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Abstract—In this paper we present a new approach for 

machine learning task solution based on the new concept – the 

“Determinative set of rules” (DSR). We present a new 

inductive learning algorithm named MONSAMAX2 for 

finding DSR. MONSAMAX2 extracts it very effectively using 

some new pruning techniques. Compared to the former 

algorithm MONSIL it is much less labor-consuming. Also we 

present some ideas how to use DSR for post-analysis of rules. 
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I.  INTRODUCTION 

In the domain of inductive learning (IL) many different 
algorithms are used to solve different problems. There are 
several algorithms which try to solve the same task on 
different theoretical bases.  
Some algorithms output rules as decision trees, some as 

set of rules, some of them find non-intersecting rules, some 
find overlapping rules, some algorithms find different 
systems of rules, some find a set of rules that meets certain 
requirements etc.  
However, each method for finding a set of rules tries to 

prune the number of rules. This is expected, because the 
number of all possible rules in case of given sets of learning 
examples can be huge. Finding rules for bigger amounts of 
data is also very laborious. Because of this, we try to find 
such rules which have a stably good ability of recognition.  
Thereby a number of different measures is used for 

evaluating the expediency of found rules. The main problem 
is not the existence of a rule for identifying some object but 
the correct identification of the object. Specifically as a result 
of using a rule set 3 situations can occur: 1) there is no rule 
for identifying the objects’ belonging to a certain class, 2) 
the rule exists but identifies incorrectly, 3) the rule exists and 
it identifies correctly. The common approach uses the 
strategy that the first rule that identifies an object is used. But 
this does not guarantee certainty that the object is identified 
correctly. If several rules are used for identifying then the so-
called rule conflict problem occurs. It occurs when two or 
more rules cover the same test example but predict different 
classes. The common strategy for preferring one of the 
conflicting rules is the best rule strategy [1]: for each rule a 
weight is calculated by some rule quality measure and the 
conflicting rule with the highest weight is chosen. Thereat 
the so-called preordering of rules [2] can be used for 

improving the result, as a consequence the result improves 
by 10-20%. It means that typically there are no actions for 
post-analysis of rules. 
Also the approaches for the continuous development of 

the rule set have been created where the set of rules is 
complemented by adding new objects to the base of learning 
examples. Thereat the help of human experts can be used if 
the rule for identifying the object is missing [3]. 
It is clear that the pruning of the set of rules unavoidably 

leads to a loss of information and thereby to the possible 
increase of 1) the number of unidentified objects, 2) the 
number of misidentified objects. This paper offers one 
possible solution for lessening that. 
The paper is structured as follows. The definitions of 

concepts used in inductive learning are given in Section II. 
Section III presents a proposed new approach for extracting 
rules. Conclusions are given in Section IV. 

II. DEFINITIONS 

We mainly follow the terms of the article [4]. 
The set of objects X={x1,…,xN} can be described with 

attributes t1,…, tM so that every object xi can be described as 
a tuple 

xi=(t1(xi),…,tM(xi))=(xi1,…,xiM). 
For each attribute tj there exists a finite set of values Aj 

(1≤j≤M). So the attribute value xij of the object xi belongs to 
the set Aj 

xij=tj(xi)∈Aj. 
Classes C1,…,CK are subsets of X such that 

C1∪…∪CK; ∀i∀j, i≠j : Ci∩Cj=∅. 

The class value of the object x∈X is cj if xi∈Cj. Let us 
denote the set of class values as 

C={c1,…,cK}. 
A learning example ei is a tuple created from the object 

xi and its class value 
ei=(xi,c)=((t1(xi),…,tM(xi)),c)=((xi1,…xiM),c). 

Let us denote the set of examples E as 
E={e1,…,en }. 

Let us denote the set of examples of class Cj as 

Ej={e|e=(x,cj), x∈Cj, Cj⊆X}. 
The positive example ej+ of the class Cj is an example 

which belongs to the set Ej, i.e., 

ej+∈Ej⊆E. 
The negative example ej- of the class Cj is an example 

that does not belong to the set Ej, i.e., 

ej-∉Ej⊆E. 
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The majority class of set E is the class with the largest 
number of examples. 
Function d which maps the class value cj according to 

every element of the set X is called a concept 

 d:X→C; d(xi)=cj ⇔ xi∈Cj. 
 
In inductive learning the learning system should find, on 

the base of the learning examples, a concept description D 
which maps the class value for any object of the set X (not 

only for the objects of the example set) D:X→C. 
Consequently the inductive learning system should (in an 
ideal case) find, on the base of learning examples, such a 
concept description D which maps the same class value as 
the concept d to every object 

∀x∈X, D(x)=d(x). 
The (concept) description is the set of classification rules 

D={r1,…,rS}. 
A classification rule (decision rule) is an implication 

where the condition part is a complex and the conclusion part 
is a class name: 

rj = “Comj => ck” 
or 

rj = “if Comj then ck” 
or 

rj=(Comj,ck). 

Complex Comj is a tuple of selectors Seljk (k=1,…,M) 
Comj=(Selj1,…,SeljM). 

Selector Selj is a subset of the set of values of the 
attribute tj  

Selj⊆Aj. 
Description D maps a class value ck for the object xi if it 

contains a classification rule rj which maps a class value ck 
for the object xi  

∃rj∈D, rj(xi)=ck ⇒ D(xi)=ck. 
Rule rj=(Comj,ck) maps a class value ck for the object xi 

if its complex Comj covers the object xi 

rj=(Comj,ck), cover(Comj,xi) ⇒ rj(xi)=ck. 
Complex Comj covers the object xi if all its selectors Seljk 

cover this object 

∀k, 1≤k≤M, cover(Seljk,xi) ⇒ cover(Comj,xi). 
Selector Seljk covers the object xi if the value of the 

attribute tk of the object xi is in the set Seljk 

∀j, 1≤k≤M, xik∈Seljk ⇒ cover(Seljk,xi). 

Description D is consistent on the set X’⊆X if all its 

rules map the same class value for any object x∈X’ 

∀ri,rj∈D, x∈X’, X’⊆X, cover(Comi,x), cover(Comj,x) ⇒ 
ri(x)=rj(x). 

Description D is complete on the set X’⊆X if at least one 

rule for each object x∈X’ exists so that its complex covers 
this object 

∀x∈X’, X’⊆X, ∃rj∈D, cover(Comj,x}. 
The inductive learning algorithms have to allow us to 

find descriptions that are at the same time both consistent 
and complete. 

III. A NEW APPROACH 

Next we present a new approach of IL which gives a new 
solution to previously named problems. At first we define a 

new concept “Determinative set of rules” (DSR), then 
describe an algorithm that can find it and describe how we 
can use this rule set for further analysis.  

A. Basis of the New Approach 

Let a data table X(N,M) be given and a set B of all 
possible rules for all classes and each rule in B is presented 
only once. 

The Determinative set of rules (DSR) consists of all rules 
which are not contained in other rules of B.  

B = {Ri}, i=1, 2, ..., K where K is a number of all 

possible rules. Ri ≠ Rj, i ≠ j.  

Ri ∈ DSR if there /∃ Rt ∈ B, Ri ⊂ Rt, t ≠ i. DSR ⊆ B  
 
It means that DSR does not contain the subrules of its 

rules. To get DSR from B we have to throw out all the 
subrules of the rules. We call this process „rule set 
compression“. 
Example. Let B contain 4 rules: 
r1: IF T1=1 & T2=1 THEN CLASS=1 
r2: IF T1=1 & T3=2 THEN CLASS=2 
r3: IF T2=1 THEN CLASS=1 
r4: IF T3=2 THEN CLASS=2 
As we see, the rule r1 is contained in r3 and r2 is 

contained in r4. According to the definition DSRB = {r3, r4}. 
The main features of DSR are: 

1. there are no redundant attributes in rules, 
2. the same object in X can be described by several rules. 

B. Description of the Algorithm  

Here we describe the algorithm realizing the new IL 
approach. The findable set of rules is DSR together with 
some redundant rules which are eliminated afterwards (rule 
set compression).  
Algorithm MONSAMAX2 is given in Fig. 1. 
This is a depth-first-search algorithm that makes 

subsequent extracts of objects containing certain factors (i.e., 
an attribute with a certain value). At each level first the rules 
(of that extract) are detected and then factors for making 
extracts of the next level are selected one by one.  
The algorithm uses frequency tables for both all the 

objects in the current extract and each class of the current 
extract. We call them “3D frequency tables”. If a factor has 
equal frequencies for all objects and in any of the classes 
then this factor completes a rule. The rule includes also the 
factors chosen on the way to that extract. 
The selection criteria for choosing the next factor are 

based on frequencies, the maximal frequency for all objects 
(of extract). If only one attribute (of the extract) has free 
(unused) value(s) (indicated by frequencies over zero) then it 
is not practical to make a next (further) extract because there 
would be no free factors to distinguish objects of different 
classes in that extract. If there are no free factors (i.e., no 
frequencies over zero) then obviously it is not possible to 
make a next extract. In both cases the algorithm backtracks  
to the previous level. 
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Figure 1.  Algorithm MONSAMAX2 

Each factor that has been used for making an extract or 
completing a rule is set to zero in the corresponding 
frequency table. Zero in the frequency table means that this 
factor is eliminated from the analysis at this level. 
Each frequency table (except for the initial level) inherits 

all zeroes of the previous level (we call it “bringing zeroes 
down”).  
Also, after making an extract, its (non-zero) frequencies 

are compared to the ones of the previous level. Equal 
frequencies at both levels mean that all objects containing 
that factor are contained in the extract of the current level 
and all possible rules containing them are found at current 
and subsequent levels. In order to prevent repetitious finding 
of such rules the frequencies of those factors are set to zero 
at the previous level. This technique is called “backward 
comparison”. Using this pruning technique we can also 
determine the extractedness of all rules for some class, i.e., if 
for some class all frequencies are equal to zero at the initial 
level, it means that all rules for this class are found. 
All these techniques can effectively decrease the number 

of extracts (nodes of the search tree) without losing the rules 
of DSR. 

C. Example 

In the following example data from [5] are used (Table 
I). In order to get a numerical representation the coding 
shown in Table II is used. Coded data are shown in Table III.  
For given data frequencies are found across all data and 

across each class (see Table III). If frequencies of some 
factor are equal in the whole dataset and some class, we can 
complete the rule. In the given dataset/extract that factor 
determines the class. From the initial frequency tables (Table 
III) 3 rules are found this way: 

R1: T2.1 → Class 1 

R2: T3.2 → Class 1 

R3: T2.2 → Class 2 
 

TABLE I.  EXAMPLE SET (FROM QUINLAN) 

Object Height Hair Eyes Class 

1 tall dark blue – 

2 short dark blue – 

3 tall blond blue + 

4 tall red blue + 

5 tall blond brown – 

6 short blond blue + 

7 short blond brown – 

8 tall dark brown – 

TABLE II.  CODING OF VALUES  

Attribute 

Value 

Height 

T1 

Hair 

T2 

Eyes 

T3 
Class 

1 short dark blue – 

2 tall red brown + 

3  blond   

TABLE III.  INITIAL DATA AND FREQUENCIES 

Object T1 T2 T3 Class 

1 2 1 1 1 

2 1 1 1 1 

3 2 3 1 2 

4 2 2 1 2 

5 2 3 2 1 

6 1 3 1 2 

7 1 3 2 1 

8 2 1 2 1 

     

Value T1 T2 T3 Class 

1 3 3 5  

2 5 1 3 all 

3  4   

1 2 3 2  

2 3 0 3 1 

3  2   

1 1 0 3  

2 2 1 0 2 

3  2   

 
The frequencies of those factors (T2.1, T2.2, T3.1) are 

set to zero in the current frequency table (see Table IV). Now 
the factor with the biggest frequency is selected for making 
an extract. We have two candidates: T1.2 and T3.1, both 
with frequency 5. As we do not have additional information 
we choose the first one. The chosen factor is T1.2 (with 
frequency 5). The extract by T1.2 and the corresponding 
frequencies are given in Table V.  
The cells with grey backgrounds are prohibited factors 

that have zeroed frequencies in the previous level. This 
frequency table completes no rules. T3.1 with frequency 3 is 
chosen for making a subsequent extract (see Table VI). 
In this frequency table the frequency of T2.3 in Class 2 is 

the same as in the previous level (see Table V), in the 

Algorithm MONSAMAX2 

S0. t:=0; Ut:=∅ 
S1. Find frequencies in whole dataset and each class  
If t>0 then 
Bring zeroes down 
Backward comparison 

S2. For each factor A such that its frequency in some 
class C is equal to its frequency in the whole set  

output rule {Ui}&A→C, i=0,…,t 

A←0 
S3. If not enough free factors for making an extract then  

If t=0 then Goto End  
Else t:=t-1; Goto S3 

S4. Choose a new (free) factor Ut 

Ut ←0; t:=t+1;  
extract subtable of objects containing Ut;  
Goto S1 

End. Rules are found 
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previous level this frequency is set to zero (because 
everything connected to it will be done at a lower level). 
From the current frequency table the next rule is found: 

R4: T1.2&T3.1&T2.3 → Class 2 
After completing a rule, the frequency of T2.3 is set to 

zero and the current frequency table contains no more usable 
frequencies. 
Turning back to the previous level (Table V) it occurs 

that after zeroing the frequency of T3.1 (as a basis of the 
extract just made) there is only one usable factor (T2.3). It 
makes no sense to make an extract by it. 
Therefore we turn back to the initial level. The 

frequencies are given in Table VII. The frequency of the last 
basis for the extract T1.2 is set to zero. The basis for the next 
extract is T3.1 with frequency 5. The extracted data and 
corresponding frequencies are given in Table VIII. 
Backward comparison finds two factors with equal 

frequencies at the current and previous (see Table VII) 
levels: T1.1=1 in Class 2 and T2.3=2 in Class 2. Both 
frequencies are set to zero at the previous level. As we can 
see, the frequency table for Class 2 at the initial level is 
empty which means that all the rules for Class 2 will be 
extracted after traversing the extract by T3.1. 
 

TABLE IV.  FREQUENCIES AFTER EXTRACTING 3 RULES 

Value T1 T2 T3 Class 

1 3 0 5  

2 5 0 0 All 

3  4   

1 2 0 2  

2 3 0 0 1 

3  2   

1 1 0 3  

2 2 0 0 2 

3  2   

TABLE V.  EXTRACT BY T1.2=5 AND CORRESPONDING FREQUENCIES 

Object T1 T2 T3 Class 

1  1 1 1 

3  3 1 2 

4  2 1 2 

5  3 2 1 

8  1 2 1 

     

Value T1 T2 T3 Class 

1  0 3  

2  0 0 all 

3  2   

1  0 1  

2  0 0 1 

3  1   

1  0 2  

2  0 0 2 

3  1   

TABLE VI.  EXTRACT BY T1.2&T3.1=3 AND CORRESPONDING 
FREQUENCIES 

Object T1 T2 T3 Class 

1  1  1 

3  3  2 

4  2  2 

     

Value T1 T2 T3 Class 

1  0   

2  0  All 

3  1   

1  0   

2  0  1 

3  0   

1  0   

2  0  2 

3  1   

TABLE VII.  FREQUENCIES AT THE INITIAL LEVEL 

Value T1 T2 T3 Class 

1 3 0 5  

2 0 0 0 All 

3  4   

1 2 0 2  

2 0 0 0 1 

3  2   

1 1 0 3  

2 0 0 0 2 

3  2   

TABLE VIII.  EXTRACT BY T3.1=5 AND CORRESPONDING FREQUENCIES 

Object T1 T2 T3 Class 

1 2 1  1 

2 1 1  1 

3 2 3  2 

4 2 2  2 

6 1 3  2 

     

Value T1 T2 T3 Class 

1 2 0   

2 0 0  all 

3  2   

1 1 0   

2 0 0  1 

3  0   

1 1 0   

2 0 0  2 

3  2   

 
From the current extract (Table VIII) we get a rule: 

R5: T3.1&T2.3 → Class 2 
After the frequency of T2.3 is set to zero (at the current 

level) only one non-zero frequency is left (for T1.1). The 
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possible extract by it cannot give any rules. Therefore 
algoritm backtracks to the initial level.   
The current state of frequencies is given in Table IX.  
The next extract is made by T2.3 (see Table X), there are 

no rules. There is only one frequency above zero in the 
frequency table, therefore we backtrack to the previous 
(initial) level. 
In the frequency table of the initial level (see Table XI) 

there is now only one usable (non-zero) frequency. It cannot 
give a rule because if it could then it could be extracted from 
the initial table at the beginning. An extract is not made. The 
work is finished. 

TABLE IX.  FREQUENCIES AT THE INITIAL LEVEL 

Value T1 T2 T3 Class 

1 3 0 0  

2 0 0 0 all 

3  4   

1 2 0 0  

2 0 0 0 1 

3  2   

1 0 0 0  

2 0 0 0 2 

3  0   

TABLE X.  EXTRACT BY T2.3=4 AND CORRESPONDING FREQUENCIES 

Object T1 T2 T3 Class 

3 2  1 2 

5 2  2 1 

6 1  1 2 

7 1  2 1 

     

Value T1 T2 T3 Class 

1 2  0  

2 0  0 all 

3     

1 1  0  

2 0  0 1 

3     

1 0  0  

2 0  0 2 

3     

TABLE XI.  FREQUENCIES AT THE INITIAL LEVEL 

Value T1 T2 T3 Class 

1 3 0 0  

2 0 0 0 all 

3  0   

1 2 0 0  

2 0 0 0 1 

3  0   

1 0 0 0  

2 0 0 0 2 

3  0   

So, we extracted 5 rules: R1: T2.1 → Class 1, R2: T3.2 

→ Class 1, R3: T2.2 → Class 2, R4: T1.2&T3.1&T2.3 → 

Class 2, R5: T3.1&T2.3 → Class 2. 
As we see the extracted rule set is not DSR because of 

the rule R4 which is a subrule of R5. After the compression 
of the extracted rule set we get a DSR: R1, R2, R3 and R5. 
The number of extracted rules for MONSAMAX2 

depends on the criteria of choosing the leader value for an 
extract in a situation when there are several candidates with 
equal frequencies. For example, if we would choose in the 
beginning of the algorithm T3.1 (with frequency 5) as a 
leader value instead of T1.2 (frequency=5), then we would 
extract only 4 rules (R1, R2, R3 and R5) and compression 
would not be needed (but we do not know this). 
MONSAMAX2 produces more additional information for 
effective rule set compression, but here is not enough space 
for presenting it. 

D. Discussion 

For the same purpose – to find a complete and consistent 
description – algorithms MONSIL [6] and DEILA [7] have 
been proposed. Each of the algorithms (MONSAMAX2, 
MONSIL and DEILA) work in a different way and usually 
give different descriptions. The common idea is the step 
following the main algorithm – compression of the found 
rule set in order to get a result as compact as possible . 
Similarly to MONSAMAX2 the result of MONSIL 

(before compression) depends on the choice of leader value 
for making extract when there are several candidates with 
equal frequencies. For the same Quinlan’s data [5] as here 
(see Table I), two different results of MONSIL are given (in 
[6]): the first one consisting of 8 rules and the second – 5 

rules. In the latter, the redundant rule (T1.1&T2.3&T3.1 → 
Class 2) is not the same as in case of MONSAMAX2 

(T1.2&T3.1&T2.3 → Class 2). The result which consists of 
8 rules contains two more redundant rules (containing T1.1) 
in addition to these two. 
We noticed that after compression the results of 

MONSIL and MONSAMAX2 are the same. This rule set is 
called DSR (determinative set of rules). 
Algorithm DEILA finds more rules than MONSAMAX2 

and MONSIL. From Quinlan’s data it finds 15 rules. The 
result of DEILA may not contain all DSR rules. Some of 
them can be “replaced” by longer rules. This is due to 
DEILA’s working principle – all found rules are dicliques. 
The amount of extracted rules for MONSAMAX2 is 

smaller than for MONSIL because the first one extracts 
shorter rules first while the latter extracts longer rules first. 
The difference is in the number of (redundant) subrules – the 
rules that will be removed by compression. MONSAMAX2 
finds fewer such rules (due to finding shorter rules first). 
In order to determine the belonging of the extracted 

objects to the same class in the process of extracting rules, 
MONSIL must make an extract and usually the objects do 
not belong to the same class. It means that we have made a  
superfluous effort. MONSAMAX2 works so effectively 
because we have data to determine belonging of objects to 
the same class using 3D frequency tables, there is no need to 
make these extracts.  
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During the work of MONSAMAX2 we can also observe 
every class covering with rules: if 3D frequencies for some 
class are empty at the initial level it means that all rules for 
this class are extracted. 

IV. CONCLUSION 

This paper proposes a new approach and the 
corresponding algorithm MONSAMAX2 for finding a 
determinative set of overlapping rules. The algorithm is 
based on frequency tables and new pruning techniques which 
make it easy to detect a potential DSR rule. 
MONSAMAX2 is more effective compared to the former 

algorithm MONSIL because it prevents the making of many 
unnecessary extracts due to using 3D frequency tables. Also 
it finds less redundant (i.e., non-DSR) rules because it finds 
shorter rules first while MONSIL starts from the longer ones. 
On the basis of DSR we can form and solve next tasks, 

for example, to find 
1. the shortest rules (by the number of attributes (selectors) 
in the rule), 

2. the longest rules (by the number of attributes in the rule), 
3. the rules with specific features (for example, all rules with 
r selectors), 

4. the shortest rule system (i.e., the rule system with the 
smallest number of rules), 

5. the rule system which consists of rules with minimal 
number of selectors, 

6. all the rule systems we can form on the basis of DSR. 
All these tasks are necessary for the post-analysis of the 

extracted rules. It means that several new possibilities are 
available for experimentation with several rule sets (subsets 
of DSR) and for describing them. We must not try to 
minimize the rule set during the work of a machine learning 
algorithm, we can find the best solution during the post-
analysis of DSR. 
Using DSR and the post-analysis of rules also gives the 

possibility to gather statistics about the use of rules in 
classification in order to analyze the rules’ perspective and 
their power of classification. We can also see which rules 
classify more accurately and which do not on the basis of the 
information we have about classified (test-set and real) 
objects. On this basis we can reorder the rules in the rule set. 
DSR is a good basis for developing this approach.  

Somebody might say that the finding of DSR is very 
laborious, especially in cases of large amounts of data. If so, 
the user can decide what is the purpose of the work. If the 
purpose is a quick one-time information gathering for a data 
set under analysis then the use of DSR-based IL approach 
may not be the best one. But if the purpose is to describe the 
data set and through that discover new knowledge and get an 
opportunity for post-analysis of the rule set then this 
approach is a good solution.  
The post-analysis of rules  will be the topic of the next 

paper. 
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