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Abstract—We present results from our cosmological N-
body simulation which consisted of 2048x2048x2048 particles
and ran distributed across three supercomputers throughout
Europe. The run, which was performed as the concluding phase
of the Gravitational Billion Body Problem DEISA project,
integrated a 30 Mpc box of dark matter using an optimized
Tree/Particle Mesh N-body integrator. We ran the simulation
up to the present day (z=0), and obtained an efficiency of
about 0.93 over 2048 cores compared to a single supercomputer
run. In addition, we share our experiences on using multiple
supercomputers for high performance computing and provide
several recommendations for future projects.
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I. INTRODUCTION

Cosmological simulations are an efficient method to gain
understanding of the formation of large-scale structures in
the Universe. Large simulations were previously applied to
model the evolution of dark matter in the Universe [1],
and to investigate the properties of Milky-Way sized dark
matter halos [2], [3]. However, these simulations are com-
putationally demanding, and are best run on large production
infrastructures. We have previously run a cosmological sim-
ulation using two supercomputers across the globe [4] with
the GreeM integrator [5], [6], and presented the SUSHI N -
body integrator [7], which we used to run simulations across
up to four supercomputers. The simulations we ran in the
Gravitational Billion Body Project produced over 110 TB
of data, which we have used to characterize the properties
of ultra-faint dwarf galaxies [8], and to compare the halo
mass function in our runs to analytical formulae for the mass
function. Among other things, we found that the halo mass
function in our runs shows good agreement with the Sheth
and Tormen function [9] down to ∼ 107 solar mass.

Here we present the performance results of a production
simulation across three supercomputers, as well as several
other runs which all use an enhanced version of SUSHI. The
production simulation ran continuously for ∼ 8 hours, using
2048 cores in total for calculations as well as 4 additional
cores for communications. We achieved a peak performance
of 3.31×1011 tree force interactions per second, a sustained
performance of 2.19×1011 tree force interactions per second

and a wide area communication overhead of less than 10%
overall.

We briefly reflect on the improvements made to SUSHI
for this work in Section 2, while we report on tests per-
formed on a single supercomputer in Section 3. In Section
4 we describe our experiments across three supercomputers
and present our performance results. We reflect on our
experiences on using multiple supercomputers for distributed
supercomputing simulations, and provide several recommen-
dations for users and resource providers in Section 4 and
present our conclusions in Section 5.

A. Related work

There are a several other projects which have run high
performance computing applications across multiple super-
computers. These include simulations of a galaxy collision
[10], a materials science problem [11] as well as an analysis
application for arthropod evolution [12]. A larger number
of groups performed distributed computing across sites of
PCs rather than supercomputers (e.g., [13], [14], [15]).
Several software tools have been developed to facilitate high
performance computing across sites of PCs (e.g., [16], [17],
[18], [19], [20]) and within volatile computing environments
[21]. The recently launched MAPPER EU-FP7 project [22]
seeks to run multiscale applications across a distributed
supercomputing environment, where individual subcodes
periodically exchange information and (in some cases) run
concurrently on different supercomputing architectures.

II. IMPROVEMENTS TO SUSHI

Based on results of our earlier simulations and in prepa-
ration for the production run across three supercomputers
we made several modifications to the SUSHI distributed
N -body integrator. In our previous experiments a rela-
tively large amount of computation and communication time
was spent on (non-parallelize) particle-mesh integration. To
reduce this bottleneck we now parallelized the particle-
mesh integration routines using the parallel FFTW2 library
[23] and a one dimensional slab decomposition. We also
optimized the communications of the particle-mesh integra-
tion by introducing a scheme where sites only broadcast
those mesh cells which have actual particle content. This
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Table I
INITIAL CONDITION AND ACCURACY PARAMETERS USED FOR OUR

SIMULATIONS WITH 20483 PARTICLES.

Parameter Value
Matter density parameter (ω0) 0.3
Cosmological constant (λ0) 0.7
Hubble constant (H0) 70.0 km/s/Mpc
Mass fluctuation parameter (σ8) 0.8
Box size (30Mpc)3

Softening for 20483 particle run. 175 pc
Sampling rate for 20483 particle run. 20000

optimization reduced the size of the mesh communications
by a factor roughly equal to the number of sites used, in the
case of an equal domain distribution.

In some of the larger previous runs we also observed
load imbalances if the code was run across two machines
with different architectures, despite the presence of a load
balancing scheme. This result has led us to further optimized
the load balancing in SUSHI, taking into account not only
the force integration time, but also the number of particles
stored on each node. In addition to these changes, we also
seized the opportunity to plug in a more recent MPWide
[24] version into SUSHI. This newer version contains several
optimizations to improve the wide area communication over
networks with a high latency.

III. TESTS ON A SINGLE SITE

A. Setup

We performed a number of runs on the Huygens super-
computer to validate the scalability of our new implemen-
tation, and to provide performance measurements against
which we can compare our results using multiple sites. More
information on the Huygens machine can be found in the
second column of Tab. III. The initial conditions for this
simulation is the snapshot at redshift z = 0.0026 from the
CosmoGrid simulation (described in [4]). We also use the
simulation parameters chosen for the CosmoGrid simula-
tion, which are summarized in Tab. I. Here the first four
parameters are constants which are derived from WMAP
observations (with a slight-roundoff) and the physical size
of our simulated system is given by the fifth parameter
(Box size). The softening in our simulation (i.e. a length
value added to reduce the intensity of close interactions)
and the sampling rate are given by the last two parameters.
The sampling rate is the ratio of particles in the simulation
divided by the number of particles sampled by the load
balancing scheme. Our simulation used a mesh size of 5123

cells. We ran the simulation using respectively 512 cores
and 1024 cores until z = 0.0024, and using 2048 cores until
the simulation completed (at z = 0). The number of force
calculations per step in the simulation varies for different z
values, though these variations are neglishible for z < 0.01.

Table II
OVERVIEW OF EXPERIMENTS PERFORMED WITH THE ENHANCED

SUSHI CODE ON THE HUYGENS SUPERCOMPUTER. THE TIME SPENT
ON COMMUNICATION IS GIVEN IN THE FOURTH COLUMN, WHILE THE

TOTAL RUNTIME IS GIVEN IN THE FIFTH COLUMN. ALL TIMES ARE
MEASURED PER STEP, AVERAGED OVER STEPS 1-11. IN ADDITION WE

INCLUDED THE TIMING RESULTS OF THE LAST 10 STEPS OF THE
SIMULATION RUNNING ON 2048 CORES (BOTTOM ROW).

N p θ comm. t runtime z range speedup
[s] [s] ×10−3

20483 512 0.5 19.18 501.3 2.5-2.4 1
20483 1024 0.5 13.96 258.2 2.5-2.4 1.94
20483 2048 0.5 22.34 151.0 2.5-2.4 3.32
20483 2048 0.5 16.22 143.7 0.1-0.0 -

B. Results

The performance results of our runs are shown in Tab. II.
In addition, the total runtime of the run using 2048 cores
is given by the light blue line in Fig. 2. The overall
performance of the code is dominated by calculations, with
the communication overhead ranging from ∼5% for 512
cores to ∼10-15% for 2048 cores. During the run using
2048 cores, several snapshots were written. This resulted in
a greatly increased execution time during two steps of the
run.

IV. TESTS ACROSS THREE SITES

A. Setup

We performed our main run using a total of 2048 cores
across three supercomputers, which are listed in Tab. III.
These machines include Huygens in the Netherlands (1024
cores), Louhi in Finland (512 cores), and HECToR in
Scotland (512 cores). The sites are connected to the DEISA
shared network with either a 1Gbps interface (HECToR) or
a 10Gbps interface (Huygens, Louhi). The initial conditions
and simulation parameters chosen are identical to those of
the runs using 1 supercomputer, although we use a mesh
of 2563 cells. The use of a smaller mesh size results in
a slightly higher calculation time as tree interactions are
calculated over a longer range, but a somewhat lower time
spent on intra-site communications. We configured MPWide
to use 64 parallel tcp streams per path for the wide area
communication channels, each with a tcp buffer size set
at 768 kB and packet-pacing set at 10 MB/s maximum.
We enabled some load balancing during the run, though
we had to limit the boundary moving length per step to
0.00001 of the box length due to memory constraints on
our communication nodes and the presence of dense halos
in our initial condition.

In addition to the main run, we also performed three
smaller runs using the same code across the same three
supercomputers. These include one run with 10243 particles
using 80 cores per supercomputer, and two runs with 5123

particles using 40 cores per supercomputer. These runs
also used a mesh size of 2563, though we did reduce the
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Table III
PROPERTIES OF THE THREE SUPERCOMPUTERS USED FOR OUR RUN.
THE MEASURED PEAK NUMBER OF TREE FORCE INTERACTIONS (IN
MILLIONS) PER SECOND PER CORE IS GIVEN FOR EACH SITE IN THE

BOTTOM ROW.

Name Huygens Louhi HECToR
Location Amsterdam Espoo Edinburgh
Vendor IBM Cray Cray
Architecture Power6 XT4 XT4
# of cores 3328 4048 12288
CPU [GHz] 4.7 2.3 2.3
RAM / core [GB] 4/8 1/2 2
force calcs. / core [Mints/s] 185 256 250

sampling rate to respectively 10000 and 5000 for the runs
with 10243 and 5123 particles. The force softening used for
these runs were respectively 1.25kpc and 2.5kpc, and we set
the boundary moving length limit to 0.01 of the box length.
Some of the measurements were made using an opening
angle θ of 0.3, rather than 0.5. Using a smaller opening
angle results a higher accuracy of the force integration on
close range, but also results in a higher force calculation and
tree structure communication time per step.

B. Results

The timing results of our production run are shown in
Fig. 1. Here, we also added the wall-clock time results of the
simulation run using 2048 cores on Huygens as reference.
The simulation run across three sites is only ∼ 9% slower
per step than the single-site run, despite the slightly higher
force calculation time due to the lower number of mesh
cells. The peaks in wall-clock time of the single site run are
caused by the writing of snapshots during those steps (we
only wrote one snapshot at the end of the three site run).
The total wide area communication overhead of our run is
<∼ 10% at about 15s per step. Most of this time is required
to exchange the tree structures between sites, though the
communications for the parallelized particle-mesh require an
additional ∼ 2.5s per step. Despite the use of a shared wide
area network, the communication performance of our run
shows very little jitter and no large slowdowns. We provide
a snapshot of the final state of the simulation (at z = 0),
distributed across the three supercomputers, in Fig. 2.

We also provide a numerical overview of the production
run performance, as well as that of several other runs which
use the new code, in Tab.IV. The communication overhead
for the runs with 5123 particles is less than 20%, while
the overhead for the run with 10243 particles is just 6.5%.
The parallelization of the particle-mesh integration and the
enhanced load balancing greatly improved the performance
of these runs, especially in the case with 10243 particles.
Here, the communication overhead was reduced by ∼ 60%
and the overall runtime by more than 25% compared to the
previous version [7].

Table IV
OVERVIEW OF EXPERIMENTS PERFORMED WITH THE ENHANCED

SUSHI CODE ACROSS ALL THREE SUPERCOMPUTERS. ALL TIMES ARE
MEASURED PER STEP, AVERAGED OVER 10 STEPS.

N p θ comm. time runtime z range
WAN total

5123 120 0.3 6.925 7.312 39.70 11.8-10.1
5123 120 0.5 5.982 6.335 24.60 9.9-8.8
10243 240 0.3 12.09 14.04 214.5 17.0-14.9
20483 2048 0.5 15.40 24.77 167.7 0.0026-0.0025
20483 2048 0.5 14.62 23.13 155.2 0.0001-0

V. USER EXPERIENCES

We have presented results from several cosmological sim-
ulations which run across three supercomputers, including
a production run lasting for 8 hours. In the process of
seeking a solution for wide area message passing between
supercomputers, requesting allocations, arranging network
paths and preparing for the execution of these simulations,
we have learned a number of valuable lessons.

Primarily, we found that it is structurally possible to do
high performace computing across multiple supercomputers.
During the GBBP project we have run a considerable
number of large-scale simulations using two or more super-
computers, with results improving as we were able to further
enhance the N -body integrator and optimize the MPWide
communication library for the wide area networks that we
used.

The cooperation of the resource providers was particularly
crucial in this project, as they enabled previously unavailable
network paths and provided us with means to initiate simu-
lations concurrently at the different sites. However, reserv-
ing networks and orchestrating concurrent supercomputer
runs currently does require a disproportionate amount of
time and effort, which makes performance optimization and
debugging a challenging task. The effort required to run
applications across supercomputers can be greatly reduced
if resource providers were to adopt automated resource
reservation systems for their supercomputers, and maintain
shared high-bandwidth networking between sites. The per-
sistent DEISA shared network connections helped greatly in
our case, as we could use it at will without prior network
reservations.

The software environment across different supercomput-
ers, even within the same distributed infrastructure, is very
heterogeneous. This made it unattractive to use existing
middleware or message passing implementations to make
different sites interoperable. We chose to use a modular
approach where we connected platform-specific optimized
versions of the SUSHI code with the MPWide communi-
cation library. With MPWide being a user-space tool that
requires no external libraries or administrative privileges,
we are able to install and run the simulation code in the
locally preferred software environments on each site without
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needing any additional (grid) middleware. We recommend
adopting a similar modular software approach in future
distributed supercomputing efforts for its ease of installation
and optimization, at least until resource providers present
a homogeneous and interoperable software environment for
distributed supercomputing.

This paper focuses on the calculation and communica-
tion performance aspects of a single application run across
supercomputers. However, the methods presented here can
be applied for several other purposes. During this project we
were confronted with additional overhead introduced by disk
I/O, as can be observed in Figure 1. With supercomputer disk
performance and capacity improving at a much slower rate
than the compute power, the deployment of an application
across sites may help to eliminate a disk I/O performance
bottleneck, though a detailed investigation will be needed
to quantify such potential benefit. Additionally, the com-
munication technique could be used to facilitate periodic
exchanges between different simulation codes, each of which
runs on a different site and tackles a different aspect of a
complex multiscale or multiphysics problem.

VI. CONCLUSION

Our results show that cosmological production simu-
lations run efficiently across supercomputers for a pro-
longed time. The political effort required to arrange cross-
supercomputer runs is considerable, and is an important
reason why few people have attempted to run production
simulations across supercomputers. We have shown that
the added overhead of using a network of supercomputers
is rather marginal for at least one optimized production
application and that given the right (political) environment,
supercomputers can be conveniently connected to form even
larger high performance computing resources.
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