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Abstract—The performance of high performance computing
applications depends highly on how they are implemented.
However, their runtime behavior is tightly coupled with the re-
sources they are allocated such as in which cores the application
threads run or in which memory devices their memory space is
placed. Thus, depending on their characteristics, applications
may exhibit more affinity to specific types of processors or
perform better in a given architecture. In this paper, mptrace, a
novel PIN-based tool aiming at profiling the applications phys-
ical memory usage is presented. Mptrace provides mechanisms
to characterize the applications access to physical memory
pages and thus to explore possible memory usage optimizations
such as those aiming at improving performance-power trade
offs. Two different implementations of mptrace are described
and evaluated using NAS parallel benchmarks. The study of
physical memory usage of NAS parallel benchmarks along with
the discussion of a specific use case shows the large potential
of mptrace.

Keywords-PIN tool; memory profiling ; pagemap; NAS Par-
allel Benchmarks; High Performance Computing.

I. I NTRODUCTION

High Performance Computing (HPC) evolved over the
past decades into increasingly complex and powerful sys-
tems. Reaching exaflops computing performance by the end
of the decade require the development and deployment of
complex and massive parallel processors with multiple cores
(e.g., chip multiprocessors) and/or heterogeneous units [1]
(e.g., the IBM/Sony Cell processor). The rapid increase in
the number of cores has been accompanied by a proportional
increase in the DRAM capacity and bandwidth, which
presents many challenges such as performance-power trade
offs and new programming challenges.

In order to achieve sustained performance and fully tap
into the potential of these architectures, the step that maps
computations to the different elements must be as automated
as possible. In a coarse grain, applications can be classified
as memory or processor bound. While the first type of appli-
cations is memory bandwidth greedy applications, the sec-
ond one is mainly limited by either the processor parallelism
level or by the amount of computational power that they
require. In both cases, mapping computations to appropriate
elements (e.g., physical memory) is an important task for
two main reasons: (1) ensuring application’s performance is
crucial from the user perspective, and (2) maximizing the

system utilization may improve the system throughput.
When applications use only a subset of all the resources

available they waste a substantial amount of power and
prevent other applications from taking advantage of the
resources, and the system can perform different actions
such as allocating the applications in the resources that best
match their requirements or reducing the amount of power
provided by the resources (e.g., using dynamic voltage and
frequency scaling). However, the implementation of such
techniques requires profiling methods that are fundamental
to understand the applications behavior. Different existing
tools provide mechanisms to instrument and gather runtime
information. Among them, PAPI [2] provides an interface
for collecting low level performance metrics (e.g., number
of L2 misses) from hardware performance counters. Other
tools are such as Intel PIN [3] provide information related
to the application performance. They are able to intercept
the application execution flow and to provide information
regarding the application performance. Both type tools can
be used to characterize the application in terms of processor
performance (instructions executed), cache and memory
performance (L1 hit rate, L2 hit rate, L2 misses per kilo
instructions, etc.) and network usage (link utilization, etc.).
Some of them also provide information regarding the virtual
addresses used by applications, however, none of these tools
provide ways to characterize accurately the physical memory
usage and thus how the different channels to physical
memory are used.

In this paper we present mptrace, a PIN-based tool, which
is able to provide the physical pages that are used by
processes on run time. It can be also used to extrapolate other
meaningful information such as the usage of the different
channels to physical memory. This can help to design new
architectures and techniques to optimize the memory usage,
thereby improving important aspects such as performance-
power trade offs. The main contributions of this paper are:
(1) the design and implementation of the mptrace tool,
which extracts the mapping between the virtual memory
address thread space and the physical memory space, and
(2) the study of physical memory usage of NAS Parallel
Benchmarks (NPB), which shows the large potential of
mptrace.

The rest of the paper is organized as follows: in Section
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II the background and related work are discussed; in Section
III the mptrace tool is described in detail; in Section IV the
evaluation using the NPB is provided as a use case; finally,
conclusions and future work are discussed in Section V.

II. BACKGROUND AND RELATED WORK

Previous approaches tackled the characterization of ap-
plications mainly from a performance perspective. Existing
tools such as PAPI [2], Vampir [4], Paraver [5], Intel
vTune [6] and PPW [7] allow to instrument applications
by gathering runtime information for both application and
computing resources. Existing approaches characterized how
applications perform on top of specific hardware. Tools like
PAPI, Vampir or Paraver allow instrumenting applications
and gathering hardware counters for their executions and
extracting information about how they behave. These tools
are especially interesting to detect regions of the application
that can be improved or to detect system bottlenecks. Other
tools do not require instrumenting the application. For ex-
ample PIN-based tools [3] are able to run non-instrumented
binaries and intercept all the stream of instructions prior
their execution. These tools are able to gather information
concerning the instruction that is about to be executed (i.e.,
instruction type, operands, etc.).

Over the last years processors have evolved to become
very energy efficient supporting multiple operating modes
and thus power management techniques have become subject
of study. At a very coarse level, power management at
server systems level has been based on monitoring load
and shutting down unused clusters or transitioning unused
nodes to low power modes [8]. Dynamically varying the
voltage and frequency proportional to system load has also
proved to be effective in reducing energy consumption
[9][10]. Dynamic Voltage and Frequency Scaling (DVFS)
provides power savings at the cost of increased execution
time. Other approaches conducted the power management
techniques at the processor level. For example, Cai et al.
[11] propose a DVFS techniques based on the hardware
thread runtime characterization. These approaches have been
developed on top of tools that allowed them to dynamically
gather information about the system and the applications.
However, the data used to apply DVFS techniques is only
from the processor, network and cluster.

The previous approaches tackled the energy consumption
optimizations focused on the computing elements. However,
memory devices have begun to significantly contribute to
overall system energy consumption, and like processors,
DRAM devices currently have several low power modes.
Delaluz et al. presented software and hardware assisted
methods for memory power management. They studied
compiler-directed techniques [12], as well as OS-based
approaches [13] to determine idle periods for transitioning
devices to low-power modes. However, this is not going to
be effective in multi-core systems. Cho et al. [14] studied

assigning CPU frequencies for DVFS that are memory-
aware because the focus of all prior work was on optimal
assignment of frequencies to CPU ignoring memory.

Existing tools have already provided mechanisms to un-
derstand how applications use the main memory. Some of
the previously discussed tools provide information about the
hit rate that applications have in L2. This information can
be combined with other metrics, for instance the cycles per
instruction to estimate the bandwidth that the application
requires to the memory (for instance using the misses per
kilo instructions). Other trace-based tools can be used to
get similar information. For example the PIN-based tool
CMPSim [15][16]. It is a PIN [3][17] tool that intercepts
memory operations that are fed to a chip multiprocessor
cache simulator. The model implements a detailed cache
hierarchy with DL1/IL1, UL2, UL3 and memory, and can be
configured to model complex cache hierarchies (e.g., a SMP
machine of 32 cores sharing the L2 and L3). However, all
the previous tools cannot provide more detailed information
about how the physical memory is used, such as the memory
bandwidth requested to specific memory channels. To do
this, these tools would need to provide information about
which physical memory locations are mapped to the virtual
regions for the application process.

III. M PTRACE

The Intel PIN [3][17] project aims to provide dynamic
instrumentation techniques to gather information about the
instructions that applications execute. PIN API provides
mechanisms to implement callbacks that are called once
specific events occur on the execution of the target appli-
cation (i.e., execution of memory operation). Thus, a PIN
tool can be build on top of this API to collect a subset of
all the available information. This tool can be executed with
different applications and there is no biding with specific
binaries. Thus no instrumentation is required to the target
application of study.

As of today, many tools have been build on top of PIN
such as CMPSim [15][16], which is a cache hierarchy
simulator that intercepts memory accesses and simulates
its accesses using a cache model. Other tools that profile
the applications memory access can be found in the PIN
software development kit. However, no PIN tool or sim-
ilar instrumentation tool has been provided to profile the
physical memory accesses that applications request. Mptrace
is a PIN-based tool that allows intercepting the processes
memory accesses and translating the virtual addresses to
physical addresses.

Mptrace has two different mechanisms to translate the
virtual addresses to physical addresses. The first one is
based on thepagemap file system, which is a relatively
recent mechanism in linux kernel. This file system provides
information about the physical location for the given virtual
address of a process. The second mechanism is based on
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a linux kernel module that translates the virtual addresses
to physical addresses without requiring an operating system
that supports thepagemap file system. Specifically, the
kernel module usesioctl system calls to obtain the address
for a given page, and does thewalkpage through the linux
memory structures to do the translation. In the following
subsections the two mechanisms are discussed in more detail
along with the description of the information provided by
mptrace.

A. The pagemap version

The first mechanism uses thepagemap file system
to translate the virtual address to physical address. The
pagemap file system was released in the kernel 2.6.25 and
can be accessed through the/proc/pid/pagemap filesystem.
As it is described in the kernel source, this file allows
a user space process to find to which physical frame
each virtual page is mapped. It contains a 64-bit value
for each virtual page, containing the following data (from
fs/proc/task mmu.c, abovepagemap read):

• Bits 0-54 page frame number (PFN) if present
• Bits 0-4 swap type if swapped
• Bits 5-54 swap offset if swapped
• Bits 55-60 page shift (page size = 1 “≪” page shift)
• Bit 61 reserved for future use
• Bit 62 page swapped
• Bit 63 page present

Using thepagemap system, the mptrace PIN tool provides
several functionalities to characterize how the applications
access the physical memory pages. The format and informa-
tion required is highly customizable, it provides information
related to cache access (way and set), and memory accesses
(physical page address). It also provides ways to reduce the
amount of generated information, such as sampling and trace
disabling when the application loads data, or the caches
are warming up. The current implementation of mptrace
provides mechanisms to characterize the memory accesses
on the flight. Thus, this PIN tool can provide summarized
information about how an application is using the main
memory. For example, it provides page access histograms,
or clusters of memory regions accessed during an interval
of time.

B. The kernel module-based version

The second mechanism has been designed to allow operat-
ing systems that do not support thepagemap file system, and
to improve the mptrace performance as is shown in Section
IV. A new kernel module has been developed to carry out
the translation of the virtual addresses to physical addresses.
To do this it emulatespagewalk and process all the different
structures provided by the linux memory management unit
(MMU) to do the translation. The translation procedures
provided by this module are mapped onto specificioctl
address. The mptrace kernel module translates a given virtual

address to a physical address following the steps listed
below.

• Mptrace contacts to the mptrace kernel module using
the ioctl system call (IOCTL GG) to get the translation
for the virtual address @x.

• The kernel module performs the following actions to
process the translation:

– Given the process identifier provided by the user
space it looks for themm struct which contains
the information concerning the memory allocated
to it.

– Using thepgd offset kernel function gets the page
global directory for @x.

– Using thepmd offset kernel function gets the page
middle directory for @x.

– Finally using, thepte offset kernel function gets
the page table for the address @x. Using the kernel
function pte page gets the struct page associated
to this virtual address.

– In order to get the unsigned integer coding the
physical address for the resultant struct page, the
module uses the functionpage to phys.

– If no error has occurred in the translation the
physical address for @x. For example, in those
cases were the physical page for the given virtual
address is not present, the corresponding error will
be returned to the user space.

C. Information and functionalities

As has been discussed in the previous sections, mptrace
intercepts all the memory access that the application per-
forms and generates trace files containing information of
these accesses. The most representative output data provided
by mptrace is described below.

• Current access with respect to the global execution
flow: number of global instruction, number of thread
instruction, number of memory access instruction, and
timestamp.

• Type of memory access: type of access, the instruction
pointer for the given instruction, number of operands,
and size of the operation in bytes.

• Physical resources used by this operation. For each
virtual address it provides: the physical address, cache
line and set used by this operation in L1 and L2, and
physical page.

Mptrace provides some functionalities that allow both
reducing the amount of data generated and summarizing
the application behavior such as the number of accesses
to the different physical pages. In order to reduce the
intrusiveness of mptrace, the structures that it uses have been
implemented in a light way fashion (e.g., using lightweight
data structures). Moreover, tests to evaluate the level of
intrusiveness of mptrace have been conducted. The main
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Figure 1: Access pattern of NAS benchmark: BT, CG, EP, FT, IS,MG and SP class B

goal has been to validate that the physical placement for
the application virtual space is not modified by the fact
that this PIN tool is running. Among other functionalities
mptrace allows: sampling, specify in which intervals the
memory request have to be processed, which threads have
to be instrumented, counting specific events, and dump
summarized information (i.e., the number of times that each
physical page has been accessed).

IV. EVALUATION

In this section, experimental results generated with
mptrace are presented. The set of benchmarks that have been
used are the NPB that are a set of benchmarks targeting
performance evaluation of HPC systems. The goal of this
study is to characterize how the different NPB kernels use
the physical memory, and to understand how the working
sets of these kernels are mapped to the physical pages by
the operating system and hardware and how often these
pages are accessed. A performance study of the two different
implementations presented in this paper is also provided.

A. Methodology

The experiments were conducted with a server with an
Intel(R) Core(TM)2 Quad CPU Q9450 processor and 8GB
of memory running Linux kernel 2.6.34. The processor
provides four hardware threads. NPB were run with the
mptrace tool using thepagemap file system mechanism. The
main parameters considered to conduct the experiments are
listed below:

• Each application ran without co-allocation of other
applications to avoid interferences with applications
requesting memory to the operating system.

• Each application ran with the total amount of hardware
threads that the processor provides in order to avoid
context switching and other non-desired OS traps.

• Mptrace started tracing at the instruction count 1 mil-
lion. In these experiments mptrace only accounted for
the number of access to the physical pages and thus
no other traces were generated (i.e., with the stream of
reads and writes to the main memory).

B. Results

Figure 1 presents the number of accesses that each of
the physical pages available in the memory device has been
accessed by each of the NPB applications. The x-axes show
the page number and the y-axes shows the millions of
accesses that the application has accessed this page.

The plots show that the amount and distribution of mem-
ory access differ for the different NPB kernels. For instance,
the MG kernel access few thousands of millions of memory
instructions while the BT kernel memory accesses are more
than 10 times larger. Since the MG and BT kernels run
in 6 and 10 minutes, respectively, the amount of memory
accesses per second is substantially different. However, this
type of information can be gathered using other traditional
tools (i.e., CMPSim). The interesting information that these
plots provide is how separated the memory accesses for
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each of the NPB applications and the amount of accesses
per physical page are from one another. In the case of
the CG, the accesses are equally populated among all the
different physical pages that are available to the threads.The
rest of the benchmarks accesses are located in a relatively
small number of physical pages. The MG, FT, EP, and
BT benchmarks basically access to few tens of physical
pages. However, the amount of accesses is very high for
BT (up to 95,000 million access to the same page) with
respect to the other two benchmarks (up to 1,800 million
accesses to the same page). Therefore, three different type
of patterns can be observed in this scenarios: CG does many
accesses to many different physical pages; EP, LS and MG
do small number of accesses to small subset of pages; and
BT does large amount of access to a small subset of pages.
Combining this information with time information and cache
hierarchy information can lead to interesting characterization
of how the memory subsystem is used. Furthermore, as
it discussed in the following paragraphs it can derive to
some optimizations in the memory system address decoder
(i.e., how the virtual memory is placed in the physical
memory) and how the memory device is configured (i.e.,
the amount of frequency that it has to run to deliver the
required bandwidth).

As well as defining policies to address important problems
such as reducing the memory contention when consolidating
workloads, mptrace can be used, for example, to develop
novel techniques such as predictive memory power man-
agement at run time. We propose using mptrace to extend
the work on dynamic memory voltage scaling proposed by
Deng et al. [18] considering the ability to select differentfre-
quencies for different memory channels as a case of study to
show the large potential of mptrace. The process of mapping
physical addresses to memory channels to main memory is
proprietary to each memory control design. Mptrace can
be used to obtain the physical addresses accessed by the
applications and then process the data to obtain the channels
access patterns. Figure 2 shows the memory access patterns
for a large amount of channels (i.e., 64 channels) using two
different algorithm for mapping memory physical addresses
to channels: (1)default, where accesses are clustered to cer-
tain channels (e.g., clusters of 256MB), and (2)interleaving,
where accesses are distributed across different channels.The
figures illustrate how the algorithm for mapping physical
memory addresses to channels can significantly affect the
memory access pattern, and presumable the application
behavior. They show that peak memory bandwidth is not
always demanded by the application and there is unequal
distribution of accesses across channels. This asymmetry and
unequal distribution of traffic present opportunities to control
the channels independently (i.e., scaling the dynamicallythe
frequency).

In the previous sections two different mechanism to
translate virtual addresses to physical address have been
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Figure 2: Channels access pattern with default (left) and
interleaving (right) mapping policies

introduced: using thepagemap file system or using a kernel
module. They do not only differ on the resources that they
need but also they differ in their performance. As can be
observed in Figure 3 the kernel-based implementation is
substantially faster than thepagemap, especially for short
and large runs. This figure presents the number of microsec-
onds that mptrace needed to trace 100K, 1M and 10M of
memory instructions for each of the NPB applications. In all
of the cases the first implementation performs better than the
second one. The difference is especially significant for 10k
and 10M memory instructions. Hence the kernel implemen-
tation runs two times faster than the other implementation,
on average, which is especially important for very large runs.

V. CONCLUSION AND FUTURE WORK

In this paper, the mptrace PIN tool, which aims to
profile and characterize the physical memory usage for HPC
applications, has been presented. Two different implemen-
tations of mptrace are described and evaluated using NPB.
Specifically, the physical memory usage is characterized by
each of the NPB kernels. For each NPB kernel the number
of accesses to each physical page is shown. Three different
types of patterns are observed in this scenario: (1) CG
accesses many times many different physical pages, (2) EP,
LS and MG access fewer times a small subset of pages, and
(3) BT accesses many times a small subset of pages.

The results show the large potential that mptrace has to
study the applications physical memory usage. As of today,
many of the tools provide mechanism to understand how
the applications virtual space is used; however, information
regarding the mapping of virtual addressed to physical
memory allows us to understand how the memory devices
are used (e.g., to understand the bandwidth required for
each of the memory channels). This can lead to designing
and optimizing novel architectures and software mechanisms
along multiple dimensions such as performance, power and
their trade offs.

Current and future research efforts include the develop-
ment of: (1) a web-based framework to launch, process and
generate memory characterization, (2) tools to automatically
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Figure 3: Execution tine of mptrace tracing 100K (left), 1M (middle), and 10M(right) instructions for NPB (OpenMP version)

characterize how the memory is used during the application
execution, and (3) techniques to optimize the memory man-
agement based on the data provided by mptrace.
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