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Abstract—Bayesian Networks have deserved extensive atten-
tions in data mining due to their efficiencies, and reasonable
predictive accuracy. A Bayesian Network is a directed acyclic
graph in which each node represents a variable and each arc a
probabilistic dependency between two variables. Constructing
a Bayesian Network from data is the learning process that is
divided in two steps: learning structure and learning parameter.
In many domains, the structure is not known a priori and
must be inferred from data. This paper presents an iterative
unrestricted dependency algorithm for learning structure of
Bayesian Networks for binary classification problems. Numer-
ical experiments are conducted on several real world data
sets, where continuous features are discretized by applying two
different methods. The performance of the proposed algorithm
is compared with the Naive Bayes, the Tree Augmented Naive
Bayes, and the k−Dependency Bayesian Networks. The results
obtained demonstrate that the proposed algorithm performs
efficiently and reliably in practice.

Keywords-Data Mining; Bayesian Networks; Naive Bayes;
Tree Augmented Naive Bayes; k−Dependency Bayesian Net-
works; Topological Traversal Algorithm.

I. INTRODUCTION

Data Mining is defined as the nontrivial process of
identifying valid, novel, potentially useful, and ultimately
understandable patterns in data [6]. The whole process of
data mining consists of several steps. Firstly, the problem
domain is analyzed to determine the objectives. Secondly,
data is collected and an initial exploration is conducted to
understand and verify the quality of the data. Thirdly, data
preparation is made to extract relevant data sets from the
database. A suitable data mining algorithm is then employed
on the prepared data to discover knowledge represented
in different representations such as decision trees, neural
networks, support vector machine and Bayesian Networks.
Finally, the result of data mining is interpreted and evaluated.
If the discovered knowledge is not satisfactory, these steps
will be iterated. The discovered knowledge is then applied
in decision making. Recently, there is an increasing interest
in discovering knowledge represented in Bayesian Networks
[13], [14], [17], [15], [19] and [28]. Bayesian networks
(BNs), introduced by Pearl [21], can encode dependencies

among all variables; therefore, they readily handle situations
where some data entries are missing. BNs are also used
to learn causal relationships, and hence can be used to
gain understanding about a problem domain and to predict
the consequences of intervention. Moreover, since BNs in
conjunction with Bayesian statistical techniques have both
causal and probabilistic semantics, they are an ideal repre-
sentation for combining prior knowledge and data [10]. In
addition, BNs in conjunction with Bayesian statistical meth-
ods offer an efficient and principal approach for avoiding the
over fitting of data [20]. BNs have been applied widely for
data mining, causal modeling and reliability analysis [29].

This paper presents a novel unrestricted dependency algo-
rithm to learn knowledge represented in BNs from data. A
BN is a graphical representation of probability distributions
over a set of variables that are used for building a structure
of the problem domain. The BN defines a network structure
and a set of parameters, class probabilities and conditional
probabilities. Once the network structure is constructed, the
probabilistic inferences are readily calculated, and can be
performed to predict the outcome of some variables based
on the observations of others.

The main task of learning BNs from data is finding
directed arcs between variables, or, in other words, the struc-
ture discovery, which is the more challenging, and thus, more
interesting phase. Two rather distinct approaches have been
used widely to structure discovery in BNs: the constraint-
based approach [22], [27] and the score-based approach [1],
[5], [26]. In the the constraint-based approach, structure
learning cares about whether one arc in the graph should
be existed or not. This approach relies on the conditional
independence test to determine the importance of arcs [4]. In
the score-based approach, several candidate graph structures
are known, and we need choosing the best one out. In
order to avoid over fitting, investigators often use model
selection methods, such as Bayesian scoring function [5] and
entropy-based method [12]. Several exact algorithms based
on dynamic programming have recently been developed to
learn an optimal BN [16], [24], [25] and [31]. The main idea
in these algorithms is to solve small subproblems first and
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use the results to find solutions to larger problems until a
global learning problem is solved. However, they might be
inefficient due to their need to fully evaluate an exponential
solution space.

It has been proved that learning an optimal BN is NP-
hard [11]. In order to avoid the intractable complexity for
learning BNs, the Naive Bayes [18] has been used. The
Naive Bayes (NB) is the simplest among BNs. In the NB,
features are conditionally independent given the class. It
has shown to be very efficient on a variety of data mining
problems. However, the strong assumption that all features
are conditionally independent given the class is often vio-
lated on many real world applications. In order to relax this
assumption of the NB while at the same time retaining its
simplicity and efficiency, researchers have proposed many
effective methods [7], [23] and [28]. Sahami [23] proposed
the k−dependence BNs to construct the feature dependence
with a given number, value of k. In this algorithm, each
feature could have a maximum of k feature variables as
parents, and these parents are obtained by using mutual
information. The value of k in this algorithm is initially
chosen before applying it, k = 0, 1, 2, .... Friedman et
al. [7] introduced the Tree Augment Naive Bayes (TAN)
based on the tree structure. It approximates the interactions
between features by using a tree structure imposed on the
NB structure. In the TAN, each feature has the class and at
most one other feature as parents.

Although the mentioned methods were shown to be effi-
cient, the features in these methods depend on the class and
a priori given number of features; k = 0 dependence for the
NB, k = 1 dependence for the TAN, and an initially chosen
k for the k-dependence BNs. In fact, by setting k, i.e., the
maximum number of parent nodes that any feature may have,
we can construct the structure of BNs. Since k is the same
for all nodes, it is not possible to model cases where some
nodes have a large number of dependencies, whereas others
just have a few. In this paper, we propose a new algorithm
to identify the limitations of each of these methods while
also capturing much of the computational efficiency of the
NB. In the proposed algorithm, the number k is defined by
the algorithm internally, and it is an unrestricted dependency
algorithm.

The rest of the paper is organized as follows. In the next
section, we provide a brief description of BNs. In Section III,
we introduce a new algorithm for structure learning of BNs
from binary classification data. Section IV presents a brief
review of the Topological Traversal algorithm. The results
of numerical experiments are given in Section V. Section
VI concludes the paper.

II. REPRESENTATION OF BAYESIAN NETWORKS

A BN consists of a directed acyclic graph connecting
each variables into a network structure and a collection of
conditional probability tables, where each variable in the

graph is denoted by a conditional probability distribution
given its parent variables. The nodes in the graph correspond
to the variables in the domain, and the arcs (edges) between
nodes represent causal relationships among the correspond-
ing variables. The direction of the arc indicates the direction
of causality. When two nodes are joined by an arc, the causal
node is called the parent of the other node, and another one is
called the child. How one node influences another is defined
by conditional probabilities for each node given its parents
[21]. Suppose a set of variables X = {X1, X2, ..., Xn},
where Xi denotes both the variable and its corresponding
node. Let Pa(Xi) denotes a set of parents of the node Xi in
X. When there is an edge from Xi to Xj , then Xj is called
the child variable for a parent variable Xi. A conditional
dependency connects a child variable with a set of parent
variables. The lack of possible edges in the structure encodes
conditional independencies.

In particular, given a structure, the joint probability dis-
tribution for X is given by

P (X) =

n∏
i=1

P (Xi|Pa(Xi)), (1)

here, P (Xi|Pa(Xi)) is the conditional probability of Xi

given its parents Pa(Xi), where

P (Xi|Pa(Xi)) =
P (Xi, Pa(Xi))

P (Pa(Xi))
=
nXi,Pa(Xi)

nPa(Xi)
,

where nPa(Xi) denotes the number of items in the set
Pa(Xi), and nXi,Pa(Xi) is the number of items in Xi ∩
Pa(Xi).

However, accurate estimation of P (Xi|Pa(Xi)) is non
trivial. Finding such an estimation requires searching the
space of all possible network structures for one that best
describes the data. Traditionally, this is done by employing
some search mechanism along with an information criterion
to measure goodness and differentiate between candidate
structures met while traversing the search space. The idea
would be to try and maximize this information measure
or score by moving from one structure to another. The
associated structure is then chosen to represent and explain
the data. Finding an optimal structure for a given set
of training data is a computationally intractable problem.
Structure learning algorithms determine for every possible
edge in the network whether to include the edge in the final
network and which direction to orient the edge. The number
of possible graph structures grows exponentially as every
possible subset of edges could represent the final model.
Due to this exponential growth in graph structure, learning
an optimal BNs has been proven to be NP-hard [11].

During the last decades a good number of algorithms
whose aim is to induce the structure of the BN that better
represents the conditional dependence and independence
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relationships underlying have been developed [4], [5], [7],
[12], [16], [24] and [25]. In our opinion, the main reason for
continuing the research in the structure learning problem is
that mendelizing the expert knowledge has become an ex-
pensive, unreliable and time consuming job. We introduce a
new algorithm for structure learning of BNs in the following
section.

III. THE PROPOSED ALGORITHM FOR BAYESIAN
NETWORKS

In this section, we propose a new algorithm to learn the
structure of BNs for binary classification problems. Since
the learning process in BNs is based on the correlations
of children and parent nodes, we propose a combinatorial
optimization model to find the dependencies between fea-
tures. However, some features could be independent which
is considered by intruding a threshold K. Let us consider
an optimization model (2):

max
∑n

i=1

∑n
j=1(Kij −K)wij ,

j 6= i
(2)

subject to wij + wji ≤ 1,
where 1 ≤ i, j ≤ n, i < j and wij ∈ {0, 1}. wij is the
association weight (to be found), given by

wij =


1 if feature Xi is the parent of feature Xj ,

0 otherwise,
(3)

and for 1 ≤ i, j ≤ n, i 6= j,

Kij =

|Xj |∑
q2=1

|Xi|∑
q1=1

max{P (Xq2j |C1, Xq1i), P (Xq2j |C2, Xq1i)}.

(4)
Here, |Xj | and |Xi| are the number of values of features
Xj and Xi, respectively, and Xql shows the qth value of
the feature Xl, 1 ≤ l ≤ n. We assume binary classification;
C1 = 1 and C2 = −1 are class labels. K is a threshold such
that K ≥ 0.

From the formula (2), wij = 1 if Kij > Kji and Kij >
K, and therefore wji = 0 due to the constraint wij +wji ≤
1. It is clear that wii = 0, 1 ≤ i ≤ n. Thus problem (2) can
be solved easily. Let us denote the solution of the problem
(2) by W (K) = [wij(K)]n×n, where

wij(K) =


1 if Kij > Kji and Kij > K,

0 otherwise,
(5)

and the set of arcs presented by

A(W ) = {(i, j) : if wij = 1, 1 ≤ i, j ≤ n, i 6= j}, (6)

(i, j) shows the arc from Xi to Xj . If we have set of
arcs A(W ), then we have the corresponding matrix W
that satisfies (6). It is clear that A(W ) ⊂ I, where I =
{(i, j), 1 ≤ i, j ≤ n} is the set of all possible couples
(i, j).

The best value for K will be found based on the maximum
training accuracy for different values of wij(K), where 0 ≤
K ≤ Kmax, and

Kmax = max{Kij , 1 ≤ i, j ≤ n, i 6= j}. (7)

More precisely, we find the values of wij(Kr) for different
Kr = Kmax − εr, r = 0, 1, ... until Kr < 0, and we set
W (Kr) = [wij(Kr)]n×n. With the matrix W (Kr), the set
of arcs A(W (Kr)) and, therefore, a network will be learnt.
Based on the obtained network, the conditional probabilities
will be found:

P (C|X) ≡
n∏

i=1

P (Xi|C,Pa(Xi))P (C), (8)

where Pa(Xi) denotes the set of parents of the variable Xi

to be found with W (Kr). Now, based on these conditional
probabilities, we calculate:

C(X) =


1 if P (C1 = 1|X) > P (C2 = −1|X),

−1 otherwise,

and then the maximum training accuracy will be found using
the following formula:

accuracy(A(W (Kr))) =
100

ntr

ntr∑
i=1

δ(C(Xi), Ci), r = 0, 1, ...

(9)
where

δ(α, β) =


1 if α = β

0 otherwise.

We will choose that value of r corresponding to the high-
est training accuracy. Here, ntr stands for the number of
instances in the training set.

Since BNs are directed acyclic graphs, we should not
have any cycle in the structure obtained by A(W (Kr)).
Therefore, the maximum training accuracy subject to no
cycles will give the best value of Kr, denoted by K∗, and
consequently, the best structure A(W (K∗)). Here, we apply
the topological traversal algorithm to test if the correspond-
ing graph to the obtained network is acyclic.

According to explanations above, the proposed algorithm
constructs unrestricted dependencies between features based
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on the structure of the NB. The proposed algorithm elim-
inates the strong assumptions of independencies between
features in the NB, yet at the same time maintains its
robustness. It is clear that r = 0 in the proposed algorithm
gives the structure of the NB. In our algorithm, some features
could have a large number of dependencies, whereas others
just have a few. The number of these dependencies will
be defined by the algorithm internally. The steps of our
algorithm is presented in the following:

Step 1. Compute {Kij , 1 ≤ i, j ≤ n, i 6= j} using (4).

Step 2. Determine Kmax using (7). Set r = 0, and
p0 = 0.

Step 3. while Kmax − εr ≥ 0 do

3.1. Calculate Kr = Kmax − εr.

3.2. Compute wij(Kr), 1 ≤ i, j ≤ n, (i 6= j) using
(5), and let W (Kr) = [w(Kr)ij ]n×n.

3.3. Find dependencies between features by a set of
arcs A(W (Kr)) using (6).

3.4. Apply the topological traversal algorithm to
test the network obtained by A(W (Kr)) for
possible cycles. If any cycle is founds, then go to
Step 4.

3.5. Compute the training accuracy,
p = accuracy(A(W (Kr)), using (9). If p > p0
then set p0 = p, K∗ = Kr, r = r + 1.

end

Step 4. Construct the optimal structure based on the
basic structure of the NB and applying the set of arcs
A(W (K∗)) between features.

Step 5. Compute the conditional probability tables
inferred by the new structure.

Algorithm 1: Unrestricted Dependency BNs Algorithm

In this paper, we limit ourselves to binary classification,
though a brief discussion on multiple class classification
is warranted. The most straightforward approach in these
classification problems is finding maximum of m conditional
probabilities in the formula (4), where m is the number of
classes. Moreover, the one-versus-all classification paradigm
will be used to find either in the training accuracy, (9), or
the test accuracy in the experiments.

IV. TOPOLOGICAL TRAVERSAL ALGORITHM

The topological traversal algorithm [8] is applied for
testing a directed graph if there exists any cycle. The degree
of a node in a graph is the number of connections or
edges the node has with other nodes. If a graph is directed,
meaning that edges point in one direction from one node to

another node. Then nodes have two different degrees, the
in-degree, which is the number of incoming edges to this
node, and the out-degree, which is the number of outgoing
edges from this edge.

The topological traversal algorithm begins by computing
the in-degrees of the nodes. At each step of the traversal, a
node with in-degree of zero is visited. After a node is visited,
the node and all the edges emanating from that node are
removed from the graph, reducing the in-degree of adjacent
nodes. This is done until the graph is empty, or no node
without incoming edges exists. The presence of the cycle
prevents the topological order traversal from completing.
Therefore, the simple way to test whether a directed graph
is cyclic is to attempt a topological traversal of its nodes. If
all nodes are not visited, the graph must be cyclic.

V. EXPERIMENTS

We have employed 12 well-known binary classification
data sets. A brief description of the data sets is given in
Table I. The detailed description of the data sets used in
this experiments are downloadable in the UCI repository of
machine learning databases [2] and the tools page of the
LIBSVM [3]. The reason that we have chosen these data
sets is: they are the most frequently binary classification
data sets considered in the literature.

All continue features in data sets are discretized using two
different methods. In the first one, we apply a mean value
of each feature to discretize values to binary, {0, 1}. In the
second one, we use the discretization algorithm using sub-
optimal agglomerative clustering (SOAC) [30] to get more
than two values for discretized features.

We conduct an empirical comparison for the Naive
Bayes (NB), the Tree Augmented Naive Bayes (TAN), the
k−Dependency Bayesian Networks (k−DBN), and the pro-
posed algorithm (UDBN) in terms of test set accuracy. We
have compared our algorithm with the mentioned algorithms
because the basic structure of all, the TAN, the k−DBN and
the UDBN, is based on the the structure of the NB. In all
the cases we have used 10−fold cross validation. We report
the averaged accuracy over the ten test folds.

Table II presents the averaged test set accuracy obtained
by the NB, the TAN, the k−DBN and the UDBN on 12 data
sets, where continuous features are discretized using mean
values for discretization. The results presented in this table
demonstrate that the accuracy of the proposed algorithm
(UDBN) is much better than that of the NB, and the TAN in
all data sets. The UDBN also works better than the k−DBN
in most of data sets. In 10 cases out of 12, the UDBN
has higher accuracy than the k−DBN. The accuracy of this
method almost ties with the k−DBN in data sets Phoneme
CR and German.numer.

The averaged test set accuracy obtained by the NB, the
TAN, the k−DBN and the UDBN on 12 data sets using
discretization algorithm SOAC summarized in Table III. The
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results from this table show that the accuracy obtained by
the proposed algorithm in all data sets are higher than those
obtained by the NB, the TAN, and the k−DBN.

According to the results explained, the proposed algo-
rithm, UDBN, works well. It yields good classification
compared to the NB, the TAN and the k−DBN. In addition,
our algorithm is more general than the k−DBN. In the
k−DBN, the number k is a priori chosen. In fact, by setting
k, i.e., the maximum number of parent nodes that any
feature may have, the structure of BNs could be constructed.
Since k is the same for all nodes, it is not possible to
model cases where some nodes have a large number of
dependencies, whereas others just have a few. However, in
the proposed algorithm, the number k is defined by the
algorithm internally, and it is an unrestricted dependency
algorithm. It might be various for different data sets, and
even for each fold in the calculations. The computational
times are not presented in Tables II and III. It is clear that
the proposed algorithm needs more computational time than
the others, since for example, the NB appears as a special
case of UDBN when r = 0.

Table I
A BRIEF DESCRIPTION OF DATA SETS

Data sets # Instances # Features

Breast Cancer 699 10
Congressional Voting Records 435 16
Credit Approval 690 15
Diabetes 768 8
Haberman’s Survival 306 3
Ionosphere 351 34
Phoneme CR 5404 5
Spambase 4601 57
Fourclass 862 2
German.numer 1000 24
Svmguide1 7089 4
Svmguide3 1284 21

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new algorithm for
learning of the structure in Bayesian Networks. An important
property of this algorithm is adding some numbers of
arcs between features that captures unrestricted dependency
among them. The number of arcs has been defined by the
proposed algorithm internally. We have carried out a number
of experiments on some binary classification data sets from
the UCI machine learning repository and LIBSVM. The
values of features in data sets are discritized by using
mean value of each feature and applying discretization algo-
rithm using sub-optimal agglomerative clustering. We have
presented results of numerical experiments. These results
clearly demonstrate that the proposed algorithm achieves

Table II
TEST SET ACCURACY AVERAGED OVER 10−FOLD CROSS VALIDATION

FOR DATA SETS USING MEAN VALUES FOR DISCRETIZATION. NB
STANDS FOR NAIVE BAYES, TAN FOR TREE AUGMENTED NAIVE

BAYES, k−DBN FOR k−DEPENDENCY BAYESIAN NETWORKS, k = 2,
AND UDBN FOR THE PROPOSED ALGORITHM

Data sets NB TAN k−DBN UDBN

Breast Cancer 97.18 96.52 97.31 97.66
Congressional Voting Records 90.11 93.21 94.62 95.48
Credit Approval 86.10 84.78 86.87 87.46
Diabetes 74.56 75.14 75.03 75.98
Haberman’s Survival 75.09 74.41 76.43 77.86
Ionosphere 88.62 89.77 88.35 89.98
Phoneme CR 77.56 78.31 80.58 80.16
Spambase 90.41 89.78 89.27 92.37
Fourclass 77.46 77.61 77.94 79.06
German.numer 74.50 73.13 76.35 76.27
Svmguide1 92.39 91.61 92.98 94.17
Svmguide3 81.23 82.47 83.64 85.41

Table III
TEST SET ACCURACY AVERAGED OVER 10−FOLD CROSS VALIDATION

FOR DATA SETS USING DISCRETIZATION ALGORITHM SOAC. NB
STANDS FOR NAIVE BAYES, TAN FOR TREE AUGMENTED NAIVE

BAYES, k−DBN FOR k−DEPENDENCY BAYESIAN NETWORKS, k = 2,
AND UDBN FOR THE PROPOSED ALGORITHM

Data Sets NB TAN k−DBN UDBN

Breast Cancer 96.12 95.60 96.76 97.65
Congressional Voting Records 90.11 91.42 92.61 94.16
Credit Approval 85.85 84.98 86.53 87.17
Diabetes 75.78 75.90 75.82 76.22
Haberman’s Survival 74.66 73.78 75.64 77.31
Ionosphere 85.92 86.18 85.94 88.62
Phoneme CR 77.01 78.53 80.41 81.01
Spambase 89.30 89.04 90.69 92.54
Fourclass 78.58 79.52 78.97 79.96
German.Numer 74.61 74.01 75.31 76.15
Svmguide1 95.61 94.91 96.32 97.54
Svmguide3 77.25 79.99 80.75 82.92

comparable or better performance in comparison with tradi-
tional Bayesian Networks.

Our future work is applying the proposed algorithm to
more complicated problems for learning BNs, e.g., problems
with incomplete data, hidden variables, and multi class data
sets.
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