithm presented the lowest iteration complexity and achieved
similar or better performance results regarding the average
EE than centralized solutions, such as the heuristic ones. An-
other advantage is that it simplifies the interference estimator
procedure at the BS side while a low overhead information
exchanging between MT and BS is held.

Future works include the problem of the joint resource
block and power allocation in the uplink of multi-user multi-
cell large scale multiple-input-multiple-output (or massive
MIMO) under pilot contamination regime. Since the opti-
mization problem is of mixed-integer nature, we are propos-
ing different quasi-optimal resource allocation algorithms to
achieve the better tradeoffs regarding average system spectral

efficiency and energy efficiency, all of them supported by a
game theoretic framework.
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