
Real-Time Partition of Streamed Graphs for Data Mining

over Large Scale Data

Víctor Medel and Unai Arronategui
Escuela de Ingeniería y Arquitectura

University of Zaragoza
Zaragoza, Spain

{vmedel, unai@unizar.es}

Abstract—Mining data in real-time from large graphs requires
a lot of memory to obtain a good distribution of information.
Current state of the art solutions for streamed graphs are not
scalable and they work with a single stream source. We propose
a new reduced memory model to partition large graphs over
big streams to improve mining algorithms. The aim of our
work is to give support to data mining algorithms over large-
scale structured data (e.g., Web structure, social networks) to
minimise communication among partitions. In our architecture,
the incoming graph elements are sampled to reduce total memory
usage and the information in each partitioner is updated in a
feedback scheme to allow multiple entry points. We have made
experimentation with real-world graphs and we have discussed
about the suitability of different sampling strategies depending on
the graph structure. In addition, we have executed the PageRank
algorithm over the partitioned graph, in order to measure the
influence of the partition in the execution of a mining algorithm.

Keywords–Big Graphs; Data Streaming; Graph Partition; Sam-
pling.

I. INTRODUCTION

Mining from social networks, from Wikipedia or from
World Wide Web compels to deal with a huge amount of
information modelled by a graph. Information is continuously
growing, so it has to be processed as is generated. The data
stream paradigm [1] fits well with these kind of applications.
As we want a real-time processing, the resource needs are very
huge.

The underlaying graph is so large that it cannot be stored
in a single machine, thus it has to be distributed among several
machines before we can make some analytics over it. For
example, Yahoo! Dataset [2] is 120 GB in size, and a web
network graph of 50 billion vertices and 1 trillion edges, like
the one used by Google in Pregel experimentation [3], needs
25 TB of free storage space.

Typical graph analytics algorithms in these domains (e.g.,
PageRank [4], Community Discovering [5], Triangle Counting
[6], [7]) need a lot of communication among vertices, so
the number of edges among partitions (cutting edges) will
condition network traffic and therefore execution time. In other
words, the quality of the partition solution has a direct impact
in the execution of task over the graph.

Partitioning a graph in a streaming scenario is a novel
application with a few works [8],[9]. Proposed algorithms do

not scale well. They make an intensive use of memory because
they need to have knowledge of previous elements of the
graph. In addition, they only consider a single stream source,
consequently their incoming rate is bound by network capacity.

In this work, we focus on graph partition problem in a
streaming environment with hard resource constraints, in order
to guarantee real-time data management. We consider a single-
pass streaming algorithm, with multiple stream sources and we
reduce the total memory usage, to propose a scalable model.
Over the obtained partitions, we have executed the PageRank
algorithm to show the trade-off between used memory in
partition phase and total time of the execution of an analytic.
We have used the PageRank algorithm to compare our results
as it has been the reference analytic used in previous works.

We have achieved our aims by sampling incoming elements
and by updating, periodically, the information in each parti-
tioner. Our model is high scalable, it is not bind by network
capacity and it allows multiple streaming inputs.

The paper is structured in six parts, with this Introduction
as first section. In Section II, we synopsise fundamental notions
in graph partition problem in a streaming scenario. In Section
III, we talk about the state of the art in the domain and in
Section IV, we present our architecture. The analysis of our
model is made in Section V. In Section VI, experimental
results from a real scenario are shown. Finally, the conclusion
and future directions of the research are presented in Section
VII.

II. BACKGROUND

In this section, we present the fundamental notions used
in this paper. We start showing how to model a graph in a
streaming environment and the graph partition problem. At the
end of the section, we analyse the requirements to guarantee
real-time processing in data streams.

A. Graphs on data stream.

We consider that the graph arrives in a data stream way.
A Data Stream A [10] is an ordered sequence of a1, a2, ..an
elements. In informal terms, the system has no control over
the arriving model; streams are potentially unbound in size and
once an element has been processed it cannot be retrieved.

We denote G = (V,E) an undirected graph with ver-
tex set V = {v1, v2, v3, ...vn} and an edge set E =

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

{e1, e2, e3, ..., em}. Note that n is the number of vertices, m
the number of edges and ei = (vj , vk), vj , vk ∈ V .

A vertex graph stream, T , is a sequence of t1, t2, ..., tn
where tj = (vj , vj1 , vj2 , ..., vjd), vj , vji ∈ V , (vj , vji) ∈ E
and deg(vj) = d, for i = 1, ..., d and for j = 1, ..., n.

Each tuple represents a vertex with its adjacency list.
The size of a tuple depends on the degree of the vertex
d, so processing time per tuple is variable. As we consider
undirected graphs, each edge appears implicitly twice. In
storage terms, the graph size is bound by O(n+ 4m).

Although in the general Data Stream model elements arrive
in a random order; some specific models have been proposed
for graph problems [9]. In Breadth First Search (BFS) model,
one vertex of the graph is selected and, from that vertex,
a breadth first search strategy is performed to generate the
following vertices. A Depth First Search (DFS) strategy could
be also performed. These orders have full sense in graph
applications. For example, if a web crawler follows links with
a BFS strategy, the elements of the graphs are generated with
that order.

B. Graph partition problem.

Given a graph G = (V,E), we define a k partition set
P , where P = {S1..Sk} such as Si ⊂ G and

⋃k
i=1 Si = G.

We define the graph partition problem as finding an optimal
P ∗ such that for all possible partitions P such that |P | = k,
f(P ∗) ≥ f(P), for a determinate function.

Our objective is to obtain a partition set P which minimises
the communication cost among partitions Si and consequently
processing time of a mining algorithm over the partition. Thus,
f depends on the following metrics:

λ =
number of cutting edges

total edges
=

Λ

m
(1)

ρ =
Max{|Si|,∀i ∈ {1, ..., k}}

n
k

(2)

An edge (vi, vj) ∈ E is a cutting edge for a k partition
set P if vi ∈ Sq and vj ∈ Sr, with i, j ∈ {i, ..., n} and
q, r ∈ {1, ..., k} and r 6= q.

The λ parameter (equation (1)) gives the possible over-
head of needed communication among partitions when graph
processing tasks are executed. The ρ value (equation (2))
is the balanced factor of the solution partition set P . In
the processing phase, having too disbalanced partitions might
increase the processing time (some machines have to do a
heavy process and others might be idles).

This problem is NP-Complete [11], so we have to con-
sider approximations to the optimal solution. In [9] [8], light
heuristics are used to compute an approximation of the best
partition.

C. Real time streaming.

Incoming elements are processed as they arrive. We cannot
store each new element because the stream is unbound. The
partition algorithm cannot belong to O(n) used memory algo-
rithms. In an informal way, if we consider the graph partition

problem, storing each incoming element would build the entire
graph in a local or distributed memory. However, this is the
same graph that has been partitioned. If the system needs
to access the distributed memory for each vertex, additional
time is lost. Consequently, if incoming elements have to
be processed as they arrive, the total number of distributed
partitioners must be increased. This increment would suppose
to multiply the number of partitioners by a factor which would
depend on the response time of the distributed memory.

Another possibility could be to query to partitions for
each arriving vertex. This solution implies that incoming rate
could be at most half of total network capacity, so we could
not guarantee real-time. Moreover, partition algorithm cannot
belong to O(n) process time algorithms and it cannot do more
than one pass over the stream.

The fact that we develop a single-pass algorithm with hard
memory usage restrictions, makes our solution approximate.
We compute a (ε, δ)-approximation of λ∗ which means that
P [λ ≤ (1 + ε)λ∗] ≤ 1− δ.

III. RELATED WORK

Graph algorithms have been widely treated in literature.
Graph streaming model has been described in [1] in a theoret-
ical way. It represents the sequential access to graph elements
instead of random access, due to the size of the graph. In this
regard, several papers propose how to adapt graph algorithms
to streaming paradigm [12] [13]. They take considerations
about the complexity of different typical algorithms (triangle
count [14], property checking, connectivity, etc.) and they
calculate the required space bound and number of times an
element of a stream is processed. In several works, they relax
some data stream restrictions in order to obtain more flexible
models: Semi-stream [1], W-Stream [15], Best-Order Stream
[16], Sort-Stream, etc.

The main disadvantage of these works is that these re-
strictions cannot be made in an on-line environment with
real-time considerations. As graph partition problem in a
streaming environment is an NP-Complete problem [11], it is
not feasible to compute the optimal solution, so we compute
an approximated one. In [9] [8], some approximated solutions
are obtained via light heuristics. The solution provided by
Fennel [8] is quite good for real graphs. For some graphs,
the obtained partition is as good as Metis [17], an offline
partition algorithmn. In their experiments, the worst case is
for amazon0312 and they get a 6% more cutting edges. The
problem of these kind of solutions is the linear size of the
used memory, which makes difficult to scale the heuristic. In
addition, it only considers a single input stream, which binds
incoming rate.

IV. PROPOSED MODEL

We propose the decentralised architecture that is illustrated
in Figure 1. We have uncoupled the different processing stages
in order to distribute them. There are several loaders which
continuously send elements to partitioners. They execute the
partition algorithm to select the most suitable partition, and
they send the element to that partition. The partition algorithm
has to be simple, in computational terms, and it has to select

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

Partitioner 1 Partition 1

Loader

... Partitioner i Partition i

Loader

Partitioner s Partition k

Figure 1. Proposed Architecture

the partition based on partial information. Its local information
is updated by the partitions in a feedback scheme.

Memory size restriction has been solved sampling incom-
ing vertices. We propose to group vertices in sets, in order to
reduce total memory. We only have to store each sampling-
set, which will be used by the algorithm to calculate the best
partition. As the proposed framework is distributed, sampling
functions cannot have knowledge of the entire graph. Each
partitioner has to assign the same vertex to the same summary
and all elements of a summary are assigned to the same
partition. In order to maintain information consistency in each
partitioner, each partition sends to them the set of sampling-
sets stored periodically.

Let it be a graph G = (V,E), a sampling size l and a
sampled graph G′ = (Ψ,Φ), where Ψ = {Π1...Πu}, Πi ⊂
V, Φ = {(Πr,Πq) ∈ Ψ, r, q = 1...u} with u = n

l .

We define two surjectives sampling functions, g and h,
where: g : V → 1...u, h : E → Φ, such as:

i. ∀v ∈ V, ∃Πq ∈ Ψ | g(v) = q ⇔ v ∈ Πq

ii. ∀i, j ∈ {1, ..., n}, ∀q, r ∈ {1, ..., u}, ∀vi, vj ∈ V,
∃Πr,Πq | g(vi) = Πq, g(vj) = Πr, and (vi, vj) ∈ E ⇔
h((vi, vj)) = (Πq,Πr).

We can conclude that for i, j = 1, ..., n, and for q, r =
1, ..., u, ∀(Πr,Πs) ∈ Φ, ∃vi, vj ∈ V such as g(vi) =
Πr, g(vj) = Πq, h((vi, vj)) = (Πr,Πq).

Figure 2 illustrates the partition algorithm with this no-
tion. The set M represents the main memory, where M =
{(q, j), q ∈ {1...u}, j ∈ {1...k}}. Note that a sampling-set
Πq is assigned to a partition Sj through its index.

When an element t of the unbound stream T arrives, we
obtain its vertex. If we have assigned the set which that vertex
belongs to, its index will belong to M . So, the partitioner has
to send the vertex and its edges, t, to the already assigned
partition Si (Si = Si ∪ {t}). On the contrary, if it is the first

Input: Unbound stream T
M = ∅
for all t ∈ T do

let v = get vertex v ∈ V from t
let q = g(v)
if ∃i ∈ {1..k} | (q, i) ∈M where Si ∈ P then

Send t to i partition node
In partition node i Si = Si ∪ {t}

else
i = PartitionHeuristic(t, P)
M = M ∪ {(q, i)}
Send t to i partition node
In partition node i Si = Si ∪ {t}

end if
end for

Figure 2. Vertex Partition Algorithm

time a vertex of that set arrives, the partitioner computes the
optimal partition for it, using the partition heuristic. Then, it
adds the corresponding summary to M .

The main advantage is that the partition heuristic only
depends on n

l in memory terms and the algorithm has to
partition n

l vertex, instead of n.

The analysis of partition heuristic is out of the scope of this
paper. The only requirement is that it has to be computed in
constant time. In the experimentation phase, we have selected
Fennel [8].

In our scheme, local information in each partitioner is
updated with a frequency f ; so, some information might
be incoherent in this interval. In Section V, we show the
relationship among the sampling function, the update period
and the approximate solution.

A. Sampling functions.

Functions g and h, which are defined in Section IV, are
light functions (g, h ∈ O(1)), and the information used to
assign one element to one set has to be known a priori for each
partitioner. In other words, as we want an easy distribution
of the algorithm, the decision has to be made without taken
into account the previous elements. Sampling function cannot
depend on the arriving order. We consider the number of
elements in a set constant, so |Π1| = |Π2| = ... = |Π|Ψ|| = l

We propose the following sampling functions, which are
based on the vertex identifier.

• Hash function. Each vertex vi ∈ V goes to a set
depending on its identification i, j = 1..n as follows:

g(v) = i mod l

|Ψ| = n

l
h((vi, vj)) = (Πi mod l,Πj mod l) (3)

• Consecutive assignation. If the identification of a
node has implicit an order (e.g., it is a number), we can
build sampling-sets sequentially. In some situations
(e.g., BFS and DFS model), this sampling function has
more sense, because as elements arrive in a determined

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

way, connected elements go to the same set and to the
same partition.

∀i, j = 1..n, g(vi) = i div l

|Ψ| = n

l
h((vi, vj)) = (Πi div l,Πj div l) (4)

V. ANALYSIS.

Once we have proposed a model, we are going to analyse
how much memory it needs in the partition stage and how
much messages are sent from partitions to partitioners. We do
not take into account the normal stream traffic because it is
implicit to the model.

A. Memory Bound

Theorem 1: Given a graph G = (V,E), a sample size l
and a single-pass partition algorithm ALG which produces
λ′ cutting edges with O(n) memory bound; there exists
an (ε,δ)-approximation of cutting-edge fraction λ, with a
O(nl) memory bound in each parallel partitioner and ε ∈

O

(√
3lkln(1

δ)

m[(l−1)(k−1)+λ′k]

)
.

Proof: Memory reduction is achieved sampling incoming
vertices into sets, and the sets are used as input of the algorithm
ALG. With a sampling size of l, the memory bound belongs
to O(nl). In order to calculate the accuracy of the solution,
we define a set of random variables Xij , where Xij = 1 if
vi ∈ Sp, vj ∈ Sq and q 6= p, i, j = 1..n, p, q = 1..k. By the
law of total probability,

P (Xij = 1) =
(l − 1)(k − 1)

lk
+
λ′

l
= p (5)

As λ′ < p, by Chernoff bound:

P

[∑
Xij

m
≥ (1 + ε)λ′

]
≤ e−

ε2

2+εmp (6)

As λ′ < 1 and p > 0, then ε < 1, so − ε2

2+ε < −
ε2

3 :

ε ∈ O

√ 3lkln(1
δ)

m[(l − 1)(k − 1) + λ′k]

B. Number of sent messages

Theorem 2: Given a graph G = (V,E), s distributed
partioners, a sampling size l, an update frequency f and a
single-pass partition algorithm ALG which produces a λ′

cutting edges percent with a O(n) memory bound; there exists
an (ε,δ)-approximation of λ with a O(nl) memory bound in
each distributed partitioner and a O(nsσf) global distributed
complexity, where σ is the incoming elements per time unit

and ε ∈ O

√ 3ln(1
δ)

m

[
1−
(
e
−lσf(σf−1)

2n λ′
l

)].

Proof: It is easy to see that the number of sent messages
from partitions to partitioners depends on the update period f

and on the number of partitioners s. In a f period, the system
sends s messages. If sigma elements arrive in one time unit,
the entire graph arrives in n

σ . Then, in n
σ periods, it sends ns

σf .

Now let us calculate the accuracy of the solution. We
consider that ALG will be better than a random partition
algorithm (λ′ ∈ O

(
k−1
k

)
). Therefore, the worst case happens

when a vertex vi whose g(vi) has been assigned in the same
period f is assigned again by the random partition algorithm.
The probability of get σf unique elements from n/l groups is
(a.k.a. birthday problem):

n
l −1
n
l
×

n
l −2
n
l
× ...×

n
l −(σf−1)

n
l

and by a Taylor expansion

its upper bound is e
−lσf(σf−1)

2n .

In order to simplify our calculus, we consider that the
probability of generating a cutting edge by a random partition
algorithm is about 1 (reasonable assumption for big k), so:

P (Xij = 1) ≈ 1−
(
e
−lσf(σf−1)

2n
λ′

l

)
= p (7)

And by Chernoff bound:

P

[∑
Xij

m
≥ (1 + ε)λ′

]
≤ e−

ε2

2+εmp (8)

As λ < 1 and p > 0, then ε < 1, so − ε2

2+ε < −
ε2

3 :

ε ∈ O

√√√√ 3ln(1

δ)

m
[
1−

(
e
−lσf(σf−1)

2n
λ′

l

)]

The number of sent messages per time unit is s
f . If we

consider a distributed architecture with a distributed memory,
the traffic between the memory and the partitioners per time
unit is 2σ. For big values of σ, the bound of our system is
better than the distributed memory approach.

VI. EVALUATION

We have implemented our model on a real environment in
order to test it. Among the available open source distributed
Data Stream Management Systems that are available in a dis-
tributed and open source version, we have chosen Storm [18],
due to its flexibility to deploy the distributed infrastructure over
the machines. The implementation has been developed using
Java. We have set a Storm cluster of eight workers and one
master. Each machine has one core and 2 GB of memory size.

In addition, we have executed the PageRank mining al-
gorithm over the obtained partition in a GraphLab cluster
[19]. GraphLab is a distributed graph processing engine which
provides several data mining algorithms. Moreover, PageRank
[4] is a graph mining algorithm which is used to rank elements
in a network.

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

A. Datasets.

The datasets we have used to test our system are in
Table I. PL, WS and BA datasets are synthetic, created by
the Networkx package. We have used these datasets because
Web Network and social graphs can be modelled by a power
law graph, [20]. WS is a Watts-Strogatzsgraph model [21] and
BA is a Barabasi-Albert graph [22]. Amazon*, Wiki-talk and
LiveJournal1 are real datasets. The amazon* dataset represents
co-purchasing information of Amazon. If a product i is co-
purchased with a product j, there is an edge from i to j in
the graph. The information was collected in March 12 2003,
May 05 2003 and June 01 2003. In Wiki-talk dataset, each
vertex represents a user, and an edge from i to j represents
that the user i has edited, at least once, the talk page of
user j. The information was recollected in January 2 2008.
In LiveJournal1 dataset, each link between vertices (users)
represents a friendship relation.

TABLE I. LIST OF USED DATASETS

Dataset Vertices Edges
WS10000 10000 134944
WS100000 100000 3997464
BA10000 10000 134841
BA100000 100000 3548775
PL10000 10000 134766
PL100000 100000 4047486
amazon0312 400727 2349869
amazon0505 400727 2439437
amazon0601 400727 2443311
LiveJournal1 4843953 42845684
Wiki-talk 2388953 4656682

B. Experimentation and evaluation.

We use λ and ρ metrics (see equations (1), (2)) as measures
of the quality of the obtained partition.

In experiments, we have used Fennel [8] as best partition
heuristic. We have measured the relationship among the quality
of the partition (through λ and ρ), the sampling size l and the
number of partitioners s. In addition, we have measured the
amount of used memory and the impact of these parameters
in the execution of a mining algorithm (PageRank).

1) Partition quality: In Figure 3, we observe how sample
size l affects λ value. We have partitioned amazon0312 dataset
into 32 partitions. The experiment has been made with different
incoming orders (Random and BFS) and Hash and Consecutive
sampling functions (see equations (3), (4)). The first measure,
l = 1, is equivalent to the one obtained in Fennel partition
algorithm, and the last one corresponds to the situation when
there is only one set per partition, l = n

k , which is equivalent
to a random partition strategy. With two elements per group,
the number of cutting edges increases significantly compared
to Fennel, but it is better than the Random partitioner. In our
results, the kind of sampling function used affects the quality
of the partition. In a BFS incoming ordering, the results are
better for a consecutive assignment function. This kind of order
is naturally obtained in social and web graphs because they are
obtained by crawlers.

2) Used Memory: We can see that the maximum used
memory depends on l. In Table II, the results for the LiveJour-
nal dataset are shown. In this case, we have partitioned into

100 101 102 103 104

0.2

0.4

0.6

0.8

1

l

λ

BFS-Hash
BFS-Consecutive

Random-Hash
Random-Consecutive

Figure 3. λ versus l in amazon0312 dataset for different incoming orders
and sampling functions.

TABLE II. VARIATION OF λ AND ρ IN LIVEJOURNAL1 DATASET WITH
EIGHT PARTITIONS

l λ ρ Used Memory (MB)
1 0.5 1.01 245.99
2 0.56 1.01 135.63
10 0.68 1.01 27.60
605495 0.96 1 0

eight partitions with a BFS order and a consecutive assignment
function.

In Figure 4, we can see the RAM memory required to
store the sampling sets. As it is natural, when the number
of elements per group increases, the total memory decreases.
Note that with l = 1, the total used memory is 20,8 MB.
Approximately, this is 0.052 kB per element, so we cannot
process a web network graph (50 billion vertices [3]) with the
Fennel algorithm.

TABLE III. VARIATION OF λ AND ρ IN amazon0312 DATASET WITH 6
PARTITIONERS AND 32 PARTITIONS

l λ ρ
2 0.8 1.23
5 0.81 1.1
10 0.83 1.12
100 0.85 1.19
1000 0.91 1.18
12532 0.96 1

3) Distributed Partitioners: The number of partitioners s
affects the quality of the partition, because they manage local
information. In Table III, we show the results for s = 6.
We have used contiguous grouping strategy and BFS arrival
ordering. Experimental results show that with bigger sets, the
performance is similar to the single loader. This is because
with bigger sets, the number of partitioned elements is small,
so the balanced load factor decreases.

4) PageRank Processing: The last experiment we have
made is to execute a graph algorithm over obtained partition
in GraphLab. We have used the LiveJournal1 dataset and the
PageRank algorithm for testing our system in a real scenario.
We have chosen PageRank because is a well-known analytic
over a graph, and we can use it to compare ourselves with

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

0 20 40 60 80 100

0

10

20

l

M
B

Figure 4. Required RAM memory to process amazon0312 dataset versus
sample size l

previous works. The aim of the experiment is to measure the
real trade-off between memory usage in partition stage and
execution time of algorithm over the obtained partitions.

Figure 5 shows the loss in performance terms versus the
memory reduction percent. We have calculated the loss using
as reference the time the PageRank algorithm takes in a
partition solution obtained by Fennel (equivalent to l = 1).
The memory reduction has been calculated in the same way,
and its relationship with l is straightforward. Last point refers
to a Hash partition strategy, which does not use any memory,
but almost doubles the execution time of PageRank. With a
50% memory reduction (equivalent to l = 2), the PageRank
execution is only increased about 25%. For high values of l,
we achieve a high memory reduction (l = 10 equals 90% of
memory reduction), however the execution time of an analytic
is similar to the obtained with a Hash partitioner.

VII. CONCLUSION AND FUTURE WORK

In our work, we have proposed a scalable model which
allows to partition large scale streaming graphs in an efficient
way. To reduce memory usage, we have sampled vertex of
incoming graph to compose a subgraph. We have used this
subgraph to partition the original graph, with a single-pass
generic algorithm. The information consistency is maintained
updating local state in each partitioner with information from
the partitions. In addition, we have calculated the memory
bound, the introduced error and the distributed complexity of
the model.

Our solution proposes a trade-off between available mem-
ory and processing time. With our sampling functions, not
having a global knowledge of the graph does not cause a
significant loss in performance terms. In our experiments, we
show that a 50% reduction in RAM memory only increases
the processing time of the PageRank algorithm a twenty five
percent.

One future investigation line is to adopt the sampling model
to more complex scenarios, like weighted or evolving graphs.

0 20 40 60 80 100

0

0.5

1

Memory reduction (%)

R
el

at
iv

e
lo

ss

Figure 5. Relative loss of execution time of PageRank versus memory
reduction.

ACKNOWLEDGEMENT

This work was partially supported by the Spanish Ministry
of Economy under the program "Programa de I+D+i Estatal
de Investigación, Desarrollo e innovación Orientada a los
Retos de la Sociedad", project identifier TIN2013-40809-R,
and by COSMOS, research group recognized by the Aragonese
Government. V.Medel was the recipent of a fellowship from
Departamento de Industria e Innovación of the Diputación
General de Aragón.

REFERENCES

[1] S. Muthukrishnan, Data streams: Algorithms and applications. Now
Publishers Inc, 2005.

[2] “Yahoo! AltaVista Web Page Hyperlink Connectivity Graph 2002,”
2015, URL: http://webscope.sandbox.yahoo.com/catalog.php [retrieved:
May, 2015].

[3] G. Malewicz et al., “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. ACM, 2010, pp. 135–146.

[4] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep.,
1999.

[5] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, 2004, p.
026113.

[6] T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in Experimental and Efficient
Algorithms. Springer, 2005, pp. 606–609.

[7] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a
mapreduce implementation,” Information Processing Letters, vol. 112,
no. 7, 2012, pp. 277–281.

[8] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proceedings
of the 7th ACM international conference on Web search and data
mining. ACM, 2014, pp. 333–342.

[9] I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM,
2012, pp. 1222–1230.

[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 2002, pp. 1–16.

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

[11] T. Feder, P. Hell, S. Klein, and R. Motwani, “Complexity of graph
partition problems,” in Proceedings of the thirty-first annual ACM
symposium on Theory of computing. ACM, 1999, pp. 464–472.

[12] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming
algorithms, with an application to counting triangles in graphs,” in Pro-
ceedings of the thirteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2002, pp.
623–632.

[13] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “Graph
distances in the streaming model: the value of space,” in Proceedings of
the sixteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2005, pp. 745–754.

[14] D. Garcıa-Soriano and K. Kutzkov, “Triangle counting in streamed
graphs via small vertex covers,” Tc, vol. 2, 2014, p. 3.

[15] J. M. Ruhl, “Efficient algorithms for new computational models,” Ph.D.
dissertation, Citeseer, 2003.

[16] A. D. Sarma, R. J. Lipton, and D. Nanongkai, “Best-order stream-
ing model,” in Theory and Applications of Models of Computation.
Springer, 2009, pp. 178–191.

[17] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” in Par-
allel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on. IEEE, 2013, pp. 225–236.

[18] “Apache Storm Website,” 2015, URL: http://storm.apache.org [re-
trieved: May, 2015].

[19] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new framework for parallel machine learn-
ing,” arXiv preprint arXiv:1006.4990, 2010.

[20] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law rela-
tionships of the internet topology,” in ACM SIGCOMM Computer
Communication Review, vol. 29, no. 4. ACM, 1999, pp. 251–262.

[21] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” nature, vol. 393, no. 6684, 1998, pp. 440–442.

[22] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, 2002, p. 47.

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

