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Abstract—This paper is concerned with a challenging problem
of channel estimation and equalization for orthogonal frequency
division multiplexing (OFDM) systems in underwater acoustic
(UWA) communications in the presence of Rician fading. The
ambient noise is modeled as a correlated Gaussain noise. We
combine the matching pursuit (MP), for the Doppler shift and
the channel path delays estimation, along with the maximum
a posteriori (MAP) estimation for the channel path gains and
call the resulting algorithm MP-MAP algorithm. As a prior
distribution for the sparse complex-valued channel gains, we
choose a Rician distribution with unknown means and variances.
They are in turn estimated by the maximum likelihood technique.
After the channel equalization, detection of data is implemented
at the receiver. Computer simulations show that the UWA channel
is estimated very effectively and the proposed algorithm exhibits
excellent symbol error rate and channel estimation performance.

Keywords–Underwater acoustic communications; channel esti-
mation; equalization; detection.

I. INTRODUCTION

Due to the importance of underwater acoustic (UWA)
wireless communications, numerous proposals that deal with
the impairments experienced in such environment have re-
ceived quite an attention, especially in the last ten years.
Several underwater applications such as natural disasters pre-
dictors, coastal radars, incoming near-field tsunami waves, and
volcanic activity require underwater wireless communication,
where acoustic signals are recognized as the best candidate
for such implementations [1] [2]. However, UWA commu-
nication systems face several challenges such as low speed,
long propagation delay, multipath and fading, and time de-
pendent Doppler effects. Deployment of orthogonal frequency
division multiplexing (OFDM)-based communication systems
for underwater wireless communication is considered to be
promising due to its robustness against large multipath spreads
[3] [4].

Different related studies on UWA communications have
been proposed. Many related studies over different UWA
disciplines such as channel and Doppler estimation and noise
mitigation algorithms are investigated upon realistic and syn-
thetic data. In [5], the authors model the delay spread of an
UWA channel. The proposed study shows a better channel
impulse response (CIR) modeling when out-of-plane scattering
and reverberation are taken into account. The authors of

[6] proposed an algorithm where the receiver can detect the
impulsive noise positions using the signal amplitude in the
time domain, and the impulsive noise and the Doppler shift
estimation are based on the null subcarriers of the OFDM
symbol. A channel estimation for relay-based UWA systems
is investigated in [7]. The authors considered a sparse CIR
and a non-Gaussian channel gains in their channel model.
The expectation-maximization (EM) along with the matching
pursuit (MP) algorithms were employed for the Doppler shift
and the delay estimation. In [8], the authors adopted super-
position coding with OFDM for downlink communication in
the presence of multiple stations (sensors). Based on statistical
representation of each underwater station’s channel state infor-
mation (CSI), a resource allocation mechanism is proposed that
obtains the transmitting power of each subcarrier for each user.
An adaptive channel estimator based on least squares (LS) and
recursive least-squares (RLS) is proposed in [9]. The results
show a promising bit error rate (BER) performance and the
average mean square error (MSE) can be obtained better than
the linear minimum mean square error (LMMSE) or the LS.
The authors of [10] investigated different modulation, channel
estimation, and channel equalization techniques for OFDM-
based and pilot-assisted UWA systems. They assumed in their
simulations a channel that follows a Rayleigh distribution.
Their results show that QPSK, DPSK, and 16QAM are the
most suitable modulation schemes for UWA applications. The
authors of [11] proposed a low computational complexity
channel estimation algorithm based on fast block-Fourier trans-
form (FFT) and orthogonal matching pursuit (OMP) in the
presence of large pilot spacing. In [12], the authors proposed an
OMP-based algorithm for channel coefficients estimation with
no prior CSI knowledge in the presence of doubly selective
channel.

In this paper, we assume a single-transmit and single-
receive antennas and a parametric channel model that obeys
a Rician distribution, where the CSI is known at the receiver.
We model the ambient UWA noise as a correlated Gaussian
noise whose correlation function fits well for realistic UWA
channels. We then employ the MP algorithm on the oversam-
pled version of the received signal for the estimation of the
Doppler shift and the channel path delays of the UWA channel.
Finally, we use the maximum a posteriori (MAP) technique
to estimate the complex-valued sparse channel gains and the
maximum likelihood (ML) technique to estimate the unknown
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mean and variance parameters of the Rician distributed UWA
channel.

The remainder of the paper is organized as follows. The
underwater channel model is presented in Section II. In Section
III, the system model of the proposed OFDM-based UWA
communication system is described. The iterative channel es-
timation algorithm along with the initialization techniques and
data detection are described in Section IV. The performance of
the proposed approach along with the simulation parameters
are investigated in Section V. Finally, conclusions and future
work are presented in Section VI.

II. CHANNEL MODEL

In this paper, we consider a sparse multipath channel model
parametrized by a time-varying path delays denoted by τp, p =
0, 1, · · · , L− 1. The time variations of the path delays can be
approximated by a Doppler shift as τp(t) = τp − ζpt [13]
[6]. Note that, the Doppler effect experienced at the receiver
can be different at each path in underwater environments [14].
However, [15] states that the dominant Doppler shift arose
in such environments is due to the motion of the platforms.
Consequently, in our paper we assume a constant Doppler shift,
that is, ζp(t) ≡ ζ. In addition, we assume the channel path
amplitudes do not change over one OFDM symbol duration on
each path and vary independently from symbol to symbol, that
is, hp(t) ≈ hp. Consequently, the sparse time-varying UWA
channel impulse responses (CIRs) with the channel gains can
be characterized by

h(t, τ) =

L−1∑
p=0

hp δ(τ − (τp − ζt)). (1)

The channel taps at the receiver depend on the underwater
environmental conditions as well as the sea state where each
channel tap can be assumed to obey a different distribution. In
our work, the proposed channel path gains hp follow a Rician
fading, and the channel taps are then considered to be complex
Gaussian random variables with nonzero means. Define mean
µp and variance σ2

p as the independent real and imaginary
parts of the taps such that, Ωp = E{|hp|2} = 2µ2

p + 2σ2
p

is the power profile of the proposed channel that follows a
Rician fading, where

∑L−1
p=0 Ωp = 1. However, we consider

the Rician κ-factor for the pth tap as the ratio of the power of
the mean component to the power in the diffuse component,
that is, κp = µ2

p/σ
2
p. Consequently, each channel tap can be

expressed as [16]

hp =

√
κpΩp
κp + 1

(
1 + j√

2

)
+

√
Ωp

κp + 1
h̃p (2)

where h̃p is denoted as a complex Gaussian random variable
with zero mean and unit variance. However, a Rayleigh dis-
tributed channel model can be considered in (2) when κ = 0.
In addition, we assume that the CIRs remain constant over a
period of one block transmission and vary independently from
block to block.

III. SYSTEM MODEL

In this work, we consider a direct communication link
in an UWA framework where OFDM scheme is chosen for
its robustness against long multipath spread experienced in

underwater environments, where the derivations and the equa-
tions hold only one OFDM symbol at a time. We assume the
proposed OFDM symbol is equipped with N subcarriers; K
equally spaced subcarriers are modulated by data symbol d[k]
along the system bandwidth B, where k represents the sub-
carrier index of the OFDM symbol, and no data is transmitted
over the remaining N −K subacarriers.

After applying a N -point inverse fast Fourier transform
(IFFT) of the data sequence, a sufficient guard interval (cyclic
prefix) of duration Tg is added. Consequently, the equivalent
passband continuous time-domain received signal y(t) =
s(t)⊗ h(t, τ) + v(t) can be expressed as

y(t) =
√

2Re

{( L−1∑
p=0

hp e
j2πfcζtS

)
ej2πfct

}
+ v(t), (3)

where S = s
(

(1+ζ) t−τp
)
, and v(t) =

√
2 Re{ṽ(t)ejωct} is

the passband representation of the additive correlative Gaussian
ambient noise ṽ(t).

In order to compensate the dominant Doppler shift, we
resample the received signal in (3) with a resampling factor of
(1 + ζ̃). The resulting signal yRS(t) experiences a residual
Doppler shift ϑ on each path around zero in the range of
[−ξmax, ξmax] [13]. Define ξ , ϑfc as the residual carrier
frequency offset (CFO), and ξ̂ as a finer estimator of ξ.
Consequently, we perform another Doppler shift compensation
via demodulation process resulting zRS(t) = yRS(t)e−j2πξ̂t

[14].
Finally, after applying an A/D conversion, a guard interval

removal, and a N−point FFT is performed to transform the
signal to the frequency domain, the kth subcarrier output of
the FFT during any received OFDM symbol can be represented
by

ZRS [k] =
1√
N

N−1∑
n=0

zRS [n] exp(−j 2πnk

N
)

=

K/2−1∑
q=−K/2

dqH[k, q] + VRS [k], (4)

where k = −K/2,−K/2 + 1 · · · ,K/2− 1, and

H[k, q] =

L−1∑
p=0

hp exp(−j 2πqτ̃p
N

)Fk,q(ϑ), (5)

Fk,q(ϑ) =
sin(Θk,q)

N sin(Θk,q/N)
exp

(
−jN − 1

N
Θk,q

)
, (6)

where Θk,q = π
(
q(1+ϑ)−k

)
, and the frequency domain noise

samples VRS [k] = (1/
√
N)
∑N−1
n=0 vRS [n] exp(−j 2πnkN ).

Consequently, substituting (5) in (4), the vector form of (4)
is given by

ZRS = H d + VRS , (7)

where, ZRS , d, and VRS ∈ CK and the [k, q]th element of
H ∈ CK×K is determined from (5). It can be seen from (4)
that the ambient noise vector VRS is colored and a whitening
process has to be carried out in order to proceed to the channel
estimation procedure.

Define S as the power spectral density of the ambient noise
modeled in the 10 - 100 KHz band as a function of frequency
in Hz as
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S(f) =
f0σ̂

2
0

π(f2 + f20 )
, (8)

where σ̂2
0 is the noise variance, f0 is chosen as a model pa-

rameter of the colored noise autocorrelation function (f0Ts =
0.01, 0.05, 0.1, etc.), and Rv(t, t

′) = σ̂2
0 e
−2π|t−t′|f0Ts is de-

fined as the autocorrelation function of the ambient noise.
It can be seen easily from (8) that the noise samples in

VRS are complex-valued and correlated Gaussian distributed
random variables with zero-means. Hence, the autocorrelation
function can be expressed as,

RvRS [m] = Rv
(
mTs/(1 + ζ̂)

)
e
−jωc ζ̂

1+ζ̂
mTs . (9)

However, it can be seen that the noise of the resampled
observation model in (4) is colored. Therefore, we perform a
noise whitening process on the observation model (7) based
on the singular value decomposition (SVD) of the noise
covariance matrix as RVRS

= UΥU†, where Υ is a K ×K
diagonal matrix with positive real entries, U ∈ CK×K is a
complex valued unitary transformation matrix, and (·)† denotes
the conjugate transpose operator. Hence, the colored noise VRS
is transformed into a white Gaussian noise W vector whose
components have zero mean and unit variance.

Define Ψ = Υ−1/2U† ∈ CK×K as the whitening matrix,
consequently, the observation model in (7) is multiplied by Ψ
from the left, and the final form of the observation model can
be expressed as

Z = Gd + W ∈ CK , (10)

where Z = Ψ ZRS ∈ CK , W ∈ CK , and the convolution
matrix generated from data symbols G = Ψ H ∈ CK×K .

IV. SPARSE MULTIPATH CHANNEL ESTIMATION

In this section, we present the proposed algorithm that aims
to estimate the channel path delays, the Doppler spread, and
the sparse complex-valued channel gains. From the observation
vector Z in (10), and by means of the pilot data on subcarriers,
{P = {p1, p2, · · · , pP } ∈ K}, the LS estimation technique
yields,

Ĝ[pk, pk] =
Z[pk]

dpk
= G[pk, pk] + V [pk], (11)

where V [pk] =
∑
q∈P,q 6=pk dq G[pk, q]+W [pk] , and G[pk, q]

represents the interference experienced among the subcarriers.
Accordingly, using (5) and (6), (11) can be expressed as

ZP = APh + VP , (12)

where ZP =
[
Ĝ[p1, p1], Ĝ[p2, p2], · · · , Ĝ[pP , pP ]

]T ∈ CP ,
VP = [v(p1), v(p2), · · · , v(pP )]T ∈ CP and AP ∈ CP×L
matrix is given by

AP =


η1(ϑ)e−j2πp1τ̃0/N · · · η1(ϑ)e−j2πp1τ̃L−1/N

η2(ϑ)e−j2πp2τ̃0/N · · · η2(ϑ)e−j2πp2τ̃L−1/N

. · · · .

. · · · .
ηP (ϑ)e−j2πpP τ̃0/N · · · ηP (ϑ)e−j2πpP τ̃L−1/N

 ,
(13)

where ηr(ϑ) =
∑K/2−1
k=−K/2 ψr+K/2+1, k+K/2+1 Fk,r(ϑ), and

ψm,n is the (m,n)th element of the matrix Ψ.

A. Delays, Doppler Shift and Gain Estimation
We perform an oversampling operation on (13) with an

oversampling rate R(%)
s = %/Ts, where % = {1, 2, · · · }, and

Ts is the sampling interval [7] [14].
Let Tp = b% τ̃pc and ϕ = b(ϑ+ ξmax)/∆ξc defined as the

discretized real-valued normalized path delays and the Doppler
spread, respectively. Note that, Tp ∈ {0, 1, 2, · · · , Nτ − 1},
Nτ = %Lg , Lg = Tg/Ts, ϕ ∈ {0, 1, 2, · · · , Nξ−1}, and Nξ =

(2ξmax)/∆ξ. The columns of the oversampled matrix A
(%)
P ∈

CP×NτNξ are denoted by ãc = { ã0, ã1, · · · , ãNτNξ−1 } and
correspond to different discrete multipath channel taps and
Doppler shift positions. The MP algorithm is then applied
using the observation at the pilots (11) [17]. Consequently,
the received signal in (12) can be rewritten as

ZP = Acph + VP , (14)

where Acp = [ac0 ,ac1 , · · · ,acL−1
] is the vector holding the

acp column vector values taken from the finer resolution matrix
Ac ∈ CP×L that allocates the path delays and the Doppler
shifts obtained from MP.

We employ the MAP technique for a better channel path
gains {hp}L−1p=0 estimation using the reduced dimensional ob-
servation model in (14) [7]. For a priori information of the
channel path gains, we take a Rician distribution in which hp’s
are complex Gaussian random variables, having independent
real and imaginary parts with mean µp and variance σ2

p

considering a constant Rician factor, κp = µ2
p/σ

2
p, for each

multipath component. Consequently, the parametric form of
the prior joint pdf of h is given by

f(h|µ̃, s) =

L−1∏
p=0

1

πsp
exp

(
− 1

sp
| hp − µ̃p |2

)
, (15)

where µ̃p = µp (1 + j), sp = 2σ2
p and µ̃ =

[µ̃0, µ̃1, · · · , µ̃L−1]T , s = [s0, s1, · · · , sL−1]T are the param-
eters controlling the prior mean and variance of each channel
coefficient hp. For fixed values of the parameters governing the
prior, the posterior density of the channel coefficients vector
is complex Gaussian as follows:

p(h|ZP , µ̃, s) = CN (µh,Σh), (16)

with µh = Σh

(
β A†c ZP + Γ−1µ̃

)
, and Σh =

(
βA†cAc +

Γ−1
)−1

, where Γ = diag(s) and β ≡ 1/σ2
V . Consequently,

from (16), the MAP estimator for h can be expressed as

ĥMAP = arg max
h

f(h|µ̃, s) = µh

=
(
A†c Ac +

1

β
Γ−1

)−1(
A†c ZP +

1

β
Γ−1µ̃

)
. (17)

However, A†cAc is a banded matrix; therefore, it can be
approximated as

A†cAc = diag
(
‖ ac0 ‖2, ‖ ac1 ‖2 · · · , ‖ acL−1

‖2
)
. (18)

Consequently, the matrix inversion in (17) can be expressed
as, (

A†cAc +
1

β
Γ−1

)−1
= diag(λ0, λ1, · · · , λL−1), (19)

where λp = (β ‖ acp ‖2 +1/sp)
−1.
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B. ML Estimation of the Parameters {µp, σ2
p}

In order to obtain the ML estimation of the variance σ2

and the mean µ vectors of h, we use the observation model
obtained by MP in (14). Consequently, the mean coefficient
can be expressed by(

µML,σ
2
ML

)
= arg max

µ,σ2
log p(ZP |µ,σ2). (20)

where p(ZP |σ2, µ) can be evaluated by averaging it over h
as follows,

p(ZP |µ,σ2) =

∫
h

p(ZP |h)p(h|µ,σ2)dh, (21)

where p(ZP |h) v exp
{
−β ‖ ZP−Ach ‖2

}
, and p(h|µ, σ2)

is given by (15). The integral of (21) with respect to h is
computable and yields

p(ZP |σ2,µ) = π−P det
(
C−1z

)
exp

{
− (ZP −Ac0µ)†

C−1z (ZP −Ac0µ)

}
, (22)

where, Ac0 ≡ (1 + j)Ac, Cz = AcχA†c + (1/β)IP and
χ = diag

(
2σ2

0 , 2σ
2
1 , · · · , 2σ2

L−1
)
. Then, the log-likelihood of

µ and σ2 is given by

log p(ZP |µ,σ2) = (ZP −Ac0µ)†C−1z (ZP −Ac0µ)

+ log det(Cz). (23)

Hence, the ML estimate of µ can be found by minimizing
(23) and taking the gradient of log p(ZP |µ,σ2) with respect
to µ and setting the result to zero. Consequently, µ can then
be expressed as,

µ̂ML =
(
A†cp0C

−1
z Ac0

)−1
<{A†cp0C

−1
z ZP }, (24)

where <{z} denotes the real part of z. We can express C−1z =(
AcχA†c + (1/β)IP

)−1
using the matrix inversion lemma as

follows,

C−1z = βIP − βAc(A
†
cAc + (1/β)χ)−1 A†c. (25)

Using the property in (18), then (25) can be expressed as,

C−1z = βIP − β Ac Λ A†c, (26)

where Λ = diag(λ0, · · · , λL−1) with λp =(
‖ acp ‖2 +1/(2βσ2

p)
)−1

. Substituting (26) in (24) and
after some algebra, µ̂ML takes the form

µ̂ML =
1

2
diag

(
‖ ac0 ‖−2, ‖ ac1 ‖−2 · · · ,

‖ acL−1
‖−2

)
<{A†cpZP }. (27)

The ML estimate of σ2 can now be found. We substitute
the µ̂ obtained in (27) and by maximizing the objective
function (23) with respect to σ2 as follows,

O(µ̂ML,σ
2) = arg max

σ2
log p

(
ZP |µ̂ML,σ

2
)
, (28)

Employing the property obtained from (18) in (25) and by
discarding the terms independent of σ2, (28) can be expressed
as,

O(µ̂ML,σ
2) =

L−1∑
p=0

log

(
‖ acp ‖2 σ2

p +
1

β

)
−

β

L−1∑
p=0

(
|ep|2λp− ‖ b ‖2

)
, (29)

where b , ZP −Ac0 µ̂ML and ep is the pth component of the
vector e = A†c0b. We take the gradient of O with respect to
σ2
p, and we equate it to zero. Consequently, the ML estimate

for σ2 can be expressed as,

σ̂2
p,ML =

( |ep|2β− ‖ acp ‖2

2 ‖ acp ‖4 β

)+

, (30)

where [x]+ , max(0, x).

C. Equalization and Data Detection
In this subsection, we demonstrate the data detection tech-

nique at the receiver using the observation model presented
in (10). The proposed OFDM model contains P known pilot
symbols evenly inserted in the K subcarriers, that is, the data
symbols d = [d0, d1, · · · , dK−1]T denotes the known, dP , and
the the unknown, dD, data symbols, where the pilot positions
vector is denoted by pr, r = 1, 2, · · · , P . Consequently, (10)
can be expressed as

ZP , Z−GdP = GdD + VP . (31)

Then, the equalized soft data symbols d̃D are recovered at
the output of a linear minimum mean square error (MMSE)
equalizer as

d̃D = G†
(
GG† + γ−1IK

)−1
ZP , (32)

where γ is the signal-to-noise ratio (SNR), Z
(r)
P is calculated

from (31) as Z
(r)
P = Z−G(r)dP , and the [k, q]th element of G

is computed from (5) and (6) by replacing the aforementioned
channel estimates {hp, (ϑ, τ̃p)}L−1p=0 . However, a demodulation
process is performed over the equalized data symbols using
ML detection technique.

V. SIMULATION RESULTS

We now present the performance of the proposed approach
in this section. The UWA OFDM system specifications along
with the UWA channel parameters are summarized in Table-I.

TABLE I. CHANNEL AND SIMULATION PARAMETERS

carrier frequency (fc) 18 KHz

channel bandwidth (BW ) 7 KHz

number of subcarriers (K) 512

OFDM symbol duration (T ) 73.15 ms

Subcarrier spacing (∆f := 1/T ) 13.67 Hz

guard interval duration (Tg) 35 ms

number of paths on the link (L×) 3

maximum Doppler shift (ϑmax) 10−2, 5× 10−3, 10−3

Doppler spread resolution ∆ξ 10−3

modulation formats QPSK, 16QAM

pilot spacing (∆p) 4

oversampling factor (%) 8
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We consider a comb-type pilot structure with equally
spaced pilot subcarriers in each OFDM block in order to assess
the channel estimator and equalize the channel rapid changes
per block. The mean-square error (MSE) and symbol error
rate (SER) performance are presented as a function of SNR
in Figs. 1 and 2, respectively. The curves show a comparison
in performance of the proposed model with the classical MP
channel estimation technique in the presence of quadrature
phase shift-keying (QPSK) and 16-ary quadrature amplitude
modulation (16QAM) signaling formats.
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Figure 1. MSE vs. SNR performance comparisons of the MP-MAP and MP
algorithms for different constellations: % = 8, ϑmax = 10−3

As seen from these two figures, the MP-MAP algorithm
yields better channel MSE and SER performance and outper-
forms the MP estimator in the presence of higher SNR, where
the MP curves shown use the linear MMSE equalizer to detect
the data symbols.
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Figure 2. SER vs. SNR performance comparisons of the MP-MAP and MP
algorithms for different constellations: % = 8, ϑmax = 10−3

Figs. 3 and 4 investigate the residual Doppler effect on
the MSE and SER performance of the system as a function
of SNR, respectively. It can be seen from these two figures
that the performance of the channel estimator degrades with
larger residual Doppler effect, whereas the curves of the
proposed approach show better robustness compared to the MP
algorithm alone against the Doppler shifts up to ϑmax = 10−3,
which can be considered as a severe Doppler effect.
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Figure 3. MSE vs. SNR performance of the MP-MAP algorithm for
different Doppler shift rates, % = 8, QPSK Signaling

SNR (dB)

0 5 10 15 20 25 30

S
ym

b
o

l E
rr

o
r 

R
at

e
 (

S
E

R
)

10 -4

10 -3

10 -2

10 -1

10 0

MP algorithm �
max

=10
-2

MP-MAP algorithm �
max

=10
-2

MP algorithm �
max

=5x10
-3

MP-MAP algorithm �
max

=5x10
-3

MP algorithm �
max

=10
-3

MP-MAP algorithm �
max

=10
-3

Figure 4. SER vs. SNR performance of the MP-MAP algorithm for different
Doppler shift rates, % = 8, QPSK Signaling

Note that, the value chosen for the oversampling factor
assesses the underwater receiver with a firm Doppler shift
and delay estimation and consequently a better MSE and SER
performance.

VI. CONCLUSIONS AND FUTURE WORK

In this work, an efficient channel estimation algorithm is
proposed, named MP-MAP algorithm, for OFDM-based UWA
systems in the presence of an UWA Rician channel with a
correlated Gaussain noise. The channel delays and the Doppler
shift are estimated by the matching pursuit algorithm, where
the unknown parameters of the complex-valued channel gains
are estimated by the maximum a posteriori algorithm. On the
other hand, the variances and the means of the prior pdf of the
channel gains are obtained by a ML estimation algorithm. The
performance of the proposed approach is presented by means
of the minimum mean square estimation of the estimated chan-
nel and the symbol error rate for different signaling formats
and Doppler shifts. Based on the extensive computer simula-
tions performed, it was concluded that the resulting MP-MAP
channel estimation algorithm yields excellent MSE and SER
performances as compared to the conventional approaches. For
future work, the OFDM UWA communication system can be
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generalized into MIMO-OFDM-based UWA communication
system, and the proposed approach can be extended into an
experimental channel model, taking into consideration a real
underwater environment and parameters.
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