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Abstract—In this paper, we address the problem of pre-
dicting the location of amyloidogenic regions in proteins.
To support this process we used a genetic algorithm-based
wrapper feature subset selection. The wrapper feature subset
selection approach is about choosing a minimal subset of
features that satisfies an evaluation criterion. We find that most
of the machine learning algorithms taken from the WEKA
software achieved no worse Accuracy over reduced dataset
than over the non-reduced dataset. Moreover, research has
confirmed the observations of other researchers, that amino-
acids have highly position-dependent propensities.
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I. INTRODUCTION

In this paper, we are interested in predicting amyloid
proteins. A protein becames amyloid due to an alteration
in its secondary structure. A key role in conversion of
proteins from their soluble state into fibrillar, beta-structured
aggregates, play short sequences, named hotspots. Amyloid
proteins cause a group of diseases called amyloidosis, such
as Alzheimer’s, Huntington’s disease, and type II diabetes.
Symptoms of amyloidosis depend on the organs and tissues
amyloid affects.

A laboratory test of a large number of peptides for
determining the presence of amyloid protein is in fact theo-
retically possible, but practically it is not feasible. Therefore,
computational methods are commonly used to overcome this
limitation. Over the last few years, various computational
methods - among existing ones - have been developed to
detect these hotspots in proteins, like AmylPred [1], Pafig
[2], FoldAmyloid [3], and Waltz [4] (for available software
dedicated to this task see [5]). However, these methods
are very often time consuming algorithms (like 3D Profile
method). It is useful, therefore, to use less demanding
methods, such as machine learning algorithms, moreover
joined with a reduction of the size of the analyzed data.

In this work, we carry an elaborate performance study
of different machine learning classification algorithms and
feature subset selection (FSS) method applied to Amy-
loidogenic dataset. All of the algorithms and the wrapper
were taken from the Weka machine learning software [6].

The methods over datasets (reduced and non-reduced) were
compared in terms of Accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 includes state-of-the-art of the problem of predicting
amyloidogenic regions, and Section 3 describes Amyloido-
genic dataset, FSS method mining the data, and a set of
classifiers. Section 4 shows the results obtained, and finally
the conclusions are drawn in Section 5.

II. STATE OF THE ART

As established recently [7], there is the strong associ-
ation between protein fibrils and amyloid diseases, such
as Alzheimer’s disease, Parkinson’s disease, transmissible
spongiform encephalopathies, and type II diabetes. It was
also observed [8], that amyloids can be formed from short
peptide fragments, called hotspots. These strings when ex-
posed to the environment can cause the changeover of native
proteins into amyloid state.

Since it is not possible to experimental test all possible
protein sequences, several computational tools for predicting
amyloid chains have emerged. Most of them are based on
physicochemical grounds or structural denominators, like
AmylPred [1], Pafig [2], FoldAmyloid [3], and Waltz [4].
However, to our knowledge, no one has used a genetic
algorithm-based wrapper feature subset selection method to
solve problem under study.

In this paper, we propose a feature subset selection to
support predicting amyloid peptides. More over, we are
not interested in a time-consuming investigation of physico-
chemical properties of the amino acids [9], [10], [11], [12] or
gaining insight into aggregation propensity [13], [14], [15].
What we are trying to do is to predict amyloidogenic feature
of peptide sequence, having no additional knowledge about
this sequence. Feature subset selection methods are taken
from general-oriented, freely available WEKA software.

III. DATA AND METHODS

A. Data

In our work, we used so-called Waltz amyloidogenic
dataset [4]. This is experimentally verified database con-
sisting of 116 amyloidogenic hexapeptides and 162 non-
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amyloid-forming hexapeptides. According to its authors, to
obtain these data more than 200 peptide sequences were
inspected using different structural and biophysical meth-
ods. Advantage of Waltz dataset over the others is that it
contains experimentally determined structures. Very often
amyloid datasets created by various modeling methods –
computationally identified – (like the 3D profile methods)
[13]) are prone to producing erroneous results. Note that
the RosettaDesign potential energy function used in the 3D
profile methods is based on heuristic simulated annealing.

B. Classifiers

The experiments were conducted comparing the classifi-
cation Accuracy of 13 classification methods implemented
in the Weka software. Here we briefly list the classifiers that
we used:

• Naive Bayes and BayesNet – classifiers based on the
Bayesian Theorem in which it is assumed that the
attributes have equal weight and are conditionally in-
dependent,

• Support Vector Machine – algorithm trying to find a
hypersurface in the space of possible inputs,

• C4.5, Random Tree, REPTree, RandomForest, ADTRee
– methods creating a hierarchy of nodes, each asso-
ciated with a decision rule on one attribute. ADTree
creates alternating decision trees, RandomTree builds
a tree considers a given number of random features at
each node, RandomForest builds random forests using
Breiman’s algorithm in which multiple random trees
vote on an overall classification for the given set of
inputs. REPTree uses reduced-error pruning to speed up
a learning process, C4.5 algorithm improves Quinlan’s
method for decision tree induction,

• JRip – classifier generating rules, which can trans-
formed from or in decision trees. JRip is the WEKA
version of RIPPER, which is a rule-based learner that
builds a set of rules that identify the classes while
minimizing the amount of error. The error is defined
by the number of training examples misclassified by
the rules,

• MultiLayer Perceptron – kind of simple neural net-
work classifier, in which backpropagation algorithm
calculates connection weigths given a fixed network
structure,

• KStar – an instance-based classifier using an Entropic
Distance Measure. It provides a consistent approach to
handling of symbolic attributes, real valued attributes
and missing values,

• AdaBoost – one of the most popular boosting al-
gorithms. Boosting is an iterative method in which
new model is efected by the performance of those
built previously. This is achieved by assigning proper
weights to learning instances in each iteration,

• END – a meta-classifier for handling multi-class
datasets. The main idea of meta-classification is to
represent the judgment of each classifier (SVM-based)
for each class as a feature vector, and then to re-classify
again in the new feature space. The final decision is
made by the meta-classifiers instead of just linearly
combining each classifiers judgment.

More information on implementing in the Weka software
classifiers is presented in [6].

The quality of our predictions was evaluated using the
commonly used standard value Accuracy, which is measured
by the number of correct results, the sum of true positives
and true negatives, in relation to the number of tests carried
out

Accuracy = (
TruePositives+ TrueNegatives

Total
)× 100

(1)
where True Positives are correctly (i.e., as amyloidegenic

peptides) recognized positive examples, True Negatives -
correctly recognized negatives (i.e., as non-amyloidogenic
ones).

C. GA-based Wrapper Feature Selection

Feature selection methods can be put into two main
categories from the point of view of a methody output. One
category, called filter approach, comprises methods ranking
features according to the same evaluation criterion; the other,
called the wrapper approach, consists of methods choosing
a minimum subset of features that satisfies an evaluation
criterion.

It was proved that the wrapper approach produces the best
results out of the feature selection methods [16], although
this is a time-consuming method since each feature subset
considered must be evaluated with the classifier algorithm. In
the wrapper method, the attribute subset selection algorithm
exists as a wrapper around the data mining algorithm and
outcome evaluation. The induction algorithm is used as a
black box. The feature selection algorithm conducts a search
for a proper subset using the induction algorithm itself as a
part of the evaluation function. GA-based wrapper methods
involve a genetic algorithm (GA) as a search method of
subset features.

GA is a random search method, effectively exploring large
search spaces [17]. The basic idea of GA is to evolve a
population of individuals (chromosemes), where individual
is a possible solution to a given problem. In case of searching
the appropriate subset of features, a population consists of
different subsets evolved by a mutation, a crossover, and
selection operations. After reaching maximum generations,
algorithms returns the chromosome with the highest fitness,
i.e. the subset of attributes with the highest Accuracy.
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IV. EXPERIMENTAL RESULTS

The comparison was performed using a recently pub-
lished Amyloidogenic dataset, composed by 116 hexapep-
tides known to induce amyloidosis and by 162 hexapeptides
that do not induce amyloidosis [4]. In our experiments, we
randomly split the Amyloidogenic database into 10 equally
folds, and use a 10-fold cross validation method to determine
the classification Accuracy.
A k-fold cross validation (k-fold cv) is a well-established
statistical method of evaluating a learner, combining training
and validation phases [18]. In k-fold cv the data is partioned
into k folds, and next subsequently k iterations of learning
and testing are performed such that within each iteration a
different fold of the data is held-out for validation while the
remaining k − 1 folds are used for learning.

Original Feature Set

Feature Subset Search
by Genetic Algorithm

Naive Bayes 
as Induction Algorithm

Induction Algorithm
(one of 13)

Best Feature Subset

Figure 1. GA-based wrapper feature selection with Naive Bayes as an
induction algorithm evaluating feature subset

We employ 13 commonly used machine learning al-
gorithms: BayesNet, NaiveBayes, MultiLayerPerceptron
(MLP), Support Vector Machine (SMO), KStar, AdaBoost,
END, JRip, C4.5, Random Tree, REPTree, RandomForest,
ADTree and GA-based wrapper approach for feature selec-
tion. GA-based wrapper methods involve a genetic algorithm
as a search strategy of subset features, and one of the
machine learning method as an induction algorithm, in this
paper NaiveBayes (see Fig. 1). The study [19] noted that
no significant difference exists between results achieved by
various induction algorithms used in a GA-based wrapper
method. All of the classification algorithms and the wrapper
were taken from the Weka software [6], all of them used

default parameters.
Table 1 summarizes the performances of the 13 compared

methods over reduced (denoted as a Dataset 1-3-5), and non-
reduced Amyloidogenic dataset (Dataset 1-2-3-4-5-6). Ten
of the thirteen methods gained better results over reduced
dataset, although the results were not confirmed statistically.
What is interesting, the feature selection method chooses
only three from six amino acids as important in hexapeptide,
in positions 1, 3, and 5. Note that such observations were
also made in laboratory experiments. Maurer-Stroh et al.
[4] recorded the strong position-specific tendencies of the
different amino acids for forming amyloid structures.

Table I
THE PERFORMANCES IN TERMS OF ACCURACY OF THE MACHINE

LEARNING METHODS OVER REDUCED AND NON-REDUCED
AMYLOIDOGENIC DATASET. THE HIGHER ACCURACY IN A ROW IS

INDICATED IN BOLD.

Method Dataset 1-3-5 Dataset 1-2-3-4-5-6
BayesNet 68.02 65.57

NaiveBayes 66.93 65.57
MLP 64.76 72.34
SMO 68.37 73.81
KStar 63.69 65.50

AdaBoost 69.80 68.37
END 64.03 60.81
JRip 69.06 68.74

ADTree 73.77 69.81
C4.5 64.03 60.81

RandomTree 66.55 65.91
REPTree 66.90 66.28

RandomForest 66.56 65.15

V. CONCLUSION

The problem of predicting the amyloidogenic regions in
proteins was addressed. Our analysis showed that the use of
feature subset selection can support efficiently this task. In
most cases machine learning methods have achieved better
results over reduced dataset. In addition, methods processed
twice smaller learning set.

It is worth noticing that the overall best results have
been gained by Support Vector Machine over non-reduced
data (73.81 % of Accuracy), and Alternating Tree but over
reduced dataset (73.77 %). If SVM is quite often used in
prediction different regions in protein chains [2], the ADTree
gives interpretable and understandable by human results.

The performed computational experiments confirm also
laboratory studies over proteins, in which the strong position
dependency of residues are observed.
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