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Abstract—Motivated by the growing presence of acquisition
peripherals throughout the world, we propose a novel method
for storing and querying moving objects’ trajectories extracted
from surveillance cameras. Once moving objects have been
detected and tracked, we suggest to store and index the
related spatio-temporal data by using an innovative scheme
based on widely available bidimensional indexes; moreover,
a segmentation stage is performed to increase the overall
efficiency. Thus, starting from the limitations of most of the
clustering and similarity-based approaches, which restrict the
choice of the query parameters, we present a trajectory storing
system which efficiently supports Dynamic Spatio-Temporal
(DST) queries, which are unrestricted time interval queries
over moving objects. For the statistical description of the
motion flow in the scene, we use a novel query typology, namely
the Flow-DST, that is formulated as a sequence of DST. The
experimental results, conducted over real and synthetic data,
show the efficiency of the approach.

Keywords-information retrieval; spatio-temporal queries; in-
dexing; segmentation.

I. INTRODUCTION

The presence of monitoring cameras in public and private
areas has grown significantly in the last decades. In fact,
besides the increasing need for security, more and more
public exercises are also interested in using the information
extracted from these video sequences for commercial pur-
poses. Think, as an example, to a hypermarket which would
like to improve the marketing posters arrangement on the
basis of the customers’ preferences: a system able to ana-
lyze the customers’ trajectories and infer their commercial
preferences would serve the purpose.

This topic has been recently addressed by a lot of authors.
Some examples of real applications able to analyze moving
objects’ trajectories for commercial purposes are proposed,
for instance, in [1] and [2]: in the former, a real hypermar-
ket case study is presented which investigates the relation
between daily necessity products and higher flow pattern; in
the latter, the authors use laser range finder and cameras to
analyze pedestrian behavior in a large shopping mall.

Similar systems, able to perform the analysis of moving
objects’ trajectories, are far from being simple. In fact, all the
sub-systems in which the problem can be decomposed are
characterized by its intrinsic challenging issues. In general,

the architecture can be summarized as composed by (at least)
three main components:

• a Detection and Tracking Module that, starting from the
acquired video sequence, detects the objects moving in
the scene and extracts their trajectories;

• a Storage Module, which is in charge of storing the
extracted data by means of suited indexing strategies;

• a Retrieval Module, which allows to retrieve salient data
for visualization and statistical purposes on the basis of
the specific queries submitted by the user.

As for the first of the above mentioned phases, that is
the extraction of the motion trajectories of moving objects,
different tracking algorithms have been proposed [3][4],
providing reasonably usable solutions.

On the other hand, only a modest attention has been
devoted to systems for storing and retrieving information
from very large scale Moving Object Databases (MODs) [5].
In fact, the major part of the works dealing with the analysis
of motion information has mainly focused on clustering [6]
or anomalous detection [7]; even some of these approaches
are particularly efficient, they suffer from a common lim-
itation: these methods only allow pre-determined queries,
which involves the use of devised and optimized system
architecture for supporting a bunch of queries referring to a
given spatial area. It also means that the user is not allowed
to choose the query parameters at query time, but he can only
fix the retrieval parameters in the pre-processing phase.

While it is simple to imagine how much the flexibility de-
gree of such a type of system can increase, it is not likewise
to design a system architecture having these potentiality.

The most significant contributions to design an archi-
tecture able to cope with large amount of trajectory data
can be obtained by browsing the literature coming from
the database field. A widely adopted solution for spatial
indexing founds on R-trees [8], which are tree data structures
that hierarchically organize geometric bidimensional data
by representing each object through its Minimum Bound-
ing Rectangle (MBR). Starting from Guttman’s pioneering
paper, a lot of spatio-temporal indexing scheme have been
proposed for many applications contexts, most of which are
optimizations of R-trees [9][10].
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In order to overcome the above mentioned limitations of
the most common trajectories analysis systems by taking
advantage from the solution designed in the database field,
we propose a general-purpose system for the analysis of
moving objects’ trajectories which allows the user to choose
at query time the query parameters. The generic scenario can
be briefly described as follows: a camera records the moving
objects in the entire scene for a given, generally long, period
of time, but no area of interest is a priori defined. The system
finds and efficiently stores the objects’ trajectories and
allows to solve Dynamic Spatio-Temporal (DST) queries,
e.g. queries finding all the trajectories passing through an
area defined directly by the user within the query (i.e.
at query time). Moreover, the system also supports Flow-
DST queries, which provide complex statistical analysis in
a fully configurable format. Our system extends an off-the-
shelf solution for storing the collected data; in particular, it
handles with the problem that the actual spatial indexes for
three-dimensional data are not widely available and extends
a redundant solution we proposed recently [11].

II. THE PROPOSED METHOD

A generic trajectory T i can be expressed as a sequence
of spatio-temporal points T i =< P i

1, P
i
2, ..., P

i
N >, where

the generic point P i
k = (xi

k, y
i
k, tk) represents the position

(xi
k, y

i
k) of the i-th object at time tk. We choose to represent

each trajectory T i according to the line segments model,
so that a trajectory is obtained by interpolating consecu-
tive points of the sequence. Furthermore, we associate to
each trajectory its relative Minimum Bounding Rectangle
(MBR), corresponding to its maximum extents in the three-
dimensional space.

Once proper indexing strategies have been performed,
the problem becomes to find fast and effective means for
information extraction from the stored data; for this purpose,
we introduce two novel query types, which have been made
available in the system; the former, namely the Dynamic
Spatio-Temporal (DST) query, is the basis for the formula-
tion of more complex queries and allows to answer requests
from the user searching for the objects’ trajectories passing
through a given spatial area in a given time interval.

More formally, a typical DST query would appear as:
”find all the people passing through a given area A1 in a
given time interval [ts, te]”; according to this formulation,
we can think to the area as a rectangle with coordinates
(xs, ys) and (xe, ye) while [ts, te] are the starting and final
time instants. This leads to the definition of a query box B,
which can be associated to each DST query:

B = {(xs, ys, ts), (xe, ye, te)},

The spatio-temporal volume is geometrically defined by a
volume delimited by its bottom-left-back point (xs, ys, ts)
and its top-right-front point (xe, ye, te); this volume, in turn,
is composed by a spatial interval with top-left point (xs, ys)

(a)

(b)

Figure 1: Geometric interpretation of different types of query: DST
(a) and F-DST (b).

and bottom-right point (xe, ye) in a bidimensional space, and
a temporal interval (ts, te) representing the third coordinate.
An instance of a DST query is shown in Figure 1a.

Starting from the formalization of the DST query, we
propose a specialization of it, namely the Flow-DST (Flow-
DST), useful for real commercial applications. The Flow-
DST (F-DST) query is introduced for analyzing the objects’
motion flow in the observed scene; typical examples of this
query typology are ”find the total number of vehicles passing
by a given street (the spatial area can be dynamically defined
at query time) each week-end of the last three months”,
or ”find the number of pedestrians passing by a given
access gate each couple of hours during the last two days”.
From a geometric perspective, a F-DST can be seen as the
application of many DST queries so as to obtain results at
fixed time intervals, as shown in Figure 1b.

A. Indexing and Query Answering

In this subsection, we will describe the proposed indexing
scheme with reference to the DST query since, as it has been
clearly described in the query formalization section, the F-
DST can be derived from it.
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A simple algorithm for retrieving the trajectories sat-
isfying a DST query is based on processing, for each
trajectory, all its segments, starting from the first one: as
soon as the intersection occurs, it can be concluded that the
trajectory intersects the query box. In order to determine if
a trajectory segment lies inside or outside a query box, a
clipping algorithm [12] is needed. Unfortunately, despite of
its simplicity, the use of a clipping algorithm is not suited
for handling large datasets, so demanding for more efficient
approaches. This is the main motivation why we propose to
use spatial indexing strategies to reduce both the time needed
to extract the trajectories from the database and the number
of trajectories to be clipped; this leads, as a consequence, to
the real-time processing of a DST query. Before going into
detail about the use of these indexes, we here recall some
basic aspects of spatial indexing.

Spatial indexes are usually aimed to improve the effi-
ciency when handling with geometric data types like points,
lines and polygons and querying spatial relationships among
them. Although many commercial databases provide effi-
cient three-dimensional indexes, these usually restrict the
intersection operation to the bidimensional case; for this
reason, we propose to represent the 3D problem in terms
of one or more 2D sub-problems. While this choice allows
to take advantage of off-the-shelf 2D solutions, it must be
noticed that, in the bidimensional space, the intersection
between the trajectory and the corresponding query box is
a necessary but not sufficient condition; in fact, when the
trajectory intersection with the query box holds in each of
the three 2D planes, it will not necessarily hold in the 3D
plane too, while the opposite is trivially true.

Starting from the above considerations, we represent the
i-th trajectory T i through the original sequence of points in
the 3D space (x, y, t), together with the three different MBR
projections (MBRxy , MBRxt and MBRyt), as shown in
Figure 2.a and 2.b.

We verify the intersection of the trajectories with the
corresponding bidimensional query box in each of the three
2D planes, as depicted in Figure 2.c. Let Ixy , Ixt and Iyt be
the resulting sets of trajectories intersecting the query box
and defined as:

Ixy = {T : MBRxy(T ) ∩Bxy 6= ∅} (1)
Ixt = {T : MBRxt(T ) ∩Bxt 6= ∅} (2)
Iyt = {T : MBRyt(T ) ∩Byt 6= ∅}, (3)

where Bxy , Bxt and Byt are the three projections of the
3D query box B. The set C of candidate trajectories to
be clipped in the 3D space is therefore defined as C =
{Ixy ∩ Ixt ∩ Iyt}. At last, we apply the clipping algorithm
and obtain the final intersection result, as shown in Figure
2.d.

According to the indexing strategy above described, the
capability to significantly reduce the number of trajectories

Figure 2: An overview of the method. (a) a query box and three
trajectories; (b) the projections of the trajectory MBRs on the
planes; (c) the MBR projections intersecting the query box (the
three MBR projections of the red and blue trajectories intersect the
query box); (d) the final result of our method, after the application
of the clipping algorithm.

to be clipped plays a crucial role, as the huge amount of
trajectory data represents a key factor of complexity. As a
consequence, we introduce a segmentation stage aimed at
improving the selectivity of the indexes, which, in turn, only
depends on the trajectory geometry.

B. Segmentation

The selectivity of the indexes in each plane is related to the
area of the corresponding MBR which, in turn, only depends
on the trajectory geometry, so being (apparently) fixed. This
is the reason why we decided to introduce a segmentation
stage, aimed at increasing the selectivity of the indexes.

The proposed algorithm works recursively: initially (that
is at iteration 0) it assumes that the trajectory T k is com-
posed by a single unit 0Uk

1 , that is split into a set of m
consecutive smaller units {1Uk

1 , . . . ,
1 Uk

m}; each of the 1Uk
i

is in turn inspected and, if the stop criteria are not satisfied,
it is further split.

Let us analyze how a generic unit (i−1)U = {P1, . . . , Pm}
at iteration i − 1 is split into {iU1, . . . ,

i Un} at iteration i;
we first choose a split-dimension and a split-value. Assume,
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as an example and without loss of generality, that x has
been chosen as the split-dimension and let x∗ be the split-
value. In addition, assume that x1 < x∗. According to these
hypotheses, iU1 is the set of the consecutive points lying on
the left of the split-value iU1 = {P1, . . . , Pk}, where Pk is
the first point such that xk ≥ x∗. Then, the second unit will
be formed by the sequence of consecutive points lying on
the right of the split-value, where Pl is the first point such
that xk ≤ x∗. The inspection of (i−1)U ends when the last
point Pm is reached.

According to the above considerations, the criteria for
the choice of the two parameters, split-dimension and split-
value, play a crucial role. Since we aim at optimizing the
indexing strategy, the proposed segmentation algorithm is
based on the occupancy percentage on each 2D coordinate
plane. Let V be the volume containing all the trajectories
stored until this moment. First, we calculate the coordinate
plane corresponding to the maximum among the three occu-
pancy percentage values Oxy , Oxt and Oyt of the trajectory
unit’s MBRs, with respect to the projections of V on the
coordinate planes (Vxy , Vxt and Vyt):

Oxy =
MBRxy(U)

Vxy
(4)

Oxt =
MBRxt(U)

Vxt
(5)

Oyt =
MBRyt(U)

Vyt
(6)

Without loss of generality, suppose that the maximum oc-
cupancy percentage value is Oxy and, consequently, the
corresponding plane is xy; let width and height be the two
dimensions of MBRxy(U), respectively along the coordi-
nates x and y; the split-dimension sd is defined as:

sd =

 x if width > height

y otherwise

Given the split-dimension sd we choose, as the split-value
sd∗, the MBR average point on the coordinate sd.

The regular termination of the algorithm is reached when
all the trajectory points have been processed; anyway, an
abnormal termination is also possible during each iteration
step, on the basis of two stop criteria: PSmin attains the
minimum number of points belonging to a trajectory unit,
while PAmin is the minimum allowed size, in percentage
value with respect to the entire scenario, of an MBR area.

III. EXPERIMENTAL RESULTS

The system has been implemented by storing the tra-
jectory data in Postgres using PostGIS [13], being the
latter Postgres extension for storing spatial data like points,
lines and polygons. Data are indexed using the standard
bidimensional R-tree over GiST (Generalized Search Trees)
indexes; the specialized literature highlights that this choice

guarantees higher performance in case of spatial queries, if
compared with the PostGIS implementation of R-trees. Once
data have been indexed, PostGIS provides a very efficient
function to perform intersections between boxes and MBRs
in a 2D space.

We conducted our experiments on a PC equipped with
an Intel quad core CPU running at 2.66 GHz, using the
32 bit version of the PostrgreSQL 9.1 server and the 1.5
version of PostGIS. We tested our retrieval system with real
and synthetic data. The synthetic data have been generated
as follows. Let W and H be the width and the height
of our scene and S the temporal interval. Each trajectory
T i starting point is randomly chosen in our scene at a
random time instant ti1; the trajectory length Li is assumed
to follow a Gaussian distribution, while the initial directions
along the x axis and the y axis, respectively dix and diy ,
are randomly chosen. At each time step t, we first generate
the new direction, assuming that both dix and diy can vary
with probability PIx and PIy respectively; subsequently, we
choose the velocity along x and y at random. The velocity
is expressed in pixels/seconds and is assumed to be greater
than 0 and less than two fixed maximum, V max

x and V max
y .

Therefore, the new position of the object can be easily
derived; if it does not belong to our scene, new values for
dx and/or dy are generated. Table I reports the defined free
parameters with the values used to generate our data.

Table I: THE PARAMETERS USED IN OUR EXPERIMENTS.

Scene width (pixels) 104

Scene height (pixels) 104

Time interval length (secs) 105

PIx 5%
PIy 5%
V max
x 10 pixels/secs

V max
y 10 pixels/secs

First, we decided to test our segmentation algorithm
assuming PAmin = 0.1% and PSmin = 100; we
generated and segmented 6000 trajectories with L ∈
{1000, 2000, 3000, 4000, 5000, 10000}; for each trajectory
T i we measured the number of obtained segments (N i

seg).
Last, the obtained N i

seg are averaged over L, so obtaining
Nseg . Not surprisingly, we have, with very good approxi-
mation, that the number of segments Nseg linearly increases
with the trajectory length L, as shown in Figure 3.

The use of the segmentation algorithm clearly makes
the proposed system able to outperform the method pre-
sented in [11], as depicted in Figure 5. For the sake of
readability, Figure 5 only highlights the improvement for
Dc ∈ {10%, 50%} and having L = 5000. In particular, the
diamonds refer to the new method, while the circles refer to
the previous one.

Furthermore, we investigate on the time needed to process
a Flow-DST query (FT ). We can note that FT is N times
(N being the number of intervals we are interested in) the
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Figure 3: The performance of the segmentation algorithm.

Table II: NUMBER N OF TIMES EACH QUERY IS REPEATED AS Dc

VARIES.

Dc 5% 10% 20% 30% 50%
N 40 20 10 7 4

time needed to perform a DST query (QT ); QT , in turn, is
a function of at least four parameters, namely the number of
trajectories T , the average trajectories length L, the query
cube dimension Dc, expressed as percentage of the entire
scenario, and the position of the query box Pc:

FT = N ∗ f(T, L,Dc, Pc). (7)

Among the above parameters, Pc strongly influences the
time needed to extract the trajectories as these are not uni-
formly distributed, especially when considering real world
scenarios. In order to avoid the dependency on the query
cube position, we decided to repeat the query a number
of times which is inversely proportional to the query cube
dimension, positioning the query cube in different points, as
shown in row N of Table II; finally, the results have been
averaged to obtain:

FT = f(T, L,Dc, N). (8)

Furthermore, we have experimentally verified that
Nseg/L = k, with k constant (Figure 3). It means
that, on average, the length of each unit can be assumed to
be constant. We can thus derive, with good approximation,
that:

FT = N ∗ f(Nseg, Dc). (9)

Starting from these considerations and assuming L =
1000, we can measure the time needed to perform several
Flow-DST queries with Dc ∈ {5%, 10%, 20%, 30%, 50%}
as Nseg varies. Figure 4 shows the obtained results. It can
be noticed that Nseg linearly increases with f . However, it
is worth pointing out that the time needed to process each
query is significantly influenced by the clipping procedure
which, in turn, is strongly dependent on the time for the
extraction of each trajectory: in fact, a segment unit need
to be extract before to be clipped. It clearly means that

Table III: AVERAGED TIME (IN SECONDS) TO SOLVE A DST
QUERY ON THE MIT TRAJECTORIES DATASET.

Dc N T 1 T 2 T 3 QT
1% 200 0.003 0.010 0.009 0.022
5% 40 0.007 0.064 0.115 0.186

10% 20 0.013 0.154 0.320 0.487
20% 10 0.038 0.533 1.383 1.954
30% 7 0.097 1.566 4.014 5.673
50% 4 0.173 5.878 14.924 20.975

an optimization of the segmentation parameters can still
improve the performance of our method.

It must be noticed that the synthetic data really stressed
the system, resulting in trajectories with tens of millions
of points, which is over and above the average trajectory
length of available datasets. To confirm this consideration,
we also tested the performance of our indexing scheme
on a well-known real dataset, the freely available MIT
trajectory dataset [14], obtained from a parking lot scene
within five days; the dataset is composed of approximately
4 ∗ 104 trajectories with 108.81 points in each trajectory
(on average). At loading time, each trajectory has been
segmented using PAmin = 1 and PSmin = 100, so
obtaining approximately 1.92 ∗ 106 segments with 23.71
points in each segment (on average). Table III shows QT
(in seconds) as Dc varies. The table also shows QT results
from the sum of three terms: T 1 is the time needed to select
the segments whose bounding boxes intersect the query box
on each bi-dimensional plane, T 2 is the time to clip the
segments while T 3 is the time needed to extract the whole
trajectory. It is possible to note that the obtained results
confirm the efficiency of the proposed method.

100 101 102 103
10 4

10 2

100

102

Nseg (thousands)

f

Figure 4: The performance of the system as Nseg vary for different
values of Dc.

IV. CONCLUSION

We addressed the problem of efficiently storing, indexing
and querying spatio-temporal data for motion trajectory anal-
ysis. Our main contributions lie in a significant improvement
of the overall efficiency and the wide adaptability of the
queries. The former contribution is achieved by proposing an
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Figure 5: The results obtained with the solution proposed in [11]
(circles) compared with the results obtained with the solution here
as T varies (L=5000).

indexing scheme based on the use of off-the-shelf solutions;
in addition, the introduction of Dynamic Spatio-Temporal
and Flow DST (F-DST) queries has provided means for
defining the query parameters at runtime and also for an-
swering frequently occurring retrieval problems.

The preliminary tests, conducted over synthetic and real
data, confirm the effectiveness of the approach in terms
of query generality and computational efficiency. Anyway,
some improvements are still possible. First, the application
of multithreading for the clipping algorithm could signifi-
cantly improve the performance of our method, since the
system could take advantage from multi-core and multi-
processors systems. In addition, a deeper analysis could
be conducted on the optimal choice of the segmentation
parameters.
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