IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Improving Email Management

Tonu Tamme, Ulrich Norbisrath, Georg Singer, Eero Vainikko
Institute of Computer Science, University of Tartu
Tartu, Estonia
tonu.tamme @ut.ee, ulrich.norbisrath@ut.ee, georg.singer@ut.ee, eero.vainikko@ut.ee

Abstract—For twenty years, email has been the prominent
means of computerized communication. Each day we receive
a growing number of email messages from different origins,
related to different topics, people, and locations. Some belong to
the professional sphere, others are private. Usually we keep our
messages in the inbox or store them in several mostly manually
created hierarchical folders. Showing information in hierarchies
and lists can be nowadays amended by views which allow a more
explorative approach to access this. The goal of this paper is to
analyze the automatic information management capabilities of
present standard email clients and webmail services, show their
shortcomings, and show some improvements of them through the
use of auto categorization and graph exploration. We show that
categorization is not supported by traditional email tools but that
it facilitates discovery of new relations between email messages
and therefore improves email management.

Keywords—email;
grams; ontology.

exploratory search; categorization; n-

I. INTRODUCTION

Email has undoubtedly conquered the position of being the
most important means for written communication. Business
and private life without email is unthinkable. However, this
success has unavoidably entailed another challenge. The sheer
amount of messages that we receive each day and the lack of
appropriate tools even lowers productivity in some cases.

Today, we keep our messages in the main folder or store
them in several specialized folders of our email program —
one for each person or a group of persons, one for each
institution, topic, or project. Most e-mail clients offer filters
to do some of this sorting automatically, based on various
keyword-like criteria. In spite of these sorting options, working
through your emails and addressing relevant emails for your
daily tasks becomes harder and harder with the growing load.

As a motivating example, we assume that we are working
for a company, which is being audited. The auditor demands
a list of ongoing projects between us and our clients and
their interconnections. Therefore, we have to create a report
describing each project, involved and related persons, and
compile the material these persons worked on. We assume
that there is no central file containing this information. The
only sources are the email conversations between the em-
ployees and the respective clients (including various email
attachments). The amount of emails to consider will be more
than several thousands. In this paper, we will in particular look
at the possibility to list all attachments between a group of
persons and creating interconnections via conversation topics.

Addressing this with current email clients offers the fol-
lowing options: Standard email programs like Outlook, Thun-

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

derbird and webmail services like Gmail, Hotmail, or Yahoo
mail allow manual sorting of email by sender, recipient, date
received and date sent. Furthermore, they allow to use standard
keyword search over the body and over some parts of the
header. Gmail is the only solution offering a working and
highly performing full text index. Gmail and Thunderbird both
allow manual tagging, but with an increasing amount of tags,
the management effort makes it less usable. All standard email
systems support basic filtering functionality using patterns. In
case of having emails sorted into person related folders, a
task like described in the motivating example above will be
time consuming and tedious as project related information is
distributed over all those folders. If extensive manual tagging
has been done in foresight of such a task, the effort will
be significantly smaller. However, such extensive tagging is
usually not done or not even supported by the email client.

To get an overview for such a report, exploring context
related data in the emails would be very helpful. “Exploring”
is used here in the sense of exploratory search. Exploratory
search is defined in [1] like the following: “Exploratory search
can be used to describe an information-seeking problem con-
text that is open-ended, persistent, and multi-faceted; and to
describe information-seeking processes that are opportunistic,
iterative, and multi-tactical. [...] In exploratory search people
usually submit a tentative query to get them near relevant
documents then explore the environment to better understand
how to exploit it, selectively seeking and passively obtaining
cues about where their next steps lie.” Exploratory search
in emails is nowadays mainly based on browsing your own
folders and tags as well as creating multiple queries for
retrieving messages matching keywords.

There is more email search support from several recently
emerged addons for Outlook and Gmail like Xobni [2], [3] or
Xoopit [4]. Nevertheless, also these tools do not lighten the
complexity in the aforementioned example. The shortcomings
of the existing email solutions are mainly due to the following:
None of the existing solutions have support for categorization
via text analysis nor exploration apart from folder and tag
browsing by any means. In this paper we suggest the combina-
tion of a categorization method and the automatic association
of these detected categories with the mails and the involved
persons.

This paper is organized as follows: Section II gives an
overview of related work and tries to motivate our approach.
Section III outlines our enhancement to classic email man-
agement. Section IV shows some results using these enhance-
ments. Section V shows our conclusions and outlines future

67

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

work.

II. STATE OF THE ART

This section will give an overview of the features of today’s
email systems and possibilities to analyze and enhance them.
The focus is on their support of search and information
management and their possibility to enhance automatic email
management. We will analyze the methods and algorithms for
automatic categorization and tagging on the one hand and their
realization in email clients and email client plug-ins on the
other hand. For a more practical and case driven analysis, we
use the Enron Email Dataset. The dataset is a collection of
500.000 emails, organized in folders, that contains information
from 150 senior management staff members at Enron. It is one
of the few substantial "real" email repositories that was made
available to the public for the purpose of improving email
tools.

A. Email clients and email clients plug-ins

A study from June 2011 with over a billion of emails [5]
shows a market share of email clients of Microsoft Outlook
with 27% followed by 16% iOS devices (iPhone, iPad and
iPod Touch), 12% Hotmail, 11% Apple Mail and 9% Yahoo
Mail. Gmail has 7% market share being used as an email
client, Android 1.7% and Thunderbird 1.2%. Microsoft Out-
look, Apple Mail and iPhone Mail are the only clients, not
coming with a full text search function over a full text index.
Outlook can be enriched with a full text index through Google
Desktop or Microsoft Search. Microsoft Outlook, GMail,
and Thunderbird support manual tagging, but interoperability
between different mail systems (with an exception of Gmail’s
IMAP tag emulation) is very limited. The share of the clients
is recently shifting heavily to mobile clients (like iPhone mail
and Android, which is basically Gmail).

Standard email clients involve different visualization and
tagging techniques. For example Mozilla Thunderbird cate-
gorizes search results into suitable time intervals like years,
months, or days of month.

One of our main complaints about most existing email
clients is their lack of support for networking emails with each
other. They only support manually sorting emails in hierarchic
folders. Without duplication, it is not possible to assign an
email to several topics. Tagging supports such a way of sorting,
but usually breaks the order of hierarchies and therefore allows
only flat ordering. Tagging allows to add special markers to
emails with the aim of grouping similar messages together and
making their finding easier without having to sort the mail
in a strictly hierarchical directory structure. In some clients
a different name might be used for this function, such as
marking, labeling, categorizing, or adding keywords. Some
clients (Mozilla Thunderbird, Microsoft Outlook, Opera Mail,
Gmail) also enable the user to define new tags. Due to the
flat nature of such tags, using tags does not really help to
create structure. Therefore, there is usually only a limited set
of tags suggested. For example Thunderbird and Gmail suggest
personal and work tags. Gmail also has by default a separate
tag for traveling purposes. Thunderbird and Opera also have a

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

todo tag for emails indicating an assignment or task. Often it
is possible to tag spam or junk messages. This function helps
the client to avoid unwanted messages automatically in the
future. Opera offers also "send reply", "call back" , “funny”,
and “valuable” tags by default. Apple Mail does not support
tagging of emails, it has some support for flagging emails like
staring mails in Gmail or marking mails as junk. It allows to
create virtual folders, this means different views, but this does
not allow to define tags as these are only views not folders
where emails can be moved.

An interesting search task is tracking the attachments ex-
changed between two persons. The task is not trivial as it
involves two persons and there must also be an opportunity
to check the attachments. If such an attachment check is not
part of the search, sorting can also be used. An attachment-
based search is not possible in Yahoo Mail and Windows
Live Mail because they lack the OR operator that enables
matching the same name for both sender and receiver. The
task is not difficult in Microsoft Outlook, but in Thunderbird
and Opera Mail sorting has to be used to filter out messages
with attachments.

There are several plug-ins available, enhancing the experi-
ence in email systems:

Xobni [2], [3] is the most common protagonist of the group
of Outlook add-ons. As a plug-in it allows keyword based
search and people based navigation in their Outlook mail-
boxes. Xobni extends the support for person related informa-
tion and operates as an integrating platform between Outlook
and online services like Facebook, Twitter, and LinkedIn. It
automatically creates profiles of persons and their connections.
These profiles contain statistics about relationships, contact
information, threaded conversations, shared attachments, and
information on that contact pulled from earlier mentioned
online services.

Nelson Email Organizer (NEO) [0] is an Outlook add-
on allowing different views of all messages in the inbox. It
offers different views in different tabs and allows to organize
messages in these tabs by date, by sender, or by attachment.
All views support full text index keyword search. These are
helpful features. However, they address no major conceptual
simplification.

The Firefox extension Xoopit [4] turns Gmail into a robust,
searchable media management tool for every piece of media
that comes through the inbox. By indexing every attachment
as well as every link to photos and videos from sites like
Flickr, Picasa, and YouTube, Xoopit allows to easily search
for and find any picture or video and view it from directly
inside Gmail. XOOPIT was acquired by Yahoo in July 2009
and is now integrated into the Yahoo mail environment.

TaQuilla [7] is a Thunderbird extension which can be
trained to "soft tag" incoming emails for different categories
depending on an existing training set. It uses Bayesian analysis
of the tags already given on stored emails to do this classifi-
cation. In order to make the Bayesian filter work for a new
tag, the existing messages have to be trained by showing the
system examples of emails that carry the tag and messages
that do not carry the specific tag. This needs to be done
manually at the beginning for a certain amount of messages

68

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

until the system can take over. For example as outlined in [8] a
user applied Taquilla to automatically separate "Personal” and
"Business" related (not personal) messages. On the "Personal”
side Taquilla analyzed a weekly general mailing from the
user’s church’s pastor and came up with tokens like life, pastor,
worship, sunday, thinking, and children. All those tokens
showed an over 80% probability that the messages should be
tagged as personal. On the business side on the other hand, it
let Tacquilla analyze a posting on the Thunderbird testing list
that was not tagged personal. It showed for other tokens like
advance, feedback, bug, vista, and Thunderbird with an under
10% probability that these tokens were personal.

B. Integrative frameworks

ClearContext [9] is an email experience enhancing Outlook
plugin. It has a very task driven integrational approach. It is
very contact focused and supports scraping of appointment
data from the emails. It helps filing, prioritizing emails based
on sender, unsubscribing from conversation, defering emails to
come back to your inbox, and various task and appointment
management functions. It integrates these features into con-
venient workflows. Task management and communication is
lightly integrated, but our idea of networking all the informa-
tion of communication participants, topics, dates, and content
into a free explorable graph is not realized.

Radar [10] is a research prototype also trying to advance
task and email integration. It consists of several assistants
employing machine learning. It supports automatic categoriza-
tion of emails and scraping of relevant data out of emails
and using this for guiding users through corresponding tasks.
Regrettably, the product is not available as prototype or at the
market.

Windows Search, Spotlight (Apple), Google Desktop are
very similar. They all create a full text index of all files
and emails stored on your computer and in case of Google
also of mails stored on your Google account and make them
accessible in a local Desktop query based keyword search.
There is no special exploration support [11], [12], [13], [14],
[15].

None of these tools or systems allow the exploration of
the data pool contained in a standard email repository. Radar
and ClearContext offer via their task integration some light
support, but not in a graph-based manner. Thus, the interaction
with today’s email systems is still typically based on keyword
search queries and browsing of manually maintained folder or
tag hierarchies and the referenced messages.

As shown in the paper by Singer et. al. [16] keyword based
search alone does not cover many of nowadays information
needs. This is of course also true in the email context. The
results support the hypothesis that also in the email context a
graph based exploratory approach will significantly improve
the search experience.

C. Automatic categorization and tagging

As already mentioned in the context of the example de-
scribed above, manual tagging can be a tedious process. As
machine learning algorithms become better with progresses in

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

—

e -
E-Mail E-Mail
Repository Graph DB

~N
access
access as maildir
via POP3
E-Mail Fetcher

uses

Graph DB
uses Generator

Query
Engine

Parser

Figure 1. Email experimentation environment architecture.

research, it makes sense to use these to facilitate the tagging
or categorization process. Dredze et al. present an approach
for generating summary keywords for emails in [17]. Their
approach selects a set of keywords describing a single message
in context to the topics of all messages. Their method is unsu-
pervised. They are using Latent Semantic Analysis (LSA) and
Latent Dirichlet Allocation (LDS) to determine a minimalistic
amount of possible latent concepts. They use for their research
the very versatile toolkit MALLET [18]. MALLET stands for
MAchine Learning for LanguagE Toolkit. It is based on Java
and supports statistical natural language processing, document
classification, clustering, topic modeling, information extrac-
tion, and other machine learning mechanisms applicable for
text-based problems. Due to its huge variety of tools for text-
processing, it is very well suited for carrying out experiments
for topic and categorization analysis. It supports also the just
mentioned LDS method.

It is also possible to use n-gram-based Text Categoriza-
tion [19]. This method uses fingerprints of training texts and
allows to compare other texts to these fingerprints. One of
the main usages for this method is language detection. N-
Gram distribution is very specific to languages, making it a
very good choice for language detection. LibTextCat [20] is a
freely available software supporting this method.

III. PROPOSAL

We have shown in Section II that current email clients
have problems with handling attachment search and creating
interconnections via topics.

To overcome these shortcomings we have built an exper-
imental email handling environment. The tool consists of
four components: email fetcher, parser, database generator,
and query engine. The architecture is depicted in Figure 1.
The parts are acting autonomously. Thus they can be easily
replaced with other suitable software for experimentation
purposes.

The email fetcher reads the contents of an email account
using the IMAP protocol. It facilitates retrieving information
from different accounts. The email parser transforms a mailbox
into a list of messages. Each email is a list of attribute value
pairs. The body of a message is parsed into a three level list:
paragraphs consist of lines and lines itself consist of words.

The first two components are written in Python as it
has special libraries for dealing with emails and mailboxes.

69

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Database generation and query engine are implemented with
Prolog that has built-in support for presenting relations and
exploring the search space due to its predicate structure.

The database generator transforms a list of email messages
into a graph database that consists of labeled nodes and edges.
For example a message node may have related nodes for its
sender, receiver, subject, or date. A sender of a message may
be receiver of another message. Thus, the graph database does
not need to duplicate their nodes.

The text-based query interface provides a set of tools
for visualizing and analyzing the message database. We can
observe all the messages in a mailbox. We can also filter out
all the emails from (or to) a person or between two persons.
This can be done by tracing the values of From, To and Cc-
attributes of messages.

In addition to using existent person—message relations
Prolog helps in constructing new virtual relations on top of
existent ones. To allow inferential relations between messages
it will be beneficial to assign to each message 5—10 keywords.
This provides us with alternative views to our email collection
that can produce novel deduced relations not covered by the
existing thread structure. With the help of message—topic
relations we can build two new relations: person—topic and
topic—person.

Several text analysis methods can be used to determine
the topic of a message. Our first choice was to calculate the
word frequency table. This method is language dependent and
must be amended with a suitable list of stopwords and a stem
picking routine.

The relative frequency method eliminates the need for using
a stopword list. We calculate the frequency tables for the
whole message set and for a chosen message. Comparing those
frequencies for a word in the message we can choose potential
keywords as words whose local frequency in a message is
bigger than the global frequency in our whole text corpus.
The frequency tables can be given in advance or built in the
course of the analysis.

Some experiments to classify text with the help of n-grams
have been carried out. This method relies on the availability
of sample texts about potential topics.

For our classification we also link to large freely available
ontologies like WordNet [21] and OpenCyc [22]. The ontolo-
gies consist of concepts, their definitions, and corresponding
terms. Words acting as terms in an ontology are good can-
didates for a topic of an email message. Concepts and their
hyperonyms are the basis of the conceptual network.

We have tried those methods to find the topics of a message
automatically. Then we add the topics to the existing email
graph and execute on it Prolog queries to resolve indirect
connections between messages.

IV. EXPERIMENTS
We made experiments with several mailboxes and chose as
a testbed the Enron email dataset that has been made publicly
available by the federal commission after the bankruptcy of
the American company. The dataset consists of about 150
personal mailboxes and half million messages. A sample
Enron message looks like the following:

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

Message no 844

From = John Arnold

To = Frank Hayden

Date = Fri, 14 Jul 2000 19:46:00 +0200
Subject = Re: Market Opinion about AGA’s

Interesting observation...but I’'m not sure I
agree. I think consensus opinion is that
anything under 2.7 TCF is very dangerous
entering the winter. A month ago, analysts

were predicting we would end the
injection season with around 2.6 -2.7 in
the ground. /.../

With the method described in the last section, we store it in
our graph database in which the node numbers correspond to
the internal construction of the graph. This will look like the
following:

email (844).

node (844, 'XXX').

edge (844, 845, body) .

node (845, [[[’Interesting’, ’observation...but
Y, "I'm", not, sure, 'I’, "agree.’, 'I’,
think, consensus], [opinion, is, that,
anything, under, ’2.7’, ’'TCF’, is, very,
dangerous, entering, the], [’'winter.’, 'A
’, month, ’'ago,’, analysts, were,
predicting, we, would, end, the, injection
1, [season, with, around, ’'2.6', -, 2.7,
in, the, ’'ground.’, ...] 1) .

edge (844, 847, subject).

node (847, ’"Re: Market Opinion about AGA\’s’).

edge (844, 848, from).

node (848, ’"John Arnold"’).

edge (844, 850, to).

node (850, ’"Frank Hayden"’).

edge (844, 851, date).

node (851, ’'Fri, 14 Jul 2000 19:46:00 +02007").

As we have a graph database, a query for all attachments
between groups of people is very easy to realize in contrast
to classic email clients, which only rarely and insufficiently
support such a query. In the following example, we list all
the emails containing attachments exchanged between John
Arnold and Mark Sagel. A person’s name can be identified
as a substring in his email-address. While collecting data the
following basic query is also formatting the output.

?—- F=’"John_ Arnold"’, T=’"Mark, Sagel"’,

| findall (X:From->To:Subject:Date->Attachment, (
email (X, Id,From, To,Date, Subject,Body),

|

| (sub_atom(From,_,_,_,F), sub_atom(To,_,_,_,T)

| ; sub_atom(From,_,_,_,T), sub_atom(To,_,_,_,F
))

| edge (X, Y, ’"attachment’), node(Y,Attachment))

,List),

| print_list(List), length(List,N).

The output contains similar records as the query is not
optimized to detect duplicate messages. The Enron dataset
contains several of such duplicates due to its hierarchic nature.

3380:"John_Arnold"->"Mark_Sagel" <msagel@home.com>
Re: Natural gas update:Mon, 14 May 2001
09:33:00 +0200->ng051301.doc

3389:"Mark_Sagel" <msagel@home.com> -> "John_ Arnold"
<jarnold@enron.com> : Natural gas update:Mon,
14 May 2001 00:23:00 +0200->ng051301.doc

3397:"John_Arnold"->"Mark_Sagel" <msagel@home.com>
Re: Service Agreement:Mon, 27 Nov 2000 19:48:00
+0200->Agree-Enron.doc

70

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

3406:"Mark_Sagel" <msagel@home.com> -> "John_ Arnold"
<jarnold@enron.com> Service Agreement:Mon, 27
Nov 2000 18:16:00 +0200->Agree-Enron.doc

3414:"Mark_Sagel" <msagel@home.com> -> "John_Arnold"
<jarnold@enron.com> Status:Thu, 16 Nov 2000
19:30:00 +0200->energy2000-1112.doc

3422:"John_Arnold"->"Mark _Sagel" <msagel@home.com>
Re: Natural gas update:Mon, 14 May 2001
09:33:00 +0200->ng051301.doc

3431:"Mark_Sagel" <msagel@home.com> -> "John_ Arnold"
<jarnold@enron.com> Natural gas update:Mon,
14 May 2001 00:23:00 +0200->ng051301.doc

3439:"John_Arnold"->"Mark_Sagel" <msagel@home.com>
Re: Service Agreement:Mon, 27 Nov 2000 19:48:00
+0200->Agree-Enron.doc

3545:"John_Arnold"->"Mark_Sagel" <msagel@home.com>
Re: Service Agreement:Mon, 27 Nov 2000 19:48:00
+0200->Agree-Enron.doc
3554:"John_Arnold"->"Mark_Sagel" <msagel@home.com>
Re: Natural gas update:Mon, 14 May 2001
19:33:00 +0200->ng051301.doc
3572:"Mark_Sagel" <msagel@home.com> -> "John_ Arnold"
<jarnold@enron.com> Natural gas update:Mon,
14 May 2001 00:23:00 +0200->ng051301.doc
3580:"Mark _Sagel" <msagel@home.com> -> "John Arnold"
<jarnold@enron.com> Service Agreement:Mon, 27
Nov 2000 18:16:00 +0200->Agree-Enron.doc
3588:"Mark_Sagel" <msagel@home.com> -> "John_Arnold"
<jarnold@enron.com> Status:Thu, 16 Nov 2000
19:30:00 +0200->energy2000-1112.doc
F = ""John_Arnold"’,
T = ’"Mark,_Sagel"’,
List = [(3380:'"John_Arnold"’->'"Mark Sagel" <
msagel@home.com>’ :’Re:_Natural_gas,_update’ :’Mon,
.14 May,2001_09:33:00_,+0200"->"ng051301.doc’),
(3389:" "Mark_Sagel" _<msagel@home.com>’->’"John,
Arnold" _<jarnold@enron.com>’ :’Natural_gas_update
’:’Mon, 14 _May, 2001_,00:23:00,_,+0200’->"ng051301.
doc’), (3397:'""John_Arnold"’->'"Mark Sagel" <
msagel@home.com>’ :’Re: Service_Agreement’ :’Mon,
27 _Nov_2000_,19:48:00_,+0200" —>" Agree—-Enron.doc’),
(3406:" "Mark,_Sagel" _<msagel@home.com>’->’"John,
Arnold" _<jarnold@enron.com>’:’Service Agreement’
:’Mon, 27 _Nov,_2000_,18:16:00,_,+0200" —>" Agree—Enron
.doc’), (3414:’"Mark_Sagel" <msagel@home.com>'->
""John_Arnold" <jarnold@enron.com>’:’Status’:’
Thu, 16, _Nov,_2000,.,19:30:00_+0200" ->"energy2000
-1112.doc’), (3422:’"John_Arnold"’->’"Mark_Sagel
" <msagel@home.com>’:... : -> ’'ng051301.doc’
), (3431:'"Mark_Sagel" <msagel@home.com>’'->...
... —> '"'ng051301.doc’), (... : ... => ... —>
R N N D B I I
N = 21.
The query can be enhanced and stored as a predefined
predicate. The sorted list without duplicates looks like the fol-
lowing (Prolog code for actual sorting and removing duplicates

omitted):

?- attachments_between (’ "John_Arnold"’,’ "Mark_Sagel"
r).

16 Nov 2000 19:30 ("Mark_Sagel" -> "John_Arnold")
Status (energy2000-1112.doc)

27 Nov 2000 18:16 ("Mark_Sagel" -> "John_Arnold")
Service Agreeme (Agree-Enron.doc)

27 Nov 2000 19:48 ("John_Arnold" -> "Mark_Sagel")
Re: Service Agr (Agree—-Enron.doc)

14 May 2001 00:23 ("Mark_Sagel" -> "John_Arnold")
Natural gas upd (ng051301.doc)

14 May 2001 09:33 ("John_Arnold" -> "Mark Sagel")
Re: Natural gas (ng051301.doc)

14 May 2001 19:33 ("John_Arnold" -> "Mark_Sagel")
Re: Natural gas (ng051301.doc)

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

true.

This result shows how beneficial a graph based structure is
for creating a query about the exchange of attachments.

We have amended our emails via topic detection mecha-
nisms discussed in the state of the art section with related
keywords. Looking at the initial email example from John
Arnold to Frank Hayden, we observe that John Arnold is
concerned about events in winter. Thus we can try to find
links to other messages dealing with this season. To construct
the keyword list we first filter out stopwords and other ill-
formed strings of messages like MIME code and HTML tags.
We discover that the word “winter” is listed among the top
ten keywords of the following message:

?— keywords_message (1128) .

——Topl0

5, prompt
5, 3

3, position
3, futures
2, winter
2, stress
2, spread
2, scenarios
2, payout
2, normal

This message has a different subject than our initial message
(“Re: Stress Testing”). Therefore, we have discovered here
an interconnection between two different threads, solving our
second described problem of finding such interconnections
through exploration. We are able to discover two persons who
are linked via a topic they discuss but who are not directly
related via a thread. This is a property not derivable in a classic
email system setup. The underlying automatically generated
graph structure makes it possible to explore this relation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have given an overview of the state of
the art of automatic information management capabilities of
today’s email clients and webmail services. We have dis-
cussed their shortcomings and have presented ideas for their
improvement by using auto categorization and graph explo-
ration. Email has been the prominent means of computerized
communication for a quarter of a century. However the core
technology has remained unchanged. Especially an update of
the information management capabilities seems to be needed
for dealing with an ever increasing number of emails. We also
have presented the results of our experiments with our email
handling tool.

In our future work it will be possible to extend the ca-
pabilities of the email handling tool by providing a simpler
user interface and extending it with graph navigation and
visualization facilities. We are also planning to switch from
n-gram and frequency based categorization to LDS based
categorization and apply our methodology to a bigger dataset.

ACKNOWLEDGMENT

This paper was supported by the European Social Fund
through the Estonian Doctoral School in Information and
Communication Technology.

71

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

[1]

[9

—

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

REFERENCES

R. W. White, G. Marchionini, and G. Muresan. Evaluating exploratory
search systems: Introduction to special topic issue of information pro-
cessing and management. Information Processing and Management,
44:433-436, 2008.

D. E. Descy. Microsoft add-ons and updates. TechTrends, 54(2):7-8,
2010.

R. L. Scott. Wired to the world: Xobni. North Carolina Libraries,
66(3):64, 2009.

Yahoo! acquires xoopit. Available from: http://www.myphotos.yahoo.
com/ [cited August 24, 2010].

Email client popularity: June 2011. Available from: http://www.
campaignmonitor.com/stats/email-clients/ [cited July 17, 2011].

NEO - the microsoft outlook email software Add-On. Available from:
http://www.caelo.com/ [cited August 24, 2010].

R. Kent James. MesQuilla » TaQuilla. Available from: http://mesquilla.
com/extensions/taquilla/ [cited August 18, 2010].

R. Kent James. MesQuilla » blog archive » TaQuilla provides automatic
“soft” tags for messages. Available from: http://mesquilla.com/2009/02/
26/taquilla- provides-automatic-soft-tags-for-messages/ [cited March 7,
2011].

ClearContext — Outlook plugin to organize email and manage inbox.
Available from: http://www.clearcontext.com/ [cited August 18, 2010].
M. Freed, J. Carbonell, G. Gordon, J. Hayes, B. A. Myers, D. Siewiorek,
S. Smith, A. Steinfeld, and A. Tomasic. Radar: A personal assistant that
learns to reduce email overload. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, pages 1287-1293, 2008.

P. A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity
based metadata for semantic desktop search. The Semantic Web:
Research and Applications, pages 439-454, 2005.

D. Aumiiller and S. Auer. Towards a semantic wiki experience—desktop
integration and interactivity in WikSAR. In Semantic Desktop Workshop,
2005.

Duen Horng Chau, Brad Myers, and Andrew Faulring. What to do when
search fails: finding information by association. In Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in computing
systems, pages 999-1008, Florence, Italy, 2008. ACM.

D. Pogue. Google takes on your desktop. New York Times, 2004.

B. Turnbull, B. Blundell, and J. Slay. Google desktop as a source of
digital evidence. International Journal of Digital Evidence, 5(1):1-12,
2006.

Georg Singer, Ulrich Norbisrath, Eero Vainikko, Hannu Kikkas, and
Dirk Lewandowski. Search-Logger — analyzing exploratory search tasks.
In Proceedings of the 2011 ACM Symposium on Applied Computing,
SAC 11, pages 751-756. ACM, 2011.

M. Dredze, H. M. Wallach, D. Puller, and F. Pereira. ~Generating
summary keywords for emails using topics. In Proceedings of the 13th
international conference on Intelligent user interfaces, pages 199-2006,
2008.

MALLET homepage. Available from: http://mallet.cs.umass.edu/ [cited
March 7, 2011].

W. B. Cavnar and J. M. Trenkle. N-gram-based text categorization. In
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, pages 161-175, 1994.

libTextCat — lightweight text categorization. Available from: http:
/[software.wise-guys.nl/libtextcat/ [cited August 20, 2010].

WordNet: A lexical database for English. Available from: http://wordnet.
princeton.edu/ [cited July 17, 2011].

Cycorp, Inc. Available from: http://www.cyc.com/ [cited July 17, 2011].

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

72

http://www.myphotos.yahoo.com/
http://www.myphotos.yahoo.com/
http://www.campaignmonitor.com/stats/email-clients/
http://www.campaignmonitor.com/stats/email-clients/
http://www.caelo.com/
http://mesquilla.com/extensions/taquilla/
http://mesquilla.com/extensions/taquilla/
http://mesquilla.com/2009/02/26/taquilla-provides-automatic-soft-tags-for-messages/
http://mesquilla.com/2009/02/26/taquilla-provides-automatic-soft-tags-for-messages/
http://www.clearcontext.com/
http://mallet.cs.umass.edu/
http://software.wise-guys.nl/libtextcat/
http://software.wise-guys.nl/libtextcat/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://www.cyc.com/

	Introduction
	State of the art
	Email clients and email clients plug-ins
	Integrative frameworks
	Automatic categorization and tagging

	Proposal
	Experiments
	Conclusions and Future Work
	References

