
New Solution for Extracting Inductive Learning Rules and their Post-Analysis

Rein Kuusik and Grete Lind

Department of Informatics

Tallinn University of Technology

Tallinn, Estonia

kuusik@cc.ttu.ee, grete@staff.ttu.ee

Abstract—In this paper we present a new approach for

machine learning task solution based on the new concept – the

“Determinative set of rules” (DSR). We present a new

inductive learning algorithm named MONSAMAX2 for

finding DSR. MONSAMAX2 extracts it very effectively using

some new pruning techniques. Compared to the former

algorithm MONSIL it is much less labor-consuming. Also we

present some ideas how to use DSR for post-analysis of rules.

Keywords-machine learning; inductive learning algorithm;

post-analysis of rules; determinative set of rules

I. INTRODUCTION

In the domain of inductive learning (IL) many different
algorithms are used to solve different problems. There are
several algorithms which try to solve the same task on
different theoretical bases.
Some algorithms output rules as decision trees, some as

set of rules, some of them find non-intersecting rules, some
find overlapping rules, some algorithms find different
systems of rules, some find a set of rules that meets certain
requirements etc.
However, each method for finding a set of rules tries to

prune the number of rules. This is expected, because the
number of all possible rules in case of given sets of learning
examples can be huge. Finding rules for bigger amounts of
data is also very laborious. Because of this, we try to find
such rules which have a stably good ability of recognition.
Thereby a number of different measures is used for

evaluating the expediency of found rules. The main problem
is not the existence of a rule for identifying some object but
the correct identification of the object. Specifically as a result
of using a rule set 3 situations can occur: 1) there is no rule
for identifying the objects’ belonging to a certain class, 2)
the rule exists but identifies incorrectly, 3) the rule exists and
it identifies correctly. The common approach uses the
strategy that the first rule that identifies an object is used. But
this does not guarantee certainty that the object is identified
correctly. If several rules are used for identifying then the so-
called rule conflict problem occurs. It occurs when two or
more rules cover the same test example but predict different
classes. The common strategy for preferring one of the
conflicting rules is the best rule strategy [1]: for each rule a
weight is calculated by some rule quality measure and the
conflicting rule with the highest weight is chosen. Thereat
the so-called preordering of rules [2] can be used for

improving the result, as a consequence the result improves
by 10-20%. It means that typically there are no actions for
post-analysis of rules.
Also the approaches for the continuous development of

the rule set have been created where the set of rules is
complemented by adding new objects to the base of learning
examples. Thereat the help of human experts can be used if
the rule for identifying the object is missing [3].
It is clear that the pruning of the set of rules unavoidably

leads to a loss of information and thereby to the possible
increase of 1) the number of unidentified objects, 2) the
number of misidentified objects. This paper offers one
possible solution for lessening that.
The paper is structured as follows. The definitions of

concepts used in inductive learning are given in Section II.
Section III presents a proposed new approach for extracting
rules. Conclusions are given in Section IV.

II. DEFINITIONS

We mainly follow the terms of the article [4].
The set of objects X={x1,…,xN} can be described with

attributes t1,…, tM so that every object xi can be described as
a tuple

xi=(t1(xi),…,tM(xi))=(xi1,…,xiM).
For each attribute tj there exists a finite set of values Aj

(1≤j≤M). So the attribute value xij of the object xi belongs to
the set Aj

xij=tj(xi)∈Aj.
Classes C1,…,CK are subsets of X such that

C1∪…∪CK; ∀i∀j, i≠j : Ci∩Cj=∅.

The class value of the object x∈X is cj if xi∈Cj. Let us
denote the set of class values as

C={c1,…,cK}.
A learning example ei is a tuple created from the object

xi and its class value
ei=(xi,c)=((t1(xi),…,tM(xi)),c)=((xi1,…xiM),c).

Let us denote the set of examples E as
E={e1,…,en }.

Let us denote the set of examples of class Cj as

Ej={e|e=(x,cj), x∈Cj, Cj⊆X}.
The positive example ej+ of the class Cj is an example

which belongs to the set Ej, i.e.,

ej+∈Ej⊆E.
The negative example ej- of the class Cj is an example

that does not belong to the set Ej, i.e.,

ej-∉Ej⊆E.

121

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

The majority class of set E is the class with the largest
number of examples.
Function d which maps the class value cj according to

every element of the set X is called a concept

 d:X→C; d(xi)=cj ⇔ xi∈Cj.

In inductive learning the learning system should find, on

the base of the learning examples, a concept description D
which maps the class value for any object of the set X (not

only for the objects of the example set) D:X→C.
Consequently the inductive learning system should (in an
ideal case) find, on the base of learning examples, such a
concept description D which maps the same class value as
the concept d to every object

∀x∈X, D(x)=d(x).
The (concept) description is the set of classification rules

D={r1,…,rS}.
A classification rule (decision rule) is an implication

where the condition part is a complex and the conclusion part
is a class name:

rj = “Comj => ck”
or

rj = “if Comj then ck”
or

rj=(Comj,ck).

Complex Comj is a tuple of selectors Seljk (k=1,…,M)
Comj=(Selj1,…,SeljM).

Selector Selj is a subset of the set of values of the
attribute tj

Selj⊆Aj.
Description D maps a class value ck for the object xi if it

contains a classification rule rj which maps a class value ck
for the object xi

∃rj∈D, rj(xi)=ck ⇒ D(xi)=ck.
Rule rj=(Comj,ck) maps a class value ck for the object xi

if its complex Comj covers the object xi

rj=(Comj,ck), cover(Comj,xi) ⇒ rj(xi)=ck.
Complex Comj covers the object xi if all its selectors Seljk

cover this object

∀k, 1≤k≤M, cover(Seljk,xi) ⇒ cover(Comj,xi).
Selector Seljk covers the object xi if the value of the

attribute tk of the object xi is in the set Seljk

∀j, 1≤k≤M, xik∈Seljk ⇒ cover(Seljk,xi).

Description D is consistent on the set X’⊆X if all its

rules map the same class value for any object x∈X’

∀ri,rj∈D, x∈X’, X’⊆X, cover(Comi,x), cover(Comj,x) ⇒
ri(x)=rj(x).

Description D is complete on the set X’⊆X if at least one

rule for each object x∈X’ exists so that its complex covers
this object

∀x∈X’, X’⊆X, ∃rj∈D, cover(Comj,x}.
The inductive learning algorithms have to allow us to

find descriptions that are at the same time both consistent
and complete.

III. A NEW APPROACH

Next we present a new approach of IL which gives a new
solution to previously named problems. At first we define a

new concept “Determinative set of rules” (DSR), then
describe an algorithm that can find it and describe how we
can use this rule set for further analysis.

A. Basis of the New Approach

Let a data table X(N,M) be given and a set B of all
possible rules for all classes and each rule in B is presented
only once.

The Determinative set of rules (DSR) consists of all rules
which are not contained in other rules of B.

B = {Ri}, i=1, 2, ..., K where K is a number of all

possible rules. Ri ≠ Rj, i ≠ j.

Ri ∈ DSR if there /∃ Rt ∈ B, Ri ⊂ Rt, t ≠ i. DSR ⊆ B

It means that DSR does not contain the subrules of its

rules. To get DSR from B we have to throw out all the
subrules of the rules. We call this process „rule set
compression“.
Example. Let B contain 4 rules:
r1: IF T1=1 & T2=1 THEN CLASS=1
r2: IF T1=1 & T3=2 THEN CLASS=2
r3: IF T2=1 THEN CLASS=1
r4: IF T3=2 THEN CLASS=2
As we see, the rule r1 is contained in r3 and r2 is

contained in r4. According to the definition DSRB = {r3, r4}.
The main features of DSR are:

1. there are no redundant attributes in rules,
2. the same object in X can be described by several rules.

B. Description of the Algorithm

Here we describe the algorithm realizing the new IL
approach. The findable set of rules is DSR together with
some redundant rules which are eliminated afterwards (rule
set compression).
Algorithm MONSAMAX2 is given in Fig. 1.
This is a depth-first-search algorithm that makes

subsequent extracts of objects containing certain factors (i.e.,
an attribute with a certain value). At each level first the rules
(of that extract) are detected and then factors for making
extracts of the next level are selected one by one.
The algorithm uses frequency tables for both all the

objects in the current extract and each class of the current
extract. We call them “3D frequency tables”. If a factor has
equal frequencies for all objects and in any of the classes
then this factor completes a rule. The rule includes also the
factors chosen on the way to that extract.
The selection criteria for choosing the next factor are

based on frequencies, the maximal frequency for all objects
(of extract). If only one attribute (of the extract) has free
(unused) value(s) (indicated by frequencies over zero) then it
is not practical to make a next (further) extract because there
would be no free factors to distinguish objects of different
classes in that extract. If there are no free factors (i.e., no
frequencies over zero) then obviously it is not possible to
make a next extract. In both cases the algorithm backtracks
to the previous level.

122

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

Figure 1. Algorithm MONSAMAX2

Each factor that has been used for making an extract or
completing a rule is set to zero in the corresponding
frequency table. Zero in the frequency table means that this
factor is eliminated from the analysis at this level.
Each frequency table (except for the initial level) inherits

all zeroes of the previous level (we call it “bringing zeroes
down”).
Also, after making an extract, its (non-zero) frequencies

are compared to the ones of the previous level. Equal
frequencies at both levels mean that all objects containing
that factor are contained in the extract of the current level
and all possible rules containing them are found at current
and subsequent levels. In order to prevent repetitious finding
of such rules the frequencies of those factors are set to zero
at the previous level. This technique is called “backward
comparison”. Using this pruning technique we can also
determine the extractedness of all rules for some class, i.e., if
for some class all frequencies are equal to zero at the initial
level, it means that all rules for this class are found.
All these techniques can effectively decrease the number

of extracts (nodes of the search tree) without losing the rules
of DSR.

C. Example

In the following example data from [5] are used (Table
I). In order to get a numerical representation the coding
shown in Table II is used. Coded data are shown in Table III.
For given data frequencies are found across all data and

across each class (see Table III). If frequencies of some
factor are equal in the whole dataset and some class, we can
complete the rule. In the given dataset/extract that factor
determines the class. From the initial frequency tables (Table
III) 3 rules are found this way:

R1: T2.1 → Class 1

R2: T3.2 → Class 1

R3: T2.2 → Class 2

TABLE I. EXAMPLE SET (FROM QUINLAN)

Object Height Hair Eyes Class

1 tall dark blue –

2 short dark blue –

3 tall blond blue +

4 tall red blue +

5 tall blond brown –

6 short blond blue +

7 short blond brown –

8 tall dark brown –

TABLE II. CODING OF VALUES

Attribute

Value

Height

T1

Hair

T2

Eyes

T3
Class

1 short dark blue –

2 tall red brown +

3 blond

TABLE III. INITIAL DATA AND FREQUENCIES

Object T1 T2 T3 Class

1 2 1 1 1

2 1 1 1 1

3 2 3 1 2

4 2 2 1 2

5 2 3 2 1

6 1 3 1 2

7 1 3 2 1

8 2 1 2 1

Value T1 T2 T3 Class

1 3 3 5

2 5 1 3 all

3 4

1 2 3 2

2 3 0 3 1

3 2

1 1 0 3

2 2 1 0 2

3 2

The frequencies of those factors (T2.1, T2.2, T3.1) are

set to zero in the current frequency table (see Table IV). Now
the factor with the biggest frequency is selected for making
an extract. We have two candidates: T1.2 and T3.1, both
with frequency 5. As we do not have additional information
we choose the first one. The chosen factor is T1.2 (with
frequency 5). The extract by T1.2 and the corresponding
frequencies are given in Table V.
The cells with grey backgrounds are prohibited factors

that have zeroed frequencies in the previous level. This
frequency table completes no rules. T3.1 with frequency 3 is
chosen for making a subsequent extract (see Table VI).
In this frequency table the frequency of T2.3 in Class 2 is

the same as in the previous level (see Table V), in the

Algorithm MONSAMAX2

S0. t:=0; Ut:=∅
S1. Find frequencies in whole dataset and each class
If t>0 then
Bring zeroes down
Backward comparison

S2. For each factor A such that its frequency in some
class C is equal to its frequency in the whole set

output rule {Ui}&A→C, i=0,…,t

A←0
S3. If not enough free factors for making an extract then

If t=0 then Goto End
Else t:=t-1; Goto S3

S4. Choose a new (free) factor Ut

Ut ←0; t:=t+1;
extract subtable of objects containing Ut;
Goto S1

End. Rules are found

123

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

previous level this frequency is set to zero (because
everything connected to it will be done at a lower level).
From the current frequency table the next rule is found:

R4: T1.2&T3.1&T2.3 → Class 2
After completing a rule, the frequency of T2.3 is set to

zero and the current frequency table contains no more usable
frequencies.
Turning back to the previous level (Table V) it occurs

that after zeroing the frequency of T3.1 (as a basis of the
extract just made) there is only one usable factor (T2.3). It
makes no sense to make an extract by it.
Therefore we turn back to the initial level. The

frequencies are given in Table VII. The frequency of the last
basis for the extract T1.2 is set to zero. The basis for the next
extract is T3.1 with frequency 5. The extracted data and
corresponding frequencies are given in Table VIII.
Backward comparison finds two factors with equal

frequencies at the current and previous (see Table VII)
levels: T1.1=1 in Class 2 and T2.3=2 in Class 2. Both
frequencies are set to zero at the previous level. As we can
see, the frequency table for Class 2 at the initial level is
empty which means that all the rules for Class 2 will be
extracted after traversing the extract by T3.1.

TABLE IV. FREQUENCIES AFTER EXTRACTING 3 RULES

Value T1 T2 T3 Class

1 3 0 5

2 5 0 0 All

3 4

1 2 0 2

2 3 0 0 1

3 2

1 1 0 3

2 2 0 0 2

3 2

TABLE V. EXTRACT BY T1.2=5 AND CORRESPONDING FREQUENCIES

Object T1 T2 T3 Class

1 1 1 1

3 3 1 2

4 2 1 2

5 3 2 1

8 1 2 1

Value T1 T2 T3 Class

1 0 3

2 0 0 all

3 2

1 0 1

2 0 0 1

3 1

1 0 2

2 0 0 2

3 1

TABLE VI. EXTRACT BY T1.2&T3.1=3 AND CORRESPONDING
FREQUENCIES

Object T1 T2 T3 Class

1 1 1

3 3 2

4 2 2

Value T1 T2 T3 Class

1 0

2 0 All

3 1

1 0

2 0 1

3 0

1 0

2 0 2

3 1

TABLE VII. FREQUENCIES AT THE INITIAL LEVEL

Value T1 T2 T3 Class

1 3 0 5

2 0 0 0 All

3 4

1 2 0 2

2 0 0 0 1

3 2

1 1 0 3

2 0 0 0 2

3 2

TABLE VIII. EXTRACT BY T3.1=5 AND CORRESPONDING FREQUENCIES

Object T1 T2 T3 Class

1 2 1 1

2 1 1 1

3 2 3 2

4 2 2 2

6 1 3 2

Value T1 T2 T3 Class

1 2 0

2 0 0 all

3 2

1 1 0

2 0 0 1

3 0

1 1 0

2 0 0 2

3 2

From the current extract (Table VIII) we get a rule:

R5: T3.1&T2.3 → Class 2
After the frequency of T2.3 is set to zero (at the current

level) only one non-zero frequency is left (for T1.1). The

124

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

possible extract by it cannot give any rules. Therefore
algoritm backtracks to the initial level.
The current state of frequencies is given in Table IX.
The next extract is made by T2.3 (see Table X), there are

no rules. There is only one frequency above zero in the
frequency table, therefore we backtrack to the previous
(initial) level.
In the frequency table of the initial level (see Table XI)

there is now only one usable (non-zero) frequency. It cannot
give a rule because if it could then it could be extracted from
the initial table at the beginning. An extract is not made. The
work is finished.

TABLE IX. FREQUENCIES AT THE INITIAL LEVEL

Value T1 T2 T3 Class

1 3 0 0

2 0 0 0 all

3 4

1 2 0 0

2 0 0 0 1

3 2

1 0 0 0

2 0 0 0 2

3 0

TABLE X. EXTRACT BY T2.3=4 AND CORRESPONDING FREQUENCIES

Object T1 T2 T3 Class

3 2 1 2

5 2 2 1

6 1 1 2

7 1 2 1

Value T1 T2 T3 Class

1 2 0

2 0 0 all

3

1 1 0

2 0 0 1

3

1 0 0

2 0 0 2

3

TABLE XI. FREQUENCIES AT THE INITIAL LEVEL

Value T1 T2 T3 Class

1 3 0 0

2 0 0 0 all

3 0

1 2 0 0

2 0 0 0 1

3 0

1 0 0 0

2 0 0 0 2

3 0

So, we extracted 5 rules: R1: T2.1 → Class 1, R2: T3.2

→ Class 1, R3: T2.2 → Class 2, R4: T1.2&T3.1&T2.3 →

Class 2, R5: T3.1&T2.3 → Class 2.
As we see the extracted rule set is not DSR because of

the rule R4 which is a subrule of R5. After the compression
of the extracted rule set we get a DSR: R1, R2, R3 and R5.
The number of extracted rules for MONSAMAX2

depends on the criteria of choosing the leader value for an
extract in a situation when there are several candidates with
equal frequencies. For example, if we would choose in the
beginning of the algorithm T3.1 (with frequency 5) as a
leader value instead of T1.2 (frequency=5), then we would
extract only 4 rules (R1, R2, R3 and R5) and compression
would not be needed (but we do not know this).
MONSAMAX2 produces more additional information for
effective rule set compression, but here is not enough space
for presenting it.

D. Discussion

For the same purpose – to find a complete and consistent
description – algorithms MONSIL [6] and DEILA [7] have
been proposed. Each of the algorithms (MONSAMAX2,
MONSIL and DEILA) work in a different way and usually
give different descriptions. The common idea is the step
following the main algorithm – compression of the found
rule set in order to get a result as compact as possible .
Similarly to MONSAMAX2 the result of MONSIL

(before compression) depends on the choice of leader value
for making extract when there are several candidates with
equal frequencies. For the same Quinlan’s data [5] as here
(see Table I), two different results of MONSIL are given (in
[6]): the first one consisting of 8 rules and the second – 5

rules. In the latter, the redundant rule (T1.1&T2.3&T3.1 →
Class 2) is not the same as in case of MONSAMAX2

(T1.2&T3.1&T2.3 → Class 2). The result which consists of
8 rules contains two more redundant rules (containing T1.1)
in addition to these two.
We noticed that after compression the results of

MONSIL and MONSAMAX2 are the same. This rule set is
called DSR (determinative set of rules).
Algorithm DEILA finds more rules than MONSAMAX2

and MONSIL. From Quinlan’s data it finds 15 rules. The
result of DEILA may not contain all DSR rules. Some of
them can be “replaced” by longer rules. This is due to
DEILA’s working principle – all found rules are dicliques.
The amount of extracted rules for MONSAMAX2 is

smaller than for MONSIL because the first one extracts
shorter rules first while the latter extracts longer rules first.
The difference is in the number of (redundant) subrules – the
rules that will be removed by compression. MONSAMAX2
finds fewer such rules (due to finding shorter rules first).
In order to determine the belonging of the extracted

objects to the same class in the process of extracting rules,
MONSIL must make an extract and usually the objects do
not belong to the same class. It means that we have made a
superfluous effort. MONSAMAX2 works so effectively
because we have data to determine belonging of objects to
the same class using 3D frequency tables, there is no need to
make these extracts.

125

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

During the work of MONSAMAX2 we can also observe
every class covering with rules: if 3D frequencies for some
class are empty at the initial level it means that all rules for
this class are extracted.

IV. CONCLUSION

This paper proposes a new approach and the
corresponding algorithm MONSAMAX2 for finding a
determinative set of overlapping rules. The algorithm is
based on frequency tables and new pruning techniques which
make it easy to detect a potential DSR rule.
MONSAMAX2 is more effective compared to the former

algorithm MONSIL because it prevents the making of many
unnecessary extracts due to using 3D frequency tables. Also
it finds less redundant (i.e., non-DSR) rules because it finds
shorter rules first while MONSIL starts from the longer ones.
On the basis of DSR we can form and solve next tasks,

for example, to find
1. the shortest rules (by the number of attributes (selectors)
in the rule),

2. the longest rules (by the number of attributes in the rule),
3. the rules with specific features (for example, all rules with
r selectors),

4. the shortest rule system (i.e., the rule system with the
smallest number of rules),

5. the rule system which consists of rules with minimal
number of selectors,

6. all the rule systems we can form on the basis of DSR.
All these tasks are necessary for the post-analysis of the

extracted rules. It means that several new possibilities are
available for experimentation with several rule sets (subsets
of DSR) and for describing them. We must not try to
minimize the rule set during the work of a machine learning
algorithm, we can find the best solution during the post-
analysis of DSR.
Using DSR and the post-analysis of rules also gives the

possibility to gather statistics about the use of rules in
classification in order to analyze the rules’ perspective and
their power of classification. We can also see which rules
classify more accurately and which do not on the basis of the
information we have about classified (test-set and real)
objects. On this basis we can reorder the rules in the rule set.
DSR is a good basis for developing this approach.

Somebody might say that the finding of DSR is very
laborious, especially in cases of large amounts of data. If so,
the user can decide what is the purpose of the work. If the
purpose is a quick one-time information gathering for a data
set under analysis then the use of DSR-based IL approach
may not be the best one. But if the purpose is to describe the
data set and through that discover new knowledge and get an
opportunity for post-analysis of the rule set then this
approach is a good solution.
The post-analysis of rules will be the topic of the next

paper.

REFERENCES

[1] L. Torgo, “Rule combination in inductive learning,” in
Machine Learning: ECML-93, ser. Lecture Notes in
Computer Science, P. Brazdil, Ed. Springer Berlin /
Heidelberg, 1993, vol. 667, pp. 384-389.

[2] T. Treier, “A new effective approach for solving the rules
conflict problem”, 2011 International Conference on
Intelligent Computing and Control (ICOICC 2011), May
2011, in press.

[3] I. Birzniece, “From Inductive Learning towards Interactive
Inductive Learning,” in Scientific Journal of Riga Technical
University, Computer Science. Applied Computer Systems,
vol. 41, 2010, pp. 106-112.

[4] M. Gams and N. Lavrac, “Review of Five Empirical Learning
Systems within a Proposed Schemata,” in I. Bratko, N. Lavrac
(Eds.), Progress in Machine Learning, Proceedings of EWSL
87: 2nd European Working Session on Learning, Bled,
Yugoslavia, May 1987. Sigma Press, Wilmslow, 1987, pp.
46-66.

[5] J. R. Quinlan, “Learning efficient classification procedures
and their application to chess end games,” in J. G. Carbonell,
R. S. Michalski, T. M. Mitchell (Eds.), Machine Learning. An
Artificial Intelligence Approach, Springer-Verlag, 1984, pp.
463-482.

[6] P. Roosmann, L. Võhandu, R. Kuusik, T. Treier, and G. Lind,
“Monotone Systems approach in Inductive Learning,” in
International Journal of Applied Mathematics and
Informatics, Issue 2, Vol. 2, 2008, pp. 47-56.

[7] R. Kuusik, T. Treier, G. Lind, and P. Roosmann, ”Machine
Learning Task as a Diclique Extracting Task,” 2009 Sixth
International Conference on Fuzzy Systems and Knowledge
Discovery: FSKD'09, Tianjin, China, August 14-16, 2009;
Los Alamitos, California: Conference Publishing Service,
2009, pp. 555-560.

126

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

