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Abstract—Various efforts have been made to improve
support vector machines (SVMs) based on different scenarios of
real world problems. SVMs are the so-called benchmarking
neural network technology motivated by the results of statistical
learning theory. Among them, taking into account experts'
knowledge has been confirmed to help SVMs deal with noisy
data to obtain more useful results. For example, SVMs with
monotonicity constraints and with the Tikhonov regularization
method, also known as Regularized Monotonic SVM (RMC-
SVM) incorporate inequality constraints into SVMs based on the
monotonic property of real-world problems, and the Tikhonov
regularization method is further applied to ensure that the
solution is unique and bounded. These kinds of SVMs are also
referred to as knowledge-oriented SVMs. However, solving
SVMs with monotonicity constraints will require even more
computation than SVMs. In this research, a parallelized learning
strategy is proposed to solve the regularized monotonicity
constrained SVMs. Due to the characteristics of the parallelized
learning method, the dataset can be divided into several parts for
parallel computing at different times. This study proposes a
RMC-SVMs with a parallel strategy to reduce the required
training time and to increase the feasibility of using RMC-SVMs
in real world applications.

Keywords-support vector machines; monotonic prior
knowledge; learning algorithm; parallel strategy

I. INTRODUCTION

It is well-known that we are currently in the Big Data and
Internet of Things (IOT) era. The progress in data processing
and analyzing ability of computer hardware has fallen behind
the growth of information such that the datasets are becoming
too large to handle on a single hardware unit. In response, in
this study we introduce an algorithm to deal with large-scale
data by using a parallel strategy.

Many advanced data mining methods are being rapidly
developed. Support Vector Machines (SVMs), were pioneered
by Vapnik in 1995, and constitute a state-of-the-art artificial
neural network (ANN) based on statistical learning [1], [2].
SVMs have been widely applied in many fields over the past
few years, such as corporate distress, consumer loan
evaluation, text categorization, handwritten digit recognition,
speaker verification and many others.

Knowledge engineering is a process of developing an
expert system that utilizes stored knowledge to achieve a
higher performance, especially focusing on the knowledge
provided by human experts in a specific field; in contrast, data
mining focuses on data available in an organization. Recently,
Li and Chen proposed a regularized monotonic SVM (RMC-
SVM) for classification to a broader aspect of SVM by
incorporating domain related intelligence in support vector
learners for mining actionable knowledge for real-world
applications [3], [4].

SVMs have high computing-time costs during the training
procedure. The time complexity of SVMs is O (n2m) where m
represents the number of attributes and n represents the
amount of data. So, if the data scale increases, SVM training
becomes more complex and so requires more computational
time. In addition, the SVMs model with regularized
monotonic (RMC-SVM) causes change the structure of
quadratic programming problem of SVMs and time
complexity is more complicated. However, traditional training
algorithms for SVMs, such as chunking and sequential
minimal optimization (SMO) [5], [6], have computation
complexity dependent on the amount of data, and become
infeasible when dealing with large scale problems [7] and
SVMs with monotonicity constraints. We chose the numerical
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analysis method with parallel strategy to solve the
aforementioned problems.

The learning algorithm, proposed by Hestenes and Stiefel
(1952), is an efficient numerical analysis method that
converges quickly to find optimal solutions. With the
characteristic of the parallelized learning algorithm, the
dataset can be easily divided into P parts for parallel
computing at different times or in separate computer hardware
units. The parallelized learning algorithm is highly efficient in
solving RMC- SVM and enhances the RMC-SVM algorithm
making it more practical to use.

II. LITERATURE REVIEW

This section provides a review of the Support Vector
Machines and the related literature to build the foundation of
our study.

SVMs are the so-called benchmarking neural network
technology motivated by the results of statistical learning
theory [2], [8]. SVMs are primarily designed for binary
classification, attempting to find out the optimal hyper-plane
that separates the negative datasets from the positive datasets
with maximum margin. They were originally developed for
pattern recognition [9], and used a typically small subset of all
training examples called the support vector to represent the
decision boundary [10]. The optimal hyper-plane will
accurately separate the data if the problem is linearly
separable. However, since most of the datasets are non-
separable, SVMs first map the same points onto a high-
dimensional feature space to successfully separate non-
separable data by the linear decision boundary in the input
space. Moreover, SVMs use inner-product to overcome the
high-dimensionality problems that machine learning methods
are too difficult to solve [11].

For the purpose of improving the effectiveness or
efficiency of SVMs, several theoretical studies have been
conducted to modify or reformulate the conventional SVM
model. Kramer et al. [12] presented a fast compression method
to scale up SVMs to handle large datasets by applying a simple
bit-reduction method to reduce the cardinality of the data by
weighting representative examples. Also, Yu et al. [13]
proposed two implementations of the block minimization
framework for primal and dual SVMs, and then analyzed the
framework for data which is larger than the memory size. At
each step, a block of data is loaded from the disk and handled
by certain learning methods. In recent years, the applications
of SVM methods still exist over a wide range of fields.

Monotonicity is considered as a common form of prior
knowledge and it can be constructed by lots of properties.
Practically, people hope that the predictor variable and
responding variable can satisfy the monotonicity property in
problems. Pazzani et al. [14] addressed the importance of
using monotonicity constraints in classification problems.
Doumpos and Zopounidis [15] proposed a monotonic support
vector machine. The virtual examples in this approach are
generated from using the monotonicity “hints” to impose
monotonic conditions, which represent prior knowledge
associated with the problem. Finally, the model can reach a
higher prediction accuracy and have a better prediction ability.
Li and Chen [4] formulated a knowledge-oriented
classification model by directly adding monotonicity

constraints into the optimization model. To ensure the solution
is unique and bounded, they applied Tikhonov regularization
to alleviate the predicament caused by adding monotonicity
constraints that might lead to the loss of convexity [16], [17].
With the above study, we find that prior knowledge can
increase the accuracy and bring up more valuable knowledge
from data. We construct a SVM with monotonicity constraints

and improve the result of the classification problem.

The learning method is one of the most useful techniques
for solving large linear systems of equations, and it can also
be adapted to solve nonlinear optimization problems. Besides,
it is an iterative way to solve linear systems or nonlinear
optimization problems and was introduced by Hestenes and
Stiefel [18]. Thus, we can see that the parallelized learning
method is very well suited for solving large problems.

The LS-SVM is an iterative training algorithm which is
based on the parallelized learning method [19]. Moreover, the
parallelized learning with SVMs is also used for intrusion
detection [20]. Recently, Kaytez et al. [21] used LS-SVM to
forecast the electricity consumption.

In many practical SVM applications, standard quadratic
programming (QP) solvers based on the explicit storage of the
Hessian matrix G may be very inefficient or even inapplicable
due to excessive memory requirements. When facing large
scale problems, exploiting the inherent parallelism of data
mining algorithms provides a direct solution by using the large
data retrieval and processing power of parallel architectures.
On parallelization of SVM, several issues must be addressed to
achieve good performance, such as limiting the overhead for
kernel evaluations and choosing a suitable inner QP solver.
Zanghirati and Zanni [22] obtained an efficient sub-problem
solution by a gradient projection-type method, which exploits
the simple structure of the constraints, exhibits good
convergence rate and is well suited for a parallel
implementation. Other parallel approaches to SVMs have been
proposed, by splitting the training data into subsets and
distributing them to processors [23], [24]. Zani et al. [25]
implemented a parallel software for solving the quadratic
programming arising in training SVMs for classification.

III. RESEARCH METHODOLOGY

Let N be the data number, and n be the number of
attributes. A dataset � = {(�� , ��) | � = 1,2, … , N }, with input
data �� ∈  ℛ� and output data �� ∈  ℛ . Then, the function
ℱ(�) ∶  ℛ� → ℛ is to stand for using input variables to
classify the output variable. A partial ordering ≤ is defined
over input space ℛ�. A linear ordering ≤ is defined over the
space ℛ with class labels as integer values �� . The classified
function is monotonic if it satisfies the following statement:

�� ≤  ��  ⇒  ℱ(��) ≤  ℱ(��) , for any �� and ��
(1)

In this paper, we define the partial order on the input space
ℛ� in an intuitive way such that for � = (��, ��, … , ��) and
�� = (��

� , ��
� , … , ��

� ), we say � ≤  �� if and only if � ≤  ��

for � = 1,2, … , n. For a classification problem, we say a target
function has a monotonicity property if the experts perceive it
as monotonic.

This study adopted a heuristic approach to enhance the
monotonicity of an SVM classifier. To incorporate the
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Let the objective function �(�) =
�

�
���� − ��� where x

is an n by n matrix with the equality constraint �(�) = ��
Initiate vector, including the number of executions, the
estimate solution, and search direction
Repeat

1. Compute the scalar � and update the next estimate
solution

2. Compute the Lagrangian multiplier � and
∇�(�)=∇�(�) + λ ∇�(�)

3. Update the search direction �(���) = ∇�(�) + ���(�)

where �� =
∇�������∗ ∇�������

�

∇�����∗∇�����
�

Until (the number of executions <= n or residual error < �)

monotonic prior knowledge into a problem, we denote a
number of random pairs of virtual examples as
�� = ���� ,����for all observed �� ≤ �� , � = 1, … ,��.

The predicted outcomes of the SVM classifier should
satisfy the monotonicity constraints, ℱ(��) ≤  ℱ(��) for
� = 1, … ,�, as closely as possible.

The idea of creating monotonicity constraints is
straightforward since this kind of prior knowledge is provided
by human experts from a specific field. Due to the expectation
that the respective predicted classes � and �� satisfy the
condition � ≤ �� , constraints ���(�) ≤ ���(��) can be
added into a model for each pair of input vectors � ≤ �� to
hold the monotonicity.

The primal SVM model is presented as

min J(�, �) =
1

2
‖�‖� + � ���

�

���

,

������� �� ��(�
��(��) + �) ≥ 1 − �� , � = 1, … ,�, (2)

�� ≥ 0, � = 1, … ,�

From the previous section, we know how monotonicity
constraints can be constructed; and here, they are expressed as
the following inequality:

������ ≤ ���(�), for observation � ≤ �. (3)
By adding the monotonicity constraints to SVM, the model
becomes as shown below and it is called MCSVM.

min J(�, �) =
1

2
‖�‖� + � ��� ,

�

���

������� �� ��(�
��(��) + �) ≥ 1 − �� , � = 1, … ,�,

������� ≤ ���(��), for observations (4)
�� ≤ �� ,� = 1, … ,�,

�� ≥ 0, � = 1, … ,�.

Note that both the objective function and constraints are
nonlinear in the above optimization problem. Since it is quite
complicated to directly solve the problem in (5) with the
possibility of �(�) and � being infinite dimensional, this
problem can be solved in the dual space of a Lagrangian
multiplier. When the kernel does not satisfy Mercer’s
condition, it is possible that the matrix G is indefinite
depending on the training data, and in this case the quadratic
programming is non-convex and may have no solution [11].
Accordingly, the well-known Tikhonov regularization
approach is applied to avoid this situation [16], [17]. A
penalty term, δ which is set to be two times the absolute value 
of the minimal negative eigenvalue of matrix G is added to
the objective function, after which the regularized model
becomes

min
�,�

��(�,�) =
1

2
[�� ��](G + ��) �

�
�� − 1��,

������� ��
����� = 0,

�

���

0 ≤ �� ≤ �, � = 1, … ,�, (5)
�� ≥ 0, ∀� = 1, … ,�.

where � is the identity matrix. With an appropriate choice
of �, the quadratic programming problem would be convex

and have a global solution. The resulting model is called a
Regularized Monotonic SVM (RMC-SVM) model.

Finally, with an appropriate choice of kernel � , the
nonlinear RMC-SVM classifier takes the form:

�(�) = ���� �∑ �����(�� ,�) + ∑ �� ��(�� ,�) − ���� ,��� + ��
���

�
��� � (6)

where the ����,��� = �(��)
������

The solutions, ��′� and ��′� , are derived from the
quadratic programming problem in (6).

The parallelized learning method, introduced by Hestenes
and Stiefel [18], is an iterative method and one of the most
useful techniques for solving large linear systems of
equations; additionally, it can also be adapted to solve
nonlinear optimization problems. The Parallelized learning
method proceeds by generating vector sequences of iterates,
residuals corresponding to iterates, and search directions used
in updating iterates and residuals. In every iteration of the
method, two inner products are performed in order to compute
update scalars that are defined to ensure the vector sequences
satisfy certain orthogonality conditions. On a symmetric
positive definite linear system, these conditions imply that the
distance to the true solution is minimized in some norm.

We take the parallelized learning method to solve the
RMC-SVM model which is one of the numerical analysis
methods used in this paper. The original RMC-SVM model is
a quadratic programming problem with the constraints,
including the equality constraint and the box constraint.

The box constraint restricts the range of estimate
solutions, which has upper and lower bounds. Due to the
parallelized learning method being used to solve
unconstrained optimization problems, we modified it. We
used the Lagrangian multiplier to transform the equality
constraint into an objective function. Furthermore, we restrict
the upper and the lower bounds of the estimate solution to
deal with the box constraint in each iteration. We use the
Lagrangian multiplier to transform equality constraint into an
objective function.

ℒ�(�,�,�) =
1

2
[�� ��](G + ��) �

�
�� − ��� + ��(��)

=
�

�
[�� ��](G + ��) �

�
�� − (�� − ���) � (7)

The details of parallelized learning method to solve the
RMC-SVM are shown in Figure 1.

Figure 1. Process of parallelized learning method to solve the RMC-SVM

3Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-566-1

IMMM 2017 : The Seventh International Conference on Advances in Information Mining and Management



Due to the structure of the SVM model with monotonicity
constraints, the model becomes increasingly complicated. As
such, we take the parallel strategy to solve the complex RMC-
SVM model. It is similar to the Divide-and-Conquer
algorithm. First, the dataset is averagely divided into m parts,
which is called divide. Second, each part of the dataset is
individually operated, which is called conquer. Finally, the
mixture algorithm is used to integrate the results of different
parts. To parallelize RMC-SVM, we first split the dataset and
apply the parallelized learning algorithm proposed in the
previous subsection. For data splitting, the parallel mixture of
SVMs for large scale problems [23] is adopted for solving
RMC-SVM. The idea is to divide the training set into m
random subsets of approximately equal size. Each subset,
called an expert, is then trained separately and the optimal
solutions of all sub- SVMs are combined into a weighted sum,
called "gater" module, to create a mixture of SVMs.

Finally, another optimization process is applied to
determine the optimal mixture. The idea of mixtures has given
rise to very popular SVM training algorithms.

The output of the mixture is defined as follow
�(�) = [ℎ ∑ ��(�)��(�)�

��� ] (8)
where h is a transfer function which could be, for instance,

the hyperbolic tangent for classification tasks. ωi (x) is the
gater weight, and is trained to minimize the cost function:

� = ∑ [�(��) − �� ]�
��� (9)

��(�) is the output of each expert, and the output in RMC-
SVM is as follows:

��(�) = ∑ �����(�� ,�) + ∑ �� ��(��, �) − ���� ,��� + ��
���

�
��� (10)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate the performance of the proposed parallel
strategy algorithm to solve the RMC-SVM problem and
discuss comparisons of the prediction results obtained by
RMC-SVM, Mixture SVM and Mixture RMC-SVM on three
real-world datasets.

Due to the dataset being too large for us to handle at one
time, in this research we propose a more efficient algorithm
that can accelerate the training time. In the experiment, we
used three real-world datasets as presented in next subsection,
the codes of which are executed in MATLAB R2015a on an
Intel Core i7-4770 CPU 3.2 GHz with 16 GB RAM running
Window Server 2008. Additionally, we use the same RBF
kernel function with different methods.

In the experiment, we have nine steps, for which the details
are listed as follows.
Step1. Preprocess the data and normalize each data element in

the dataset.
Step2. Randomly partition the dataset into a two-one-split

training set and a testing set.
Step3. In the same partitioned dataset, respectively train the

data with RMC-SVM Mixture SVM and Mixture
RMC-SVM.

Step4. In the Mixture RMC-SVM, divide the training set into
m parts, and each part respectively constructs
monotonic constraints.

Step5. For each part use grid search to find the optimal
parameters C and σ.

C = {0.01 0.05 0.1 0.5 1 5 10 50 100 500 1000},
σ = {0.5 5 10 15 25 50 100 250 500}.

Step6. Use the output of each part to calculate the gater
weight.

Step7. Compute the parameter mixture to integrate the output
from each part and classify the data of the testing data.

Step8. Repeat step2 to step7 for 30 times.
Step9. Analyze the average performance result of the 30 times.

Our research conducted the experiments with one real-
world dataset from the UCI [26] machine learning repository:
Wisconsin Diagnostic Breast Cancer (WDBC). The WDBC
dataset is computed from digitized images of fine needle-
aspirated (FNA) breast mass, in which characteristics of the
cell nuclei present in the images are described. For the WDBC
dataset, there were 683 instances after removing missing
values. Furthermore, each instance consists of nine attributes
and distinguishes the class label for whether the cell is
malignant or benign.

In this research, we compare our proposed parallel
strategy algorithm with MCSVM. The performance results are
examined in terms of Accuracy, F-measure, frequency
monotonicity rate (FMR) and training time.

Accuracy is the most intuitive measurement criterion,
which directly defines the predictive ability based on the
proportion of the tested data that are correctly classified, and
is defined as follows:

�������� =
�� + ��

�� + �� + �� + ��
(11)

Recall, also called Sensitivity, measures the proportion of
actual positives that are correctly identified as such, and is
defined as follows:

������ =
��

�� + ��
(12)

The precision rate, also named Positive Predictive Value
(PPV), is the proportion of test instances with positive
predictive outcomes that are correctly predicted. It is the most
important measure of a predictive method, as it reflects the
probability that a positive test reflects the underlying
condition being tested for. It is defined as:

��������� =
��

�� + ��
(13)

The traditional F-measure is the harmonic mean of recall
(Sensitivity) and precision (PPV), and is defined as:

� − ������� = 2 ∙
��� ∙ �����������

��� + �����������
(14)

The F-measure takes both recall and precision into
account, thereby avoiding a situation with low recall and high
precision, or vice versa.

We use the Frequency Monotonicity Rate (FMR) to
measure the monotonicity of the dataset
ℑ = {(x� , ��)|� = 1,2, … ,�} , which is defined as the
proportion of data pairs in a dataset that do not violate the
monotonicity condition. It is defined as:

��� =
��

�
=

Number(��� ≥ ��� ∧ ��� ≥ ���)

C�
�

(15)

where � is the number of observed pairs, and �� is the
number of pairs that do not violate the monotonicity condition.
Note that the monotonicity measure FMR can also be applied
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to a classifier in order to measure its capability of retaining
monotonicity in an unseen dataset.

In the experiment, we conducted each process in the same
training dataset. Both RMC-SVM and Mixture RMC-SVM
used the hierarchy method to construct monotonicity
constraints. It should be noted that the experiments carried out
in this research have the following two different numbers of
constraints:

number of constraints={63,127}

In this paper, we use the parallel strategy to solve the
quadratic programming problem of RMC-SVM. We have two
diverse directions to construct monotonicity constraints. We
can use the whole training dataset or the dataset that divides
the whole training dataset into different parts to construct
monotonicity constraints. In the parallel strategy, the dataset
is divided into different parts. Thus, the experiments selected
three different numbers of parts to divide the whole dataset:

number of parts={2,4,6}

TABLE I. WDBC DATASET RESULTS

Monotonicity
Constraints

Classifier Accuracy F-measure FMR Time(s)

63

RMC-SVM
RMC-MIX 2 Part
RMC-MIX 4 Part
RMC-MIX 6 Part

0.95800
0.96696
0.96461
0.96197

0.94142
0.95371
0.95063
0.94761

0.99987
1
1
1

61.7736
14.4704
11.6556
12.0382

127

RMC-SVM
RMC-MIX 2 Part
RMC-MIX 4 Part
RMC-MIX 6 Part

0.95888
0.96784
0.96505
0.96652

0.94271
0.95466
0.95133
0.95347

0.99988
1
1
1

79.2382
22.7641
21.0593
24.8682

V. CONCLUSIONS AND SUGGESTIONS

In this paper, parallel strategy was used to solve SVMs
with monotonicity constraints (RMC-SVM) in which the
whole training dataset was partitioned into smaller subsets
and then RMC-SVM was parallelly applied to each of the
partitioned subsets. Furthermore, a mixture method was used
to integrate the results from all subsets and to classify the
testing dataset. Our experiment on two real world datasets
demonstrated the efficiency of the parallel strategy RMC-
SVM.

We explored the efficiency of the predictive performance of
the parallel strategy to solve RMC-SVM with different
numbers of parts to divide the whole training dataset in, as
well as diverse directions to construct the monotonicity
constraints. The experiment showed that the efficiency of the
parallel strategy RMC-SVM decreases as the number of parts
increases. It is because there is more communication and
integration time with the use of more parts. Moreover, most of
the experimental results showed that the proposed method had
a better performance if the whole training dataset was used to
construct monotonicity constraints as compared with using
the subsets to construct monotonicity constraints. In the
further, we will implement more experiments to verify our
method.
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