
A Redundant Bi-Dimensional Indexing Scheme for
Three-Dimensional Trajectories

Antonio d’Acierno
Institute of Food Science

National Research Council
Avellino, Italy

dacierno.a@isa.cnr.it

Alessia Saggese, Mario Vento
DIEII

Universitá degli Studi di Salerno
Fisciano (SA), Italy

{asaggese,mvento}@unisa.it

Abstract—The need of efficient methods for querying con-
tinuously moving object databases arises in many applications
of intelligent video surveillance. As a consequence, several
data indexing strategies have been introduced in order to
improve data storing and retrieving and develop more efficient
trajectory analysis systems. However, even though efficient
spatial indexes in bi-dimensional planes are usually available,
several issues occur when data to be handled are three- or even
four-dimensional as, for instance, moving objects trajectories
in real world environments. For this reason, we are interested
in proposing a new indexing scheme capable of analysing
and retrieving three-dimensional trajectories in efficient way.
This goal is achieved by redundantly projecting and analysing
a collection of trajectories on bi-dimensional planes and
validating the obtained result through a clipping algorithm.
Experimental results show that the proposed approach yields
good performance in terms of averaged retrieving time when
applied to time interval queries.

Keywords-MOD; Three-dimensional trajectory; Indexing;
Time interval query.

I. INTRODUCTION

Moving Object Databases (MODs) are used to store con-
tinuously moving objects. According to the widely adopted
line segments model [1], the object motion is expressed
through its trajectory; trajectories, in turn, are represented
by a polyline in a three-dimensional space, the first two
dimensions being referred to space and the third one to time
(Figure 1).

The demand of efficiently querying MODs arises in many
contexts, from air traffic control to mobile communication
systems. There are at least two categories of queries that are
worth to be considered: queries about the future positions of
objects, and queries about the historical positions of mov-
ing objects. Historical queries can be further classified [1]
into coordinate-based queries and trajectory based queries.
While trajectory-based queries involve information about a
trajectory such as topology and velocity, coordinate-based
queries in turn include:

1) Time interval queries: select all objects within a given
area and within a given time period;

2) Time-slice queries: select all the objects present in a
given area at a given time instant;

3) Nearest neighbor queries: select the k nearest neighbor
objects to a given point in space at a given time instant.

A key problem to be addressed concerns the indexing of
these data. R-trees, proposed by Guttman in his pioneering
paper [2], was a widely adopted solution motivated by
the Very Large Scale Integration (VLSI) design: how to
efficiently answer whether an area is already covered by
a chip. R-trees hierarchically organize geometric objects
representing them using the MBRs (Minimum Bounding
Rectangles); each internal node corresponds to the MBR
that bounds its children while a leave contains pointers to
objects. Starting from the original structure, several opti-
mizations have been proposed [3]; in [1], for example, the
particularities of spatio-temporal data are captured by two
access methods (STR-tree and TB-tree) while SEB-trees [4]
segment space and time.

When the aim is to index and query repositories of large
trajectories, the size of MBRs can be reduced segmenting
each trajectory and then indexing each sub-trajectory using
R-Trees; such an approach is described, for example, in [5],
where a dynamic programming algorithm to minimize the
I/O for an average size query is proposed. SETI [6] segments
trajectories and groups sub-trajectories into a collection of
spatial partitions; queries run over the partitions that are
most relevant for the query itself. TrajStore [7] co-locates
on a disk block (or in a collection of near blocks) trajectory
segments using an adaptive multi-level grid; thanks to this
method, it is possible to answer a query only reading a few
blocks.

Our main aim is to extend a video surveillance system
[8] with an efficient method for querying continuously
moving object databases in order to interpret the behaviour
of different entities populating a scene. Even though efficient
bi-dimensional indexing methods are usually available, sev-
eral problems arise when data to be handled are three- or
even four-dimensional as happens for the considered video
surveillance system. Indeed, this framework identifies a real
object by using a triple (x, y, f) where (x, y) represents the

73

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

object position whereas f is the frame number; assuming
a constant frame rate, the frame number and the time can
be used as synonyms. In order to achieve this aim, we
extend the existing video surveillance system by proposing
a new indexing scheme capable of analysing and retrieving
three-dimensional trajectories in efficient way. The proposed
method works by redundantly projecting and analysing a
collection of trajectories on bi-dimensional planes. Obtained
result is finally validated in the three-dimensional plane
through a clipping algorithm. Different experiments, per-
formed by using the POSTGIS [9] system, will show that
the proposed approach yields good performance in terms
of averaged retrieving time when applied to time-interval
queries on synthetic data.

II. THE PROPOSED SOLUTION

A trajectory is usually referred to as a list of space-time
points:

< (x1, y1, t1), (x2, y2, t2), ..., (xN , yN , tN) >

where the generic pair (xi, yi) is the spatial location and ti
represents the time. Each point is thus treated as an object
in an extended spatial domain, since time is considered
as an additional dimension. As already mentioned, we use
the line segments model [1], each segment being the linear
interpolant between two consecutive points.

To answer a time-interval query, we have to ve-
rify the intersection between a 3D query box, identified
by bottom-left-back (xmin, ymin, tmin) and top-right-front
(xmax, ymax, tmax) points, and all the segments of each
trajectory. To determine if a line segment lies inside, outside
or partially outside the box, we can use a clipping algorithm;
one of the most efficient methods for our purposes is the
extension to 3D of the 2D Cohen-Sutherland Line Clipping
Algorithm [10].

The recursive bi-dimensional Cohen-Sutherland Line
Clipping Algorithm considers only segment endpoints; if
at least one endpoint of the segment s lies inside the clip
box, the hypothesis h: s intersects the box can be trivially

Figure 1. An example of spatio-temporal trajectory; x and y dimensions
refer to position while the third dimension (t) refers to time.

Figure 2. Some segments lying inside (AB and GH) or outside (CD and
EF) the clipping area S1S2S3S4.

accepted. If both endpoints are outside the clip box, the
segment may or may not intersect with the clip box. In
some cases h can be still trivially accepted (as it happens for
segments AB in Figure 2) or rejected (segment CD). Other
situations (segment EF and segment GH) can be solved
recursively by subdividing the line into two segments and
using the extensions of the clip box edge; one of the obtained
segment can be trivially rejected, while the other one is the
new segment to be analyzed.

The bi-dimensional Cohen-Sutherland algorithm can be
easily extended to the 3D case [10]; here, operations have
to be performed with reference to six half-planes (y < ymin,
y > ymax, x < xmin, x > xmax, t < tmin, t > tmax) and
by considering the obtained twenty-seven regions.

In the worst case, when the trajectory does not intersect
the box, we have to verify all the segments in the trajectory;
such an approach is too expensive for a large amount
of trajectory data, thus the aim of the proposed indexing
strategy is to reduce the number of candidate trajectories to
clipping, taking advantage of the existing 2D indexes.

The method we propose is based on three derived bi-
dimensional spaces obtained by projecting each 3D trajec-
tory onto (X,Y), (X,T) and (Y, T) planes. It is worth to
observe that if a trajectory intersects the 3D query box, then
each trajectory projection will intersect the correspondent
query box projection. This is a necessary but not sufficient
condition since the opposite is clearly not true: if all pro-
jections trajectory intersect correspondent box projection on
considered spaces, they do not have to intersect the 3D query
box too. To better explain this concept, Figure 3 shows a
trajectory on 3D space and its projections on 2D spaces:
we can note that all the trajectory projections intersect
correspondent box projection, although the trajectory does
not intersect the 3D query box.

Figure 4 resumes the main phases of the method needed
to answer a time-interval query. For each three-dimensional
trajectory t (Figure 4a), we redundantly store three bi-
dimensional trajectories. Each trajectory is obtained by pro-
jecting t on the XY plane (tXY), on the XT plane (tXT)

74

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

(a) (b)

(c) (d)

Figure 3. An example of trajectory (a) and its projections on the different
coordinate planes XY (b), XT (c) and YT (d). Note that although the
trajectory does not intersect the query box, its projections do it.

and on the Y T plane (tY T), as shown in Figure 4b. Given
a box B representing the time-interval query to be solved,
we similarly consider BXY , BXT and BY T .

Using one of the available bi-dimensional indexes, we can
find on each plane the following three trajectory sets in a
very simple and efficient manner (Figure 4c):

TXY = {tXY : MBR(tXY) ∩BXY 6= ∅} (1)
TXT = {tXT : MBR(tXT) ∩BXT 6= ∅} (2)
TY T = {tY T : MBR(tY T) ∩BY T 6= ∅} (3)

The set T of the candidate trajectories to be clipped in 3D
space is thus trivially defined as:

T = {t : tXY ∈ TXY ∧ tXT ∈ TXT ∧ tY T ∈ TY T } (4)

As shown in Figure 4d, the candidate set is composed
by trajectories whose MBR on each plane intersects the
corresponding projection of the query box; this does not
imply that, for example, tiXY ∈ TXY actually intersects
BXY . This choice will be motivated in the last Section.

III. EXPERIMENTAL RESULTS

We test our system over synthetic data sets generated as
follows.

Let W and H be the width and the height of our scene; let
S be the time interval we are interested in. Each trajectory
starting point is randomly chosen in our scene at a random
time instant t1; the trajectory length is assumed to follow
a Gaussian distribution. We also randomly chose an initial
direction along the x axis (dx) as well as a direction along
the y axis (dy).

.

Figure 4. An overview of the proposed method. Figure a) shows a query
box and some examples of trajectories; in b) there are the projections
of each trajectory on the coordinate planes. Figure c) only shows the
projections that intersect the correspondent query box. Figure d) shows the
trajectories whose three projections intersect correspondent boxes. Finally,
Figure e) shows the final result of our method, i.e., trajectories that really
intersect the query box.

75

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

Table I
THE PARAMETERS USED TO GENERATE OUR DATA.

Scene width W 103

Scene height X 103

Time interval length in seconds S 104

Number of trajectories (thousands) T {1,2,3,5,10}
Mean number of points in each trajectory (thousands) L {1,2,3,4,5,10}

Standard deviation for trajectory’s length σL 10
Probability to invert the direction along x PIx 5%
Probability to invert the direction along y PIy 5%

Maximum velocity along x (pixels/seconds) Vmax
x 10

Maximum velocity along y (pixels/seconds) Vmax
y 10

At each time step t, we first generate the new direction,
assuming that dx (dy) can be changed with probability PIx
(PIy) and then we randomly chose the velocity along x and
y (expressed in pixels/seconds and assumed to be greater
than 0 and less than two fixed maxima). The new position
of the object can be so easily evaluated; if it does not belong
to our scene, dx and/or dy are changed.

We define the scene populated with trajectories as the
“Scenario”. Table I reports the free parameters to be chosen
together with the values we chose to create the 30 different
scenarios used in our experiments.

We store data in Postgres using PostGIS, an extension
built to store and query spatial data like points, lines and
polygons. We represent mobile object trajectory as a tuple
of (mId,mTrajXY ,mTrajXT ,mTrajY T), where mId is
the unique trajectory identifier and mTrajXY (respectively
mTrajXT and mTrajY T) is the XY projection of the
trajectory (respectively, the XT and the Y T projections),
represented as a sequence of segments (a PostGIS multi-
line). Data are indexed using the R-tree over GIST (Gen-
eralized Search Trees) indexes [11] since it guarantees,
compared with the PostGIS implementation of R-trees, best
performances for spatial queries. Similarly to R-trees, GIST
indexes break up data into a search tree according to their
spatial position. Once data have been indexed, PostGIS
provides a very efficient function to perform intersection
between boxes and MBRs in a 2D space. It is clear that
this kind of intersection could be not accurate, especially for
large trajectories whose MBR, especially in the XY plane,
could cover almost the entire area.

To test our system we need some queries, each query
being defined by the corresponding three dimensional cube.
The dimension Dc and the position Pc of the cube of course
affect the obtained performance. We decided thus to test
different dimensions, expressed as a percentage of the whole
volume; we choose Dc ∈ {1%, 5%, 10%, 20%, 30%, 50%}.
Each query is repeated several times (to be more precise,
smaller cubes are queried more times) and results are then
averaged.

The overall averaged querying time (QT) of course de-
pends on T , on L and on Dc; QT can be expressed as the
sum of two terms: QTq is the time needed to extract data

from the database while QTc is the time needed to apply
the clipping algorithm to candidate trajectories.

We conduct our experiments on a PC equipped with an
Intel quad core CPU at 2.66 GHz, using the 32 bit version of
the PostrgreSQL 9.0 server and the 1.5 version of PostGIS.
We obtain that, on average, QTc

QTc+QTq
= 50.4%. In the

following we do not further investigate on QTc and QTq

but we will concentrate on how QT increases as the free
parameters vary.

Diamonds in Figure 5 express (in a log-log scale for
the sake of readability) QT in seconds as the number of
trajectories varies for different values of L, both for small
cubes (Dc = 1%) and for large ones (Dc = 30%). To
analyze the relationship between QT and T we polynomially
approximate QT (T), both for each fixed Dc and for each
L. We obtain, with a very good approximation, that QT
linearly increases with T (lines in Figure 5).

Diamonds in Figure 6 express QT in seconds as the
dimensions of the cubes vary, having L as parameter and
for several values of T . In this case we obtain that QT
quadratically depends on Dc (lines in Figure 6).

Last diamonds in Figure 7 express QT in seconds as L
varies for several values of Dc; in this case we have again
a quadratic dependency on L.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In the framework of a video surveillance system, we are
interested in efficiently querying a three dimensional MOD
using off the shelf solutions and so, in this paper, we propose
a redundant storing system to index large repositories of
three dimensional trajectories using widely available two
dimensional indexes; the proposed method has been imple-
mented using PostGIS, the well known spatial extension of
the PostgreSQL server. Preliminary results, obtained on time
interval queries performed against synthetic data, show that
the proposed solution is able to fully exploit retrieving capa-
bilities based on well established two dimensional indexes.

Concerning our work in progress, it must be observed that
there are several possibilities to improve the performance
of our system. First, we have a querying time that linearly
increases with T while is a quadratic function of L; thus, it
can be pointed out that it is better to have more trajectories

76

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

Dc = 1% Dc = 30%

Figure 5. QT (in seconds) as the number of trajectories increases having the number of points in each trajectory (in thousands) as parameter.

T = 1 T = 3

T = 5 T = 10

Figure 6. QT (in seconds) as the dimension of the querying cube (in percentage of the whole volume) increases and having L as parameter.

with fewer line segments and this can be obtained pursuing
at least two strategies. A trajectory can be easily compressed
because, in many context, data are highly redundant when
sampling objects’ positions at high rate. A trajectory can be
then splitted in two or more sub-trajectories and applying
our method to the set of sub-trajectories; such an approach,
while clearly improves the performance due to the linear de-
pendency of QT on T , also optimizes MBR-based indexes.

It is then worth to be noted that the clipping algorithm
has to be applied in parallel to each candidate trajectory.
This step can be easily implemented using multi threading,

in order to take advantage from multi-core and multi-
processors systems. On the other hand, the functions testing
if two geometries intersect, available in GIS systems, are
typically applied sequentially on each considered pair. For
such a reason we query our DB (on each projected plane)
for trajectories whose MBR intersects the corresponding
projection of the query box (a very fast query given the MBR
based index), instead of trajectories that actually intersect the
corresponding MBR, that have to be tested sequentially.

Furthermore, we store data redundantly since, for each
trajectory t, we store tXY , tXT and tY T so that our

77

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

Dc = 1% Dc = 5%

Dc = 20% Dc = 50%

Figure 7. QT (in seconds) as the number of points in each trajectory (in thousands) increases and having the number of trajectories as parameter.

schema roughly doubles the used memory (for each three
dimensional point we store three bi-dimensional points) and
this can easily become a serious limitation when the number
of stored trajectories increases. To overcome such a problem
we are developing a new schema that heavily diminishes data
redundancy.

The system then needs to be extended; in fact queries
different from the time-interval ones are likely to be easily
solvable with our solution.

Last, another objective is to make our system able to store
and handle data as they are acquired.

REFERENCES

[1] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel ap-
proaches in query processing for moving object trajectories,”
in Proceedings of VLDB Conference. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, pp. 395–406.

[2] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” in Proceedings ACM SIGMOD Conference. New
York, NY, USA: ACM, 1984, pp. 47–57.

[3] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and
Y. Theodoridis, R-Trees: Theory and Applications. Springer,
2005.

[4] Z. Song and N. Roussopoulos, “Seb-tree: An approach to
index continuously moving objects,” in Proceedings of the 4th
Conference on MDM. London, UK, UK: Springer-Verlag,
2003.

[5] S. Rasetic, J. Sander, J. Elding, and M. A. Nascimento, “A
trajectory splitting model for efficient spatio-temporal index-
ing,” in Proceedings of the 31st international Conference on
VLDB. VLDB Endowment, 2005, pp. 934–945.

[6] V. P. Chakka, A. Everspaugh, and J. M. Patel, “Indexing large
trajectory data sets with seti,” in CIDR, 2003.

[7] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An
adaptive storage system for very large trajectory data sets,”
Data Engineering, International Conference on, vol. 0, pp.
109–120, 2010.

[8] D. Conte, P. Foggia, G. Percannella, and M. Vento, “Perfor-
mance evaluation of a people tracking system on pets2009
database,” in Proceedings of the 7th IEEE International
Conference on AVSS, 2010, pp. 119–126.

[9] “POSTGIS,” http://postgis.refractions.net//.

[10] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Com-
puter Graphics: Principles and Practice in C (2nd Edition).
Addison-Wesley, 2004.

[11] J. M. Hellerstein, J. F. Naughton, and J. F. Naughton, “Gen-
eralized search trees for database systems,” in Proceedings
of the 21st VLDB Conference. Zurich, Switzerland: Morgan
Kaufmann Publishers Inc., 1995.

78

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

