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Abstract—There is a proliferation of datasets generated by vari-
ous scientists of different scientific disciplines. Therefore, there is
a growing need to construct and develop platforms that enable
scientists to capture, exchange, process, and interpret data for
immediate use, as well as to store and manage data to support
future reuse. Modeling and organizing data within such platforms
are key challenges. To this end, in this paper, we introduce
the dataset model of the BExIS 2 platform and how data can
be organized inside the model. In particular, we describe the
anatomy of a general purpose tabular dataset, which consists of
data tuples to represent the table rows and data cells that are
compound objects holding the obtained values and their auxiliary
information. The structure of datasets is defined and applied
separately in order to factor out shared concepts such as unit of
measurement, methodology, data type, valid and missing values,
processing functions and so on. The datasets are extensible in
multiple ways and can be annotated on various levels utilizing
taxonomies, ontologies, and custom metadata structures.

Keywords—Scientific data; Dataset structure; Biodiversity data.

I. INTRODUCTION

In research data management, one of the utmost goals is
to support data sharing, as this facilitates the reproduction and
evaluation of scientific results as well as the reuse of the data
for other purposes. Traditionally, researchers focused on col-
lecting, processing and analyzing data and then published their
findings in the scientific literature. Preparing and publishing
research data was not part of the general scientific workflow.
This has been changing. Publishing data is becoming a stan-
dard in most disciplines thanks to the advent of dedicated data
repositories (e.g., Dryad [1], Pangaea [2]), data journals (e.g.,
Natures Scientific Data [3], Earth Science Data Journal [4],
Biodiversity Data Journal [5]) and funding organizations re-
questing data publication. With such publications data becomes
persistently available, documented, citable, and to some extent
validated [6].

Many of these data repositories follow a rather generic
approach to data management and accept a broad range of data
models, data formats, and data types. They provide facilities to
store data as files, together with a description of the content,
structure, and administrative information in metadata docu-
ments. For some repositories (e.g., Pangaea) data submission
is a curated process, which improves data quality in terms
of consistency, completeness, and reusability. But the primary
focus is still to make data discoverable by humans and allow
them to download data files. When thinking about reuse in the
sense of (automatic) data integration additional requirements
need to be satisfied, e.g., flexible access patterns (selection
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and projection), data change/update/provenance management,
integrated analysis, human and machine interpretability, flexi-
ble security and access management, data context provisioning,
and semantic enablement. For instance, it will be really difficult
to automatically integrate datasets which have not been parsed
in the first instance (the dump table files), and in instances
where they are dynamically parsed, the question of determining
equivalent variables in different datasets and unit conversion
comes into play.

A study conducted by Rexer [7] has shown that more than
90% of datasets contain less than 100 million records and
are mostly managed/ processed by tools such as RDBMSs,
Excel, or R. Another study done recently by O’Reilly indicated
tabular datasets are among the most used forms of data [8].
This is due to the popularity in usage of spreadsheets for
handling (storing and analyzing) data by the data providers,
which is in turn due to the fact that spreadsheets are relatively
easy to use, flexible, and compatible with a lot of applications
across several disciplines. Also many of data acquisition tools
simply generate raw data in tabular form, mostly comma
separated flat files.

In this paper we focus on the domain of biodiversity, where
spreadsheets, relational databases and statistical tools like R are
widely used for managing data [9]. Biodiversity data is highly
heterogeneous, including information about species distribu-
tion and abundance, genetic sequences, trait measurements, or-
ganisms, their morphology and genetics, life history and habi-
tats, and geographical ranges. These data is mostly linked to
spatial, temporal, and environmental data [10][11][12]. These
heterogeneities can be broadly classified into five categories:
technical, syntactic, structural, semantic, and data models [13].
Data model heterogeneity is the problem that systems and
tools employ different data models, such as relational, XML,
or semantic-based data models. A recent study shows that
most existing biodiversity repositories are based on relational
database models [12]. In contrast, structural heterogeneity
focuses on the problem that information can be represented
in multiple ways for a given data model.

Therefore, in order to effectively manage tabular data in
a data repository, there is a need to model the composition
of tabular datasets such that it satisfies the manifold data
management needs outlined above. The current paper is an
effort to extend the conceptual model presented in [14] and
provide more details on the concept of a generic dataset.
Although the model was developed for this particular domain
we expect it to be applicable to others as well.
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The rest of the paper is organized as follows: a brief survey
of related work is presented in the following section. We
introduce our proposed data model in Section III and then
elaborate its flexibility and extensions in Section IV. Finally,
we conclude the paper and outline future work in Section V.

II. RELATED WORK

Recently, the World Wide Web Consortium (W3C) at-
tempted to standardize the description of tabular data [15],
such that the tabular data is structured into rows, each of which
contains information about some thing. Each row contains
the same number of cells providing values of properties of
the thing described by the row. The W3C initiative broadly
classifies tabular data into three main models: a simple table;
consisting of columns, rows and cells with no form of annota-
tion, an annotation table, i.e., a table annotated with additional
metadata, and a group of tables comprising of a set of tables
and a set of annotations that relate to the dataset.

Similarly, the INSPIRE Observation and Measurements
standards (O&M) aims to normalize the representation of
records of scientific measurement [16]. It introduces the notion
of observation as an event whose result is an estimation
of the value of some property(ies) of a feature-of-interest,
obtained using a specified procedure. O&M defines a core
set of properties for an observation, and these include the
feature of interest, observed property, result value, procedure
(the instrument, algorithm or process used), event specific
parameters (e.g. instrument setting), phenomenon time, etc.
One physical realization of this model is the tabular data.
Users of this standard are not only able to describe features
and properties but also to organize and store data. While the
O&M standard was developed in the context of geographic
information systems, the model is not limited to spatial infor-
mation.

The Statistical Data and Metadata Exchange (SDMX)
initiative [17] also sets standards that can describe and facilitate
the exchange of statistical data and metadata. Based on the
standard, every dataset will have a data structure definition,
which specifies the organization of a data set. In addition, each
column in the table can either be a function as a dimension, a
measure, or an attribute. They may also play a role based on a
set of roles defined in the standard e.g. identity, time format,
frequency. Every column in the table is also based on a concept
which has to be defined before the creation of the column.
Different organizations can implement the standard and use
it to exchange datasets. For instance, many of the datasets
in Eurostat are implementations of this standard. Typically,
a group of data providers defines an implementation of the
standard which is used within the group, e.g., Balance of
Payments data exchange, National Account data exchange.

Pangaea [2] is a repository for managing tabular data. It
is an information system aimed at archiving, publishing, and
distributing data related to earth science fields. The challenge
of managing these heterogeneous data was met through a
flexible data model. In this model, a dataset is modelled
as a collection of data series and a data series consists of
one or several data points for one parameter (table column).
Information about the parameters, e.g., parameter unit and
collection method is documented. This information can be used
to parse, store and read the actual tabular data, which is stored
independently of its description.
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It is clear that tabular data has become widely used not
only in generic domains but also in scientific data. One of
these domains is biodiversity data. As a consequence, a number
of repositories have been developed. In the following, we
present some of these repositories, focusing on how they
model and organize data. BEFdata [18] is a software platform
providing support for interdisciplinary data sharing and har-
monization for collaborative research projects [19]. It provides
functionalities for the upload, validation, and storage of data
from a formatted Excel workbook. A collection of columns
(variables) in the main Excel sheet then establishes a dataset.
During data upload, the Excel sheet containing the main tabular
data is decomposed into its sheet-cells at the database level
so that each and every single primary data value is stored
independently in a database table row. Each value is thus
uniquely identified in this integrating table by its source table
identifier, its source table variable identifier, and its source
table row identifier.

In addition, other repositories exists e.g., the Biodiversity
Exploratories BEXIS (BE BEXxIS) [20], BCO-DMO [21] that
archive tabular data either as dump of the original files or
in some relational forms, and provide some functionality
for describing the structure of the tabular data [11][12]. In
BE BEXIS, tabular data (referred to as primary data) is a
collection of “observation” entities so that each observation
record is a set of values related to a specific observation. The
data structure introduces the list of variables, so that each
variable at least has a name, data type and a description.
These information are stored as part of the metadata of the
dataset. BEXIS keeps track of all editing and deletions of the
observations of datasets by means of a versioning mechanism.

One further direction with reference to modeling tabular
data is to semantically enhance the data by using different
methods, such as taxonomies [22], metadata, and ontolo-
gies [12]. For example, a wide range of metadata standards
have been established over the last decade, such as EML [23]
for ecological data and ABCD [24] for collection data. Ontolo-
gies can be viewed as extensions of metadata standards and
are the most fundamental approach to address the problem
of semantic heterogeneity. The goal of an ontology is to
describe not only data, but the knowledge behind the data. One
quarter of the existing repositories for biodiversity data uses
ontologies, such as OBOE (Extensible Observation Ontology),
as a flexible solution for standardizing attributes and their
relationships [10][13][25][26].

III. CORE DATASET MODEL

The current work is a continuation of [14], which presents
a general purpose conceptual model for scientific data man-
agement. A dataset, in the model, plays the role of a data
container for observations, measurements, simulations, and
other supported forms of data. The meaning of data is de-
termined by its bound data structure, which in turn determines
the columns of the dataset by introducing the variables. The
variables define among others the name, data type, unit of
measurement, methodology and procedure of obtaining data,
and measurement scale. The reusable elements of variables
such as units of measurements, unit conversion information,
data types, and data validation rules are factored out into Data
Container concepts, to make data sharing, integration, and
cross querying easier.
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Figure 1. Conceptual model

In this paper, we look at the internals of the dataset and
explain its elements in more detail. A Dataset, in our design, is
a set of, possibly duplicate, Tuples. Each tuple is a collection of
Data Cells containing the Data Items as shown in Fig. 1. Each
cell is a compound data structure able to hold single or multiple
values resulting from observations, measurements, computa-
tions, simulations, or any other means of data acquisition. In
addition to the data values, the cells contain sampling, result
times, and descriptions about the values, and most importantly
the link to their formal description, which is captured by
the concept Data Descriptor. The reason why sampling and
result time are captured separately is that in physical object
samplings, the sample may have been taken in a time different
than the measurement or observation. This time difference is
a considerable factor for some analyses, e.g., in soil sample
water or gas containment.

As the model in Fig. 1 shows, each data cell should be
associated with its corresponding variable or parameter. The
variables and parameters are generalized under the the Data
Descriptor concept, as they share almost all of their attributes.
The only difference between them is that the parameters are
considered to be auxiliary data to a variable. An example of
such an auxiliary data would be the GPS location of a tree,
whose diameter at breast height is measured. Data descriptors
act as table headers to determine the name, data type, unit of
measurement, methodology, and other important attributes of
the columns of datasets. Factoring out the variables, units, and
data types not only encourages reuse, but also establishes a
foundation for data harmonization, integration, and discovery.
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For example, an analysis process that needs data from multiple
datasets may merge the relevant columns by converting their
units of measurement to a single consistent one, or searching
for datasets containing temperature variables having values
above 20 degree Celsius may also return datasets containing
temperature values greater than 68 degree Fahrenheit. More
sophisticated dataset integrations can be powered by annotating
the variables with ontologies and applying semantic matching
algorithms to find equivalent columns among datasets.

IV. DATASET MODEL EXTENSIONS

The base model is capable of materializing a table, but
it may not be enough for some special requirements. In
addition to the basic tabular form of the datasets, the following
extensions are available to all datasets.

Amendments are special kinds of data cells scientists can
attach to specific tuples, as shown in Fig. 2 as Amendment
Class inherited from Data Cell and associated with Data Tuple.
Like a usual data cell, they have their own data descriptor
linked to them, hence all other attributes like unit of measure-
ment, methodology, measurement scale, and so on. Different
tuples may have different numbers of amendments each linking
to their designated data descriptor. Capturing exceptional ob-
servations would be an example of using amendments. There is
no need for all the tuples to have the same set of amendments.
Also there is no need for the amendments of various tuples to
be associated to the same variables.

Although we have tried to enrich the data descriptor class
with as many attributes as possible, there are cases where
scientists need more data about the variables. For example,
if the values of a column are obtained using a special model
of a sensor, which has a known exceptional error margin, the
scientist may be interested in capturing the sensor model or the
error margin as a property of the column, to use it in the anal-
yses to be done on the column. Also the measurement system
calibration, configuration, and environmental parameters are
proper candidates to be modeled using extended properties.
These kinds of information are column level in the scope of
the dataset that contains data. Fig. 2 shows an example of this
extension by attaching error, rounding indicator, and resolution
properties respectively to the Soil_N, Tmp (temperature), and
Time variables. To summarize it, an Extended Property is a
user defined, dataset specific attribute whose value applies to
a single column.

Sometimes, the scientists need to reduce the size of a
dataset by means of removing some of the columns or filtering
out the data tuples in order to perform a fast experimental
analysis on the data. Views are proper tools to extract a
subset of datasets namely for processing, sharing, or sampling
purposes. Also the views can be used for security or digital
right management, so that a small insensitive portion of data
is exposed to the public and the original dataset is kept secure.
The views can filter both the visible columns and data tuples. A
view applies to a single dataset, but a Spanning View applies to
multiple datasets that use the same structure. View 1 shown in
Fig. 3, has filtered all the variables of Fig. 2’s sample dataset,
except the Soil_Moi., Depth, and Hu variables, as well as the
data tuples matching the Depth < —10 predicate. View 2 in
the same figure has only hidden the Depth, Pos., Hu., and
Temp variables.
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Figure 2. A sample dataset with its elements described. Soil_Moi. is Soil
Moisture, Pos. is Plot code, Hu. is Humidity, Soil_N is Soil Nitrogen, and
Tmp is the Temperature..

A small but useful customization feature of the model is
its multi-lingual support for variable names. It helps multi-
language teams working on the same dataset have their native
names on the columns. This feature potentially reduces the
effect of information loss and naming inaccuracy caused by
translating the domain terminologies.

As shown in Fig. 1, each dataset can have multiple ver-
sions. The data tuples belong to the versions. This versioning
scheme helps to freeze the versions so that they are accessible
for later processing and citations, independent of the following
changes. Technical details of the versioning are not in the scope
of this paper, but as a short description, it provides a check-
in, check-out mechanism, computes and stores the difference
between the versions. The information collected in the core
and extended mode entities can serve an additional role of
being treated as metadata. For example, a dataset export tool
can, in addition to the actual data, extract some parts of the
variables as metadata and serialize them alongside with. The
datasets have metadata at three levels. Cell level metadata
captures how the value was obtained, when it was sampled
if so, when the result was ready, and a free-text description.
Structural level metadata are handled by defining the variables,
parameters and extended properties under a data structure. The
dataset version level metadata are captured by user-defined or
standard metadata schemas e.g., EML or ABCD. The version
level metadata is describing the whole dataset version as
a unit of data and may consist of various aspects among
them authorship, geographical extent, copyrights, sensors or
measurement tools, or software configuration. Each version of
a dataset may have its own metadata, so that changes in the
metadata are aligned with changes in the data.

In addition to the mentioned capabilities, the variables are
able to be linked to semantic elements such as terminologies,
taxonomies, or ontologies. This features make the model a
proper candidate for automatic schema matching, data inte-
gration, multi-project joint analyses and so on.

V. CONCLUSION AND FUTURE WORK

Biodiversity data has become more and more important,
therefore, there is a growing need to develop new platforms
and infrastructures that facilitate creating, storing, reusing, and
sharing scientific data. To this end, in this paper, we introduced
a data structure for tabular scientific data. In particular, we
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Figure 3. Two exemplary views. View 1 filters some of the variables and
tuples. View 2 filters some of the datasets variables.

presented the core elements in the model, including dataset,
dataset versions, tuples, and data cells as well as the possible
extensions to these core elements. The model can be used to
enforce the structure and type of information to be collected
as well as a base for data validation. The attributes assigned to
the variables, e.g., unit of measurement, semantic annotations,
and the unit conversion information can be used in data
integration efforts. Datasets published using this model allow
the following researchers to obtain the data with its structure
and the meaning of the elements, so that they can run similar
analyses to validate or reproduce the original work, or use it
in their own work. In addition, the dataset versions provide a
strong framework for dataset citation.

The model lacks some features like user-defined data types
for the cells and versioning the views. Currently, there is a
predefined set of data types introduced to the model, so that all
the cells, whether single or multiple value, accept data of those
types only. It would be an improvement to allow the model
users to define their own scalar or complex data types and use
them in their dataset modeling needs. As described, the views
can reduce the amount of visible data of target datasets. A
useful feature of the model would be to apply the versioning
concept to the views too, so that they can be attributed or
cited independently guaranteeing access to the same subset of
datasets over time. In our future work, we are going to extend
the model to address these shortcomings.
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