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Abstract—Constrained communication resources and limited
communication bandwidth are key issues for any task involv-
ing wireless sensor networks. This phenomenon motivated the
authors to examine diffusion networks where only a fraction
of neighbors participle in the communication process. In this
context, we modify the Diffusion Recursive Least Square (DRLS)
algorithm by allowing each node to receive intermediate esti-
mates from a subset of its neighbors, called neighbor-selection
DRLS. This results in significant reduction in communication
overhead at the cost of some possible deterioration in the network
performance. We derive a theoretical expression for the steady
state Mean Square Deviation (MSD). Both numerical simulations
and theoretical findings are used to validate the effectiveness
of the proposed algorithm in providing a trade off between
communication burden and estimation performance.

Keywords–Adaptive network; diffusion; neighbor selection; re-
cursive least-squares.

I. INTRODUCTION

Diffusion strategies are well-known techniques that enable
real-time learning and collaboration in adaptive networks [1]–
[3]. In these methods, information is gathered and processed
at all agents in a simultaneous fashion. This results in a
live sharing mechanism that ripples frequently through the
whole network [4]. Consequently, significant improvements are
accrued in estimation performance of each network agent, in
comparison to the case in which nodes operate autonomously.
Notable properties of such networks are scalability and ro-
bustness to node/link failures. Power and bandwidth resources,
however, are the major constraints on performing a cooperative
task in an adaptive network. Communication is constrained by
the limited data transmission through radio links. Therefore,
the attained advantages of diffusion strategies in terms of inter-
node communications comes at an additional communication
cost [5].

Following on the discussion in the previous paragraph, it
is desirable to lower the level of internode communications as
much as possible, while maintaining the benefits of coopera-
tion. There are some existing efforts related to reducing the
communication overheard, such as decreasing the dimension
of the estimates [6]–[8], selecting a subset of the entries of
the intermediate estimate vectors [9]–[12], and set membership
filtering [13] [14]. In most earlier publications, it is assumed
that the degree of each node is fixed and predefined by the
network topology and, moreover, that every node senses data
that is affected by information diffused by all of its neighbors.
To the best of our knowledge, choosing a subset of neighboring
nodes was considered in [5], [15]–[19], but only in diffusion

least-mean-squares (LMS) networks. In this manuscript, we
consider the case where only a subset of agents participate in
the communication process. We focus on the scenario in [5], in
which every node consults with only a subset of its neighbors
and propose a novel reduced communication recursive least
square algorithm, called neighbor selection DRLS. In this
algorithm, which aims at further releasing the communication
density of DRLS, each node updates its estimate and sends
the intermediate estimate to only a subset of its neighbors.
Moreover, the total amount of internode communication in
the network is efficiently decreased with less performance
degradation in comparison to the diffusion LMS algorithm. We
derive a theoretical expression for the steady state MSD of the
Neighbor Selection DRLS algorithm and verify its accuracy
through numerical simulations.

The remainder of this paper is organized as follows: In
Section II, we recall a conventional DRLS algorithm and
formulate the proposed Neighbor Selection DRLS algorithm.
The performance analysis is examined in Section III. We
provide simulation results in Section IV and draw conclusions
in Section V.

Notation: We use plain lowercase letters to denote scalars,
lowercase bold letters to denote vectors and boldface uppercase
letters for matrices.

II. ALGORITHM DESCRIPTION

A. Conventional Diffusion RLS
We consider a connected network of N nodes which aims

to determine an unknown vector, wo ∈ RM×1, in a distributed
manner. At every time instant i and each node k, scalar
measurements dk,i ∈ R are related to regression vectors,
uk,i ∈ R1×M , via the following linear regression model [20]:

dk,i = uk,iw
o + vk,i (1)

where vk,i denotes the additive noise process. The vector
wo denotes the parameter of interest that the agents wish to
identify.

We are then motivated to consider the following weighted
least square problem:

min
w
‖yk,i −Hk,iψψψ‖2Λi

(2)

where yk,i and Hk,i are formed by stacking the history of
measurement and noise samples of node k up to time i as
follows:

yk,i = col {dk,i, . . . , dk,1, dk,0} (3)
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Hk,i = col {uk,i, . . . ,uk,1,uk,0} (4)

where col {· · ·} denotes a column vector formed by stacking
its arguments on top of each other. The solution ψψψk,i from (2)
is given by [2]:

ψψψk,i =
(
HT
k,iΛiHk,i

)−1 (
HT
k,iΛiyk,i

)
(5)

where Λi ≥ 0 denotes a Hermitian weighting matrix. A
common choice for Λi is

Λi = diag
{

1, λ, . . . , λi
}

(6)

0 � λ ≤ 1 denotes an exponential forgetting factor whose
value is usually close to unity. In this way, the closer the
occurrence time of data is to present, the less heavily scaled
it will be. Employing the recursive properties of

HT
k,iΛiHk,i = λHT

k,i−1Λi−1Hk,i−1 + uTk,iuk,i (7)

HT
k,iΛiyk,i = λHT

k,i−1Λi−1yk,i−1 + uTk,idk,i (8)

alongside defining Pk,i =
(
HT
k,iΛiHk,i

)−1

, and as well mak-
ing use of the so-called matrix inversion formula [21], called
Sherman-Morrison Formula, to (7), the following recursive
equations to assess ψψψk,i are given:

Pk,i = λ−1

(
Pk,i−1 −

λ−1Pk,i−1u
T
k,iuk,iPk,i−1

1 + λ−1uk,iPk,i−1uTk,i

)
(9)

ψψψk,i = ψψψk,i−1 + Pk,iu
T
k,i

(
dk,i − uk,iψψψk,i−1

)
(10)

Due to the fact that the intermediate value wk,i at node k is
generally a better estimate for wo than ψψψk,i, we replace ψψψk,i−1
by wk,i−1 in (10)

ψψψk,i = wk,i−1 + Pk,iu
T
k,i (dk,i − uk,iwk,i−1) (11)

It is common that the local estimates are scattered outside
of each node’s own neighborhood. Then, the diffusion RLS
strategy comprises two stages: adaptation and aggregation.

1) Adaptation: Each node estimator is updated utilizing
observed data {dk,i,uk,i} in (9) and (11). The result-
ing pre-estimates are called ψψψk,i as in (12).

2) Aggregation: Each node diffuses its local pre-estimate
with its neighbors, collects the estimators from its
neighbors and performs a weighted average as

wk,i =
∑
l∈N ′

k

clkψψψl,i (12)

to obtain the estimate wk,i (via so-called spatial update).
Where N ′k denotes the close neighborhood of node k, i.e.,
it consists of a set of all nodes communicating to node k,
including k itself. The coefficients clk are designed to satisfy
the following condition:

CT1N = 1N (13)

where the notation 1 denotes an N ×1 column vector with all
one entries. To minimize the communication density, here, we
cover the diffusion RLS strategy, which does not involve any
information exchange.

B. Neighbor-Seletion Diffusion RLS

The aggregation step (12) improves the estimation perfor-
mance. However, this is compromised by the communication
density. In order to reduce the amount of communication, we
consider the case in which each node is allowed to diffuse the
update estimate with only a subset of its neighborhood Nk
[5]. Generally speaking, because a subset of the information
is available at node k to perform (12), the aggregation phase
would be updated so that it could be performed with current
available information. Doing so, we can decrease the internode
communications that is being accomplished among nodes
and establish a trade-off between estimation performance and
communication cost.

Let δk = |Nk| be the degree or valency of node k,
where |·| is the cardinality operator. To achieve this, assume
node k communicates at each time instant i to receive the
intermediate estimate, ψψψl,i, from 0 < nk ≤ δk. To-be-selected
neighboring nodes of node k at iteration i are characterized
by a neighborhood-selection variable as akl,i. This variable
determines the status of the link, being active or inactive,
between node k and l at time instant i.

The neighbor-selection variable is defined as follows:

alk,i =

{
1 if l ∈ ND

k,i

0 otherwise
(14)

where ND
k,iis the neighborhood of node k at time instant i and

consists of all the nodes, which transmit their intermediate
estimates to node k. Adjusting akl,i = 1 means that node k
communicates with its neighboring node l at iteration i and
receives its intermediate estimate to employ at the aggregation
step. Having, alk,i = 0 means that node k does not receive the
intermediate estimate of its neighbor l at iteration i.

With regards to the proposed neighbor selection scheme,
the following remark is made [5]:

Remark 1. The neighbor-selection variable {alk,i} is mutu-
ally independent of each element of set {uk,i, dk(i), vk(i)}.
Moreover, the neighbor-selection probability, denoted by ρk
is shift-invariant and identical for all the neighbors. This
probability is expressed as:

ρk = E [alk,i] =
nk
dk

When the intermediate estimates of only nk neighbors are
received at node k, we instead propose a new aggregation
method that uses the node’s own intermediate estimate as a
proxy [19] for missing data and changes (3):

wk,i = ckkψψψk,i +
∑
l∈Nk

clk[alk,iψψψl,i + (1− alk,i)ψψψk,i] (15)

Accordingly, the considered neighbor-selection diffusion RLS
algorithm utilizes (9) and (11) in the adaptation phase and (15)
for the aggregation phase. It is noteworthy to say that (3) and
(15) have the same computational complexity. Consequently,
the considered algorithm, i.e., (9), (11), and (15), requires the
same number of arithmetic operations as the diffusion RLS
algorithm.
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III. PERFORMANCE ANALYSIS

To proceed with the analysis, we make the following
assumptions:

Assumption:

1) The regression data uk,i are temporally white and
spatially independent random variables with zero
mean and covariance matrix Ru,k , E

[
uTk,iuk,i

]
≥

0.
2) The noise signal vk,i is temporally white and spatially

independent random variable with zero mean and
variance σ2

v,k.
3) The regression data {um,i1}, and the model noise sig-

nals vn,i2 , are mutually independent random variables
for all indexes {i1, i2,m, n}.

4) For sufficiently large i, at any node k, we can replace
Pk,i and P−1

k,i with their expected values, E [Pk,i] and

E
[
P−1
k,i

]
, respectively.

5) For a sufficiently large i, at any node k, we have

E [Pk,i] = E
[
P−1
k,i

]−1

A. Network update equation
Define M × 1 error vector as follows:

ψ̃ψψk,i , wo −ψψψk,i (16)

w̃k,i , wo −wk,i (17)

w̃i , col {w̃1,i, . . . , w̃N,i} (18)

Using the data model in (1) and subtracting wo from both
sides of the relation in (11), we get

ψ̃ψψk,i = w̃k,i−1 −Pk,iu
T
k,i [uk,iw̃k,i−1 + vk,i] (19)

Using the same procedure as stated in [12], the equation above
can be written in the following form:

ψ̃ψψk,i = λw̃k,i − (1− λ) R−1
u,ku

T
k,ivk,i (20)

Moreover, subtracting both sides of (20) from wo gives

w̃k,i =

(
1−

∑
l∈Nk

alk,iclk

)
ψ̃ψψk,i +

∑
l∈Nk

alk,iclkψ̃ψψl,i (21)

which leads to

w̃i = λBiw̃i−1 −BiΠsi (22)

where
Π , (1− λ) diag

{
R−1
u,1, . . . ,R

−1
u,N

}
(23)

si ,
{
uT1,iv1,i, . . . ,u

T
N,ivN,i

}
(24)

Bi = Bi ⊗ IM (25)

Bi =

B11,i · · · B1N,i

...
. . .

...
BN1,i · · · BNN,i

 (26)

where

Bp,q,i =


1−

∑
l∈Np

apl,icpl if q = p

apq,icpq if q ∈ Np
0 otherwise

(27)

and ⊗ denotes the Kronecker product.

For any arbitrary symmetric nonnegative-definite matrix Σ,
using the alternative notation ‖x‖2σσσ , where σσσ = vec {Σ}, to
refer to the weighted square quantity xTΣx and following
similar arguments to those in [3], we arrive at the following
variance relation:

E
[
‖w̃i‖2σσσ

]
= E

[
‖w̃i−1‖2λ2Φσσσ

]
+ vecT {G}Φσσσ (28)

where
G = ΠE

[
sis

T
i

]
Π (29)

which, in view of the Assumptions, can be expressed as

G = (1− λ)
2
{
σ2
v,1R

−1
u,1, . . . , σ

2
v,NR−1

u,N

}
(30)

and

Φ = E
[
BT
i ⊗BT

i

]
(31)

We arrive at the following expression for the network MSD
(η)

η =
1

N
vecT {G}Φ

(
IM2N2 − λ2Φ

)−1
vec {IMN} (32)

We consider an adaptive network with N = 20 nodes.
Each node has between one and seven neighbors excluding
itself. We assume that each node, on average, is connected to
four other agents. The regressors, uk,i, were chosen Gaussian
i.i.d with randomly generated different diagonal covariance
matrices, Ru,k. The additive noise signals at nodes are zero
mean Gaussian with variances σ2

v,k and independent of the
regression data. The traces of the covariance matrix regressors
and the noise variances at all nodes, tr {Ru,k} and σ2

v,k,
are shown in Fig. 1. It is noteworthy that we obtain the
network MSD learning curves of all figures by averaging over
50 experiments and the unknown parameter wo of length
M = 8 is randomly generated. In the proposed algorithm,
we determine the number of neighbors with which each node
communicates at each iteration to receive their intermediate
estimates via nk = min(K, δk) where 0 ≤ K ∈ N < δk
specifies the maximum number of consulted neighbors of every
node at each iteration. We use the relative-degree weights for
{clk} in the combination phase. In Fig. 2, we simulate the
learning curves of instantaneous network MSD for different
values of K. Fig. 3 also demonstrates the steady-state MSD
of all the nodes for different values of K when λ = 0.99.

IV. CONCLUSION AND FUTURE WORK

We introduced a neighbor-selection DRLS for distributed
adaptive estimation. This algorithm provides reduced internode
communication and bandwidth usage by allowing each node to
receive intermediate estimates from a fraction of its neighbors.
We derive an expression for the network MSD. The simulation
results conform with the theoretical derivations. They illustrate
that a trade off between communication cost and estimation
performance can be obtained. In our future work we plan to
derive the optimum combination weights that minimize the
steady-state MSD at every node.
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Figure 1. Entries of wo, tr
{
Ru,k

}
, and
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}
used in simulation.
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Figure 2. Experimental and thoretical network MSD curves of the
neighbor-selection DRLS algorithm with different values K of when

λ = 0.95.
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