
An Effective Approach for Genetic-Fuzzy Mining Using the Graphics Processing

Unit

Chun-Hao Chen1, Yu-Qi Huang2 and Tzung-Pei Hong2, 3
1Department of Information and Finance Management, National Taipei University of Technology, Taipei, Taiwan

2Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan

3Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan

Email: chchen@ntut.edu.tw, cream08111230@gmail.com, tphong@nuk.edu.tw

Abstract—Association analysis is an important technique for

finding relationships among the given transactions. In real

applications, since transactions may have quantitative values,

the fuzzy-set theory was utilized for mining fuzzy association

rules. To extract useful rules, the given membership functions

were the critical factor. The genetic-fuzzy mining approaches

were thus presented to obtain appropriate membership

functions to mine fuzzy association rules. However, the

evolution process was time-consuming. In this paper, we then

propose an algorithm to reduce the processing time using the

graphics processing unit (GPU), namely the GPU-based

Genetic-Fuzzy Mining algorithm (GPU-GFM). It first collects

the chromosomes from the population and the chromosomes

generated by genetic operators. Then, chromosomes are sent to

GPU to calculate the fitness values. As a result, a fitness value

matrix is returned. At last, when reaching the termination

condition, the best chromosome will be outputted for mining

fuzzy association rules. Experiments were also conducted on

simulation datasets to show the performance of the proposed

approach.

Keywords-Association rule; genetic algorithm; fuzzy set;

fuzzy association rule; graphics processing unit.

I. INTRODUCTION

Data mining is commonly used to extract knowledge
from the given datasets, and the Apriori algorithm is the
well-known technique to be utilized for discovering
relationships among the transactions [2]. An association rule
is an expression of the relevance between items. For
instance, X → Y is an association rule, where X and Y are
itemsets. It means that when someone buys the items in the
X, then the customer has a high probability of buying Y at
the same time. For example, a customer who buys milk and
jam will also buy bread could be found as an association
rule and represented as {milk, jam} → {bread}.

The abovementioned rule mining approach can only be
used to mine binary association rules [2]. In other words,
items in the transaction can only be considered as to buy or
not to buy, which limits the content of data analysis.
However, in real applications, the purchased quantity exists
and should be taken into consideration in the mining process.
Therefore, by using fuzzy sets, many algorithms have been
proposed for mining fuzzy association rules [8][9][10][14].
The main concept of those mining algorithms is that the
quantitative values are first transformed into fuzzy
representations using the given membership functions. Then,
the fuzzy representations are employed to discover fuzzy

association rules. For example, Hong et al. proposed an
approach for mining fuzzy association rules from
quantitative data [8]. Ouyang et al. proposed an algorithm to
mine direct weighted and indirect weighted fuzzy association
rules [14].

In those fuzzy association rule mining algorithms, the
membership functions are given in advance. Because the
predefined membership functions may not be appropriate
for all kinds of datasets to mine fuzzy association rules, and
because to obtain appropriate membership functions is an
optimization problem, the genetic-fuzzy mining algorithms
have then been proposed to obtain the membership
functions for mining fuzzy association rules using various
evolutionary algorithms, chromosome representations,
genetic operators as well as evaluation functions
[1][4][5][6][7][13][16][17]. However, the main problem of
the existing approaches is the evolution process is time-
consuming.

With the prevalence of General-Purpose computing on
Graphics Processing Units (GPGPU), in this paper, we
propose a GPU-based Genetic-Fuzzy Mining algorithm
(GPU-GFM) for handling the problem. It first generates the
initial population randomly. Then, the population is sent to
GPU to execute the Max-Min-Arithmetical (MMA)
crossover operator. The offspring and the original
chromosomes will return to CPU. After that, the mutation
operator is performed. To calculate the fitness values of
chromosomes, all chromosomes and transactions are sent to
GPU to calculate the fuzzy values. As a result, the fuzzy
value matrix is returned to the CPU. At last, the
chromosomes and the fuzzy value matrix are again sent to
the GPU for calculating the fitness values of chromosomes.
A fitness value matrix is then returned to the CPU. When
reaching the termination condition, the best chromosome is
outputted for mining fuzzy association rules. Experiments
were also conducted on simulation datasets with different
parameter setting to show the efficiency and effectiveness of
the proposed approach.

II. RELATED WORK

In this section, the genetic-fuzzy mining algorithms are
stated in Section II.A. The graphics processing unit based
optimization approaches are described in Section II.B.

A. Genetic-Fuzzy Mining Algorithms

Hong et al. proposed an algorithm that consists of two
phases for mining fuzzy association rules [6]. In the first
phase, the genetic algorithm has been utilized to obtain the

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

membership functions according to the number of large 1-
itemsets and suitability of membership functions in a
chromosome. In the second phase, the derived membership
functions are used to discover rules. To reduce the time for
the evolution process, Hong et al. took the divide-and-
conquer strategy into consideration and proposed another
algorithm for solving the genetic-fuzzy mining problem [7].
The main concept is that every item has its own genetic
process to find membership functions. The obtained
membership functions are gathered for mining fuzzy
association rules. Because various criteria should be
considered for the optimization process, Alhajj et al.
proposed a multi-objective genetic algorithm for automated
clustering to obtain fuzzy association rules [1]. Considering
multiple minimum supports, Chen et al. then proposed an
optimization algorithm for finding membership functions for
items at a certain level. Then, the obtained membership
functions are employed to extract multi-level fuzzy
association rules [4]. In addition, the multi-objective genetic-
fuzzy mining algorithm has been proposed for discovering
multi-level fuzzy association rules [5]. Matthews et al.
proposed an evolutionary-based approach for mining
temporal fuzzy association rules for web usage data [8].
Palacios et al. proposed an algorithm, namely FARLAT-
LQD, for obtaining both suitable membership functions and
fuzzy association rule from imprecise transactions [15]. They
first use the genetic algorithm to membership function based
on 3-tuples linguistic representation model. Then, the
frequent-pattern tree-based algorithm is employed to mine
fuzzy association rules. Ting et al. proposed an enhanced
genetic-fuzzy mining algorithm for membership functions
and rule discovery [16]. The main advantage of the
algorithm is that it used the structure-based representation,
which considered the structures of membership functions for
chromosome encoding.

B. GPU-based Optimization Approaches

With the popularity of computational intelligence
nowadays, we often rely on computers to find the near
optimization solution using metaheuristic algorithms.
However, it usually needs a lot of time to obtain the result.
After the general-purpose computing on the graphic
processing unit was launched in 2011 by NVIDIA, the GPU
parallel processing was employed to speed up the evolution
process. For instance, Yousef et al. designed the genetic
algorithm with GPU to solve the university course timetable
problem [18]. Benaini et al. proposed an optimization
algorithm with GPU to solve the vehicle routing problem
because the path should be arranged in a short time. As a
result, the proposed approach significantly reduced the time
cost of obtaining the routing path [3]. Due to the government
policies and the increase in environmental protection
awareness in recent years, the energy-saving and efficient
dynamic flexible flow shop scheduling has become a
dynamic problem worthy of studying. To maintain the
original efficiency, the principle of energy saving must be
taken into consideration. In addition, scheduling problems
will change with the different situations, so the time cost is a
major issue. Luo et al. executed the GA method by GPU for

parallel calculation to reduce significantly the time cost [8].
In the field of 3D printing, it often hopes that the loss of
materials is as small as possible. Therefore, the support
material needs to be calculated to find the closest or best
solution. Li et al. used the GPU to handle the optimization
problem to discover the schedule [12].

III. PROPOSED GPU-BASED GENETIC-FUZZY MINING

ALGORITHM

In this section, the framework of the proposed GPU-
based Genetic-Fuzzy Mining algorithm (GPU-GFM) is
illustrated in Section III.A. The pseudo code of the GPU-
GFM is stated in Section III.B. Components of the GPU-
GFM are described in Section III.C.

A. The Framework of the GPU-GFM

The GPU-GFM framework is shown in Fig. 1.

Figure 1. The framework of the GPU-GFM.

In Fig. 1, it shows that the proposed GPU-GFM contains

five steps. They are: (1) The initial population P is

generated randomly according to the predefined population

size.; (2) The crossover operator is executed by GPU for

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

speeding up the process to generate offspring which is

merged to P to get P’; (3) The mutation operator is executed.

After mutation, the population P’’ is generated; (4) The GPU

is utilized to transform quantitative transactions to fuzzy

values for chromosomes; (5) Based on the fuzzy values

matrix, the fitness values for chromosomes are calculated by

GPU. Steps 1 to 5 will continue until reaching the

termination condition.

In the following, we give a simple example to state the

GPU-GFM. Assume that the population size is fifty. In Step

1, fifty chromosomes are generated randomly as the initial

population P. Each chromosome represents a set of

membership functions for all items.

In Step 2, assume that the crossover rate is 0.8. Forty

chromosomes will be selected to generate offspring. Let two

chromosomes as a pair. Thus, totally twenty pairs will be

sent to GPU for offspring generation. The used crossover

operator, the MMA crossover, will generate four candidate

chromosomes for a given pair. Hence, after crossover,

eighty offspring will be generated and sent back to the CPU.

Then, the eighty chromosomes are merged to the P to form

P’. In other words, P’ has 130 chromosomes after the

crossover operator.

In Step 3, for mutation operator, assume that the mutation

rate is 0.04 and two chromosomes are mutated and added to

P’ to form P’’. After mutation, the P’’ has 132 chromosomes.

In Step 4, the quantitative transactions and P’’ are sent to

GPU for fuzzy value calculation. After calculation, a three-

dimension matrix called the fuzzy value matrix will be

generated. The index for the matrix including the

chromosome number, item number, and fuzzy region

number. Take (C1, I1, Low) is 5 as an example. It means the

fuzzy value of the fuzzy region Low for item I1 in

chromosome C1 is 5. The matrix is then sent back to the

CPU for the next step.

In Step 5, the P’’ and the fuzzy value matrix are sent to

GPU again for calculating the fitness values of the 132

chromosomes. In the GPU, a thread is used to calculate the

fitness value of a chromosome. It first calculates the number

of large 1-itemset according to the given fuzzy value matrix

and the predefined minimum support. Then, the suitability

of the chromosome is calculated. After calculation, an array

of fitness values is used to store the fitness value of

chromosomes and returned to the CPU. At last, if the

termination condition is reached, the best chromosome is

outputted. Otherwise, it will go for the next generation.

B. Pseudo Code of the GPU-GFM

Based on the GPU-GFM framework, the pseudo code of

the proposed algorithm is stated in Table I.

TABLE I. PSEUDO CODE OF GPU-GFM ALGORITHM.

Input:

Transaction data TD.

Parameters:

Population size pSize, crossover rate pc, mutation rate pm, generation G,

Population P, number of Items itemNum, minimum support ms,

Fuzzy Value Matrix FVM.

Output:

The best chromosome BC.

Procedure GPU-GFM:

1. P ← InitialPopulation(pSize, itemNum)

2. FOR iteration = 1 to G DO

3. GPU_P ← cuda.memcpy_htod(P)

4. GPU_P’ ← MMA_Crossover(pc, GPU_P, GPU_ThreadIdx)

5. P’ ← cuda.memcpy_dtoh(GPU_P’)

6. P’’ ← Mutation(p’, pm)

7. (GPU_P’’, GPU_TD) ← cuda.memcpy_htod(p’’, TD)

8. GPU_FVM ← FuzzyValueCalculation(GPU_P’’, GPU_TD,

 GPU_ThreadIdx)

9. FVM ← cuda.memcpy_dtoh(GPU_FVM)

10. (GPU_P’’, GPU_FVM) ← cuda.memcpy_htod(P’’, FVM)

11. GPU_FitnessValues ← FitnessValueCalculation(GPU_P’’,

 GPU_FVM, GPU_ThreadIdx)

12. FitnessValues ← cuda.memcpy_dtoh(GPU_FitnessValues)

13. P ← selection(P’’, FitnessValues, pSize)

14. END iteration FOR LOOP

15. BestChromosome selectBestChro(P, FitnessValues)

From Table I, the proposed algorithm first generates the

initial population P randomly according to the predefined

pSize (Line 1). Then, it starts the evolution process (Lines 2

to 14). The MMA crossover is then executed on GPU to

generate offspring, and the results are stored in GPU_P’

(Lines 3 to 4). The GPU_P’ will return to CPU and store in

P’ (Line 5). The mutation operator is executed to get P’’

(Line 6). To calculate fuzzy values of chromosomes, it

sends P’’ and transactions TD to GPU (Line 7). The fuzzy

values of chromosomes are calculated (Line 8). The result
GPU_FVM is returned to the CPU and stored in FVM (Line

9). For the fitness evaluation, the P’’ and FVM are again sent

to GPU (Line 10) for calculating fitness values (Line 11).

The result GPU_FitnessValues is returned to CPU and

stored in FitnessValues (Line 12). The selection process is

executed to generate the next population (Line 13). Finally,

if reaching the termination condition, the best chromosome

is outputted (Line 15).

C. Components of the GPU-GFM

1) Encoding Scheme

In the proposed approach, a chromosome is used to

represent a set of membership functions that are: MFSet1,

MFSet2, …, MFSeti, …, MFSetn. The MFSeti means the

membership functions for the i-th item. Let m linguistic

terms are used for an item, then the MFSeti can be

represented as ((c1, w1), (c2, w2), …, (cj, wj), …, (cm, wm)),

where cj and wj are center and width of a membership

function.

2) Initial Population and Genetic Operators

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

In the proposed GPU-GFM, the initial population is

generated randomly. As to the genetic operators, the max-

min-arithmetical (MMA) crossover operator and one-point

mutation are employed to generate offspring. The elitist

selection strategy is utilized for reproduction.

3) Fitness Evaluation

The fitness function used to evaluate a chromosome in

the proposed approach is the same with the existing work

[7]. The formula is stated as follows:

f(Cq) = |L1| / suitability(Cq),

where |L1| is the number of large 1-itemsets that can be

generated using the membership functions in Cq, and

suitability(Cq) is used to avoid bad membership functions

that are overlapping or separate too much.

IV. EXPERIMENTAL RESULTS

In this section, experiments were made to show the

performance of the proposed approach. The experimental

environment is stated as follow: CPU: Intel(R) Core(TM)

i5-9300 CPU @ 2.4GZ, GPU: NVIDIA GeForce GTX 1650.

The proposed approach is implemented by Python 3.6.12.

with the PyCUDA 2020.1 and CUDA v10.2 for deploying

the algorithm on the GPU. The experimental datasets are

generated by the IBM generator. By using the four

parameters that are T: average transaction length ， I:

average maximum large itemset length，N: number of items,

D: transaction size, different simulation datasets can be

generated.

Experiments were first made to show the convergence of

the proposed approach. After 1000 generations, the results

are shown in Fig. 2.

Figure 2. Convergence results of the proposed approach.

From Fig. 2, we can see that the average fitness values

grow along with the increase of the generations, and finally

converge to a certain value.

Experiments were then made to show the execution time

of the proposed approach on the datasets with 170 items but

different transaction sizes, including 10K, 30K, 50K, 90K.

The results are shown in Fig. 3.

Figure 3. Execution time of the GPU-GFM on different transaction sizes.

From Fig. 3, we can observe that the execution time on

different data sizes increase linearly. It indicates that the

proposed approach is efficient. Then, the experiments on the

datasets with 10K transactions but different numbers of

items were made, and the results are shown in Table II.

TABLE II. EXECUTION TIME OF THE PROPOSED APPROACH WITH

DIFFERENT NUMBER OF ITEMS .

Dataset Execution Time (s) Increasing Ratio

T2I2N0.032D10 85 -

T4I2N0.064D10 153 1.8 (= 153/85)

T6I2N0.096D10 217 1.4 (= 217/153)

T8I2N0.128D10 240 1.1 (= 240/217)

T10I2N0.16D10 298 1.2 (= 298/240)

Table II shows along with the increasing number of

items from 32 to 160, the execution time increases from 89

to 298 seconds. From the increasing ratio, when we double

the number of items from 32 to 64, the ratio is 1.8. The

other three values are between 1.1 to 1.4. It means the

execution time still increases linearly.

At last, comparisons of the proposed approach and the

previous approach [6] in terms of execution time for a

generation on the datasets with different transaction sizes

are shown in Table III.

TABLE III. COMPARISONS OF PROPOSED AND PREVIOUS APPROACHES IN

TERMS OF EXECUTION TIME.

Data Size Proposed Method Previous Method Speed-Up Ratio

10K 0.647 sec. 572.997 sec. 885

30 K 1.697 sec. 1710.271 sec. 1007

50 K 2.764 sec. 3154.801 sec. 1141

70 K 3.818 sec. 4537.069 sec. 1188

90 K 4.674 sec. 5172.524 sec. 1106

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

From Table III, we can easily observe that the proposed

approach is better than the previous approach in terms of the

execution time of the evolution process, and the highest

speed-up ratio is up to 1188 times. From the experimental

results, we can conclude that the proposed GPU-GFM is

efficient significantly.

V. CONCLUSION AND FUTURE WORK

Association rule mining is always an interesting research
topic since it can be utilized to discover useful relationships
among items. In real applications, transactions may have
quantitative values. Fuzzy association-rule mining
algorithms are employed to handle that. To extract more
information, the genetic-fuzzy mining algorithms have then
been presented to find membership functions automatically
for fuzzy association-rule mining. Because the evolution
process is time-consuming, in this paper, we thus propose an
algorithm, namely the GPU-based Genetic-Fuzzy Mining
algorithm (GPU-GFM), to speed up the evolution process.
Experimental results show that: (1) the GPU-GFM is
efficient no matter the increase of the number of transactions
or items; (2) When compared to the previous approach, the
highest speed-up ratio is up to 1188 times in terms of
execution time. In the future, we will try to enhance the
proposed approach to observe more useful rules, e.g., using
all large itemsets instead of only large 1-itemsets as an
evaluation function.

ACKNOWLEDGMENT

This research was supported by the Ministry of Science
and Technology of the Republic of China under grant MOST
109-2622-E-027-032 and MOST 110AO12B.

REFERENCES

[1] R. Alhajj and M. Kaya, "Multi-objective genetic
algorithms based automated clustering for fuzzy
association rules mining," Journal of Intelligent
Information Systems, Vol. 31, No. 3, pp. 243-264, 2007.

[2] R. Agrawal, T. Imielinski and A. Swami, "Database
mining: a performance perspective," IEEE Transactions
on Knowledge and Data Engineering, Vol. 5, No. 6, pp.
914-925, 1993.

[3] A. Benaini and A. Berrajaa, "Genetic algorithm for
large dynamic vehicle routing problem on GPU,"
International Conference on Logistics Operations
Management, pp. 1-9, 2018.

[4] C. H. Chen, T. P. Hong and Vincent S. Tseng,
"Genetic-fuzzy mining with multiple minimum
supports based on fuzzy clustering," Soft Computing,
Vol. 15, No. 12, pp. 2319-2333, 2011.

[5] C. H. Chen, J. S. He and T. P. Hong, "MOGA-based
fuzzy data mining with taxonomy," Knowledge-Based
Systems, Vol. 54, pp. 53-65, 2013.

[6] T. P. Hong, C. H. Chen, Y. L. Wu and Y. C. Lee, "A
GA-based fuzzy mining approach to achieve a trade-off
between number of rules and suitability of membership
functions," Soft Computing, Vol. 10, No. 11, pp. 1091-
1101, 2006.

[7] T. P. Hong, C. H. Chen, Y. C. Lee and Y. L. Wu,
"Genetic-fuzzy data mining with divide-and-conquer

strategy," IEEE Transactions on Evolutionary
Computation, Vol. 12, No. 2, pp. 252-265, 2008.

[8] T. P. Hong, C. S. Kuo and S. C. Chi, "Trade-off
between computation time and number of rules for
fuzzy mining from quantitative data," International
Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, Vol. 9, No. 5, pp. 587-604, 2001.

[9] T. P. Hong, C. S. Kuo and S. C. Chi, "Mining
association rules from quantitative data," Intelligent
Data Analysis, Vol. 3, No. 5, pp. 363- 376, 1999.

[10] C. Kuok, A. Fu and M. Wong, “Mining fuzzy
association rules in databases,” SIGMOD Record, Vol.
27, No. 1, pp. 41-46, 1998.

[11] J. Luo, S. Fujimura, D. E. Baz and B. Plazolles, “GPU
based parallel genetic algorithm for solving an energy
efficient dynamic flexible flow shop scheduling
problem,” Journal of Parallel and Distributed
Computing, Vol. 133, pp. 244-257, 2019.

[12] Z. Li er al., "A GPU based parallel genetic algorithm
for the orientation optimization problem in 3D
printing," International Conference on Robotics and
Automation, pp. 2786-2792, 2019.

[13] S. G. Matthews, M. A. Gongora, A. A. Hopgood and S.
Ahmadi, "Web usage mining with evolutionary
extraction of temporal fuzzy association rules,"
Knowledge-Based Systems, Vol. 54, pp. 66-72, 2013.

[14] W. Ouyang and Q. Huang, "Mining direct and indirect
weighted fuzzy association rules in large transaction
databases," International Conference on Fuzzy Systems
and Knowledge Discovery, pp. 128-132, 2009.

[15] A. M. Palacios, J. L. Palacios, L. Sánchez and J. Alcalá-
Fdeza, "Genetic learning of the membership functions
for mining fuzzy association rules from low quality
data," Information Sciences, Vol. 295, No. 20, pp. 358-
378, 2015.

[16] C. K. Ting, T. C. Wang, R. T. Liaw and T. P. Hong,
"Genetic algorithm with a structure-based
representation for genetic-fuzzy data mining," Soft
Computing, Vol. 21, No. 11, pp. 2871–2882, 2016.

[17] T. C. Wang and R. T. Liaw, "Multifactorial genetic
fuzzy data mining for building membership functions,"
IEEE Congress on Evolutionary Computation, pp. 1-8,
2020.

[18] A. H. Yousef et al., "A GPU based genetic algorithm
solution for the timetabling problem," International
Conference on Computer Engineering & Systems, pp.
103-109, 2016.

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-864-8

IMMM 2021 : The Eleventh International Conference on Advances in Information Mining and Management

