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Abstract—To get a closer look inside the planets and eval-
uate their mantle dynamics, numerical simulation of thermal
convection has proved itself to be a powerful tool. In order to
achieve a high resolution, to obtain faster results and to study
a larger parameter range, the simulation of mantle convection
in a two-dimensional spherical geometry is more efficient than
a full three-dimensional spherical shell. In this work, we show
the performance and results of a 2D version of GAIA, a mantle
convection spherical code with strongly temperature dependent
rheology.
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I. INTRODUCTION

Numerical simulations have been used to model mantle
convection, which may take different forms depending on the
planet. On Earth, mantle convection involves recycling of the
surface or oceanic lithosphere and results in plate tectonics.
Because the lithosphere is relatively cold, recycling the
lithosphere represents an extremely efficient way to remove
the heat and cool the mantle. On other terrestrial planets, the
so-called one-plate planets like Venus and Mars, mantle con-
vection does not involve the outer layers. Instead it occurs
below a stagnant lid where heat is transported by conduction.
The different characteristics of mantle convection have also
a strong influence on the resources needed to simulate the
interior dynamics of a planet.

Mantle convection is a highly non-linear process which
can be modeled using the conservation equations of the
mass, energy and momentum [15]. The simulation time
depends on various factors. The size of the grid used for
space discretization plays an important role but also the
number of time steps needed to reach a solution of the
conservation equations is crucial. For realistic calculations
a high resolution and small time steps are needed for
the convergence of the solution. The computational time
increases considerably and thus 2D models are more suited
to perform such resource demanding simulations. To run a
simulation with a reasonable resolution, the code must work
with more than one CPU in parallel.

In the next section several approaches for the domain
decomposition of a 2D spherical grid are presented. We
also introduce a formula to calculate the overhead of data

exchange between the domains for the two- dimensional
spherical grid. In Section III, we illustrates the speedup
obtained for 2D grids with up to 128 CPUs on different
supercomputer centers. Another performance test consists
in the amount of time the simulation needs depending on
the size of the grid to reach a stable (steady-state) solution.
We present a comparison of the required computational time
for both 2D and 3D grids. Section IV illustrates results
obtained by using the GAIA framework with two and
three-dimensional spherical grids. In order to compare these
results, the Nusselt number and plots showing temperature
distribution for each case have been computed and com-
pared. We also compare our results obtained with the 2D
version of the GAIA code to other published results. In the
final section we present our conclusions and give an outlook
on future works.

II. DOMAIN DECOMPOSITION

The space discretization is based on the finite-volume
method with the advantage of utilizing fully irregular grids
in three [9], [10] and two dimensions [13]. The grid contains
Voronoi cell information, obtained by computing the Voronoi
diagram after performing the Delaunay triangulation of the
computational points as shown in Figure 1. To run the code

Figure 1. Left: grid with computational nodes, center: Delaunay triangu-
lation of the grid points, right: Voronoi diagram of the 2D spherical grid.

with more than one CPU in parallel a domain decomposition
of the grid is applied, which results in an optimal breakdown
of the grid into p equal surfaces, where p specifies the
amount of domains and processors. An efficient domain
decomposition minimizes the area between these sections,
leading to a minimized overhead of data exchange between
the processors.
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Halo-cells, sometimes called ghost-cells, arise in domain
decomposition as additional cells in each domain, which
form an overlapping zone where data is exchanged. These
cells border each domain and are on the same position as
their active cells on the neighboring domain. The ratio be-
tween halo-cells and grid cells is a first measure of efficiency
for parallelization. This ratio is important to determine the
amount of data exchanged between the domains.

Using the GAIA Framework with a 2D spherical grid a
circle surface will be decomposed into sectors with the same
area by equally distributing p potential points on the circle
circumference. Thus the coordinates of the i-th potential
point can be calculated as follows:

pi.x = cos(2iπ/p), pi.y = sin(2iπ/p) (1)

The nodes within each sector is assigned to a single proces-
sor. The processor assigned to a sector is the one correspond-
ing to the point on the circle circumference closest to the
grid nodes in that sector. In Figure 2, we show three possible
domain decomposition approaches with the resulting halo-
zone: To achieve similar lateral and radial resolution, the

Figure 2. Domain decomposition: left: only radial, center: radial and lateral
(RadialSplit), right: only lateral (LateralSplit); each color shows one domain
and thus one processor; the gray regions show the Halo-zone between the
domains.

number of points per shell is always greater than the number
of shells. Keeping this in mind, the first approach for the
domain decomposition, where the domains are divided only
radial, is the one with the highest number of halo-cells, since
in this case the amount of halo-cells scales with the number
of points per shell times the number of domains. In the
following, we will investigate the performance of the other
two approaches (RadialSplit and LateralSplit).

III. PERFORMANCE

The code was tested using four supercomputer cen-
ters: HLRN (North-German Supercomputing Alliance), PF-
CLUSTER1 (German Aerospace Centre, DLR Berlin), HP
XC4000 (Steinbuch Centre for Computing, SCC Karlsruhe)
and Itasca (Minnesota Supercomputing Institute for Ad-
vanced Computational Research). At HLRN, the HLRN-
II SGI Altix ICE 8200 Plus cluster with computational
nodes containing two quad-core sockets each for Intel Xeon
Harpertown processors with 3 GHz and 16 GB memory
per node has been used. The computational nodes on PF-
CLUSTER1 have each two quad-core AMD Opteron(tm)

processors running at 2.3 GHz and 16 GB memory per node.
On the XC2-Karlsruhe we tested the code with four-way
computational nodes each containing two AMD Opteron
Dual Cores running at 2.6 GHz with 32 GB per node. On
the Itasca cluster we used computational nodes having each
two quad-core Intel Xeon X5560 processors running at 2.8
GHz and 24 GB memory per node. In Figure 3, we show the
speedup using a 128 shells grid with 152064 computational
points which is a typical resolution for our mantle convection
simulations. For the runs we used 8 CPUs, 16 CPUs, 32
CPUs, 64 CPUs and 128 CPUs in parallel.

To evaluate the performance, the same initial setup was
tested on several node counts. The ratio of the execution
time determines the speed-up. This speed-up is therefore the
factor that determines the acceleration of the code for the
same problem on various CPU counts. The speed-up has
been calculated by averaging the time needed for a time-
step over 20 time-steps. The ”speed-up” factor in Figure 3 is
calculated by dividing the amount of time needed with eight
CPUs by the amount of time needed with the parallel code.
The dotted line in Figure 3 shows the optimal speed-up. Up
to 64 CPUs the speedup increases. However, increasing the
number of CPUs the number of halo-cells also increases and
the performance will eventually drop due to communication
overhead.

The speedup calculation in Figure 3 shows a better
performance for the Intel Xeon Harpertown processors on
HLRN. PFCLUSTER1, Itasca and XC2-Karlsruhe show
similar speedup for 128 CPUs although on XC2-Karlsruhe
the number of cores per node is limited to 4 while on all
other clusters we used 8 cores per node. For 128 CPUs
a slower increase in the performance can be observed
due to the communication overhead. Figure 4 shows the

Figure 3. Speedup using a 2D 128 shells grid with 152064 computational
nodes on 8, 16, 32, 64 and 128 CPUs on HLRN (red), PFCLUSTER1
(orange), XC2-Karlsruhe (blue) and Itasca (green).

performance obtained when using various grids and both
only lateral divisions (LateralSplit) and lateral and radial
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divisions (RadialSplit) for the domain decomposition. The
RadialSplit shows in most of the cases better performance
than the LateralSplit.

Figure 4. Speedup using three different 2D grids: 32 shells with 9056
computational points grid (blue), 128 shells with 152064 computational
points grid (orange) and 512 shells with 2378752 grid (red) and both Lat-
eralSplit (dashed lines) and RadialSplit (full lines) domain decompositions.

For 2D grids one can use the following formula to
calculate the number of halo-cells needed for both types
of domain decomposition.

ncpus = lS · (rS + 1)

haloCells = 2 · (ppS · rS + s · lS) (2)

where lS is the number of lateral domains, rS is the number
of radial domains, ppS is the number of points per shell and
s is the number of shells.

Using formula (2) we can calculate the number of halo-
cells for a 2D grid knowing the the number of points per
shell, the number of shells and the number of lateral and
radial divisions. By increasing the grid’s radial resolution

Figure 5. Ratio of halo-cells to computational cells depending on the grid
resolution and the number of CPUs used.

and thus the number of shells or by increasing the number

of CPUs used, the RadialSplit shows less halo-cells than
the LateralSplit. Therefore the amount of exchanged data is
smaller for larger grids and/or larger number of cores used.

In the next table we calculate the amount of time needed
to reach a stable (steady-state) solution by using different
resolutions for both two- and three-dimensional grids. The

Table I
COMPUTATION TIME DEPENDING ON THE NUMBER OF GRID

POINTS AND THE PROBLEM DIMENSION. WE USED THE
ISOVISCOUS BENCHMARK-TEST FROM [9] AND 8 CPUS OF

AN AMD OPTERON ARCHITECTURE.

Number Number Computation Number Computation
of of points time (s) of points time (s)

shells (2D) (2D) (3D) (3D)

16 3114 242.807 46116 2208.531

24 6760 399.519 266292 16797.99

32 11764 437.094 348228 30674.416

40 18186 836.693 430164 45135.616

48 25950 1355.142 512100 65438.916

2D grid is up to one order of magnitude faster than the
three-dimensional grid with the same resolution. This is an
major advantage when high resolution is needed or a larger
parameter space has to be tested.

IV. APPLICATION TO MANTLE CONVECTION

A. Mantle Convection Model

We consider thermal convection in a 2D spherical shell
using the GAIA code [9], [10]. The equations used are the
equations of conservation of mass momentum and energy
[15]. These equations are scaled with the thickness of the
mantle as a length scale and with the thermal diffusivity
as a time scale. Therefore the non-dimensional equations of
a Boussinesq fluid assuming a Newtonian rheology and an
infinite Prandtl number are [5]:

∇ · ~u = 0 (3)
∇ ·

[
η(∇~u+ (∇~u)T )

]
+RaT~er −∇p = 0 (4)

∂T

∂t
+ ~u∇T −∇2T − RaQ

Ra
= 0 (5)

The parameters in the above and following equations are
non-dimensionalized using the relationships to physical
properties presented in [3] where ~u is the velocity field, η
is the viscosity, T is the temperature, ~er is the unity vector
in radial direction, p is the pressure, t is the time, Ra is the
thermal Rayleigh number and RaQ is the Rayleigh number
for internal heat sources.

The viscosity is calculated using the Arrhenius law for
diffusion creep [11]. The non-dimensional formulation of
the Arrhenius viscosity law for only temperature dependent
viscosity [14] is given by:

η(T ) = exp
( E

T + Tsurf
− E

Tref + Tsurf

)
(6)
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where E is the activation energy, Tsurf the surface temper-
ature and Tref the reference temperature.

We choose a fix surface temperature that will not change
during the simulation. Depending on the problem, one can
choose between no-slip and free slip boundary conditions.
For this the velocity vector is decomposed into a lateral part
projected onto the boundary and a radial part. In the free
slip case the radial component of the velocity is set to zero
while material can still move along the boundary whereas
in the no-slip case both radial and lateral components are
set to zero.

As mentioned earlier, the discretization of the governing
equations is based on the finite-volume method with the
advantage of utilizing fully irregular grids.

As space is discretized by a fixed grid, time must be
discretized as well. For the temporal discretization a fully
implicit second-order method, also called an implicit three-
level scheme, as shown in [7] has been used. In contrast to
spatial discretization, the temporal discretization is flexible
and can adapt with a varying time step ∆t to the situation.
A method proposed by [2] and [12] called SIMPLE was
adopted to solve the coupling of the continuity equation with
the momentum equation.

Following quantities will are used for the comparison: the
root mean square velocity, vrms, and the volume averaged
temperature |T |. Another value of interest is the Nusselt
number, which is defined as the ratio of total heat flux to
purely conductive heat-flux. Nutop is the Nusselt number at
the surface while Nubottom is the bottom Nusselt number.
Nuavg is the average between Nutop and Nubottom.

B. 2D-3D Comparison

First we compare the results obtained using a 2D grid to
the results obtained using a 3D grid. A spherical harmonics
disturbance pattern has been added to the initial temperature
field to force the convection to establish a certain symmetry.
We choose here the cubic pattern from [10], a pattern which
is widely used in steady-state benchmark tests.

When comparing 2D and 3D cases there are some dif-
ferences which arise from the disagreement in the ratio
between inner and outer surface of the 2D and 3D grid
respectively [8]. In [17], a scaling was proposed. The inner
and outer surface areas of the 2D grid can be fitted the
area ratio in the 3D geometry. However this scaling has as
a result a smaller inner radius which leads to crowding of
structures near the inner portion of the 2D spherical grid
[8]. For the comparison we choose an isoviscouse bottom-
heated convection with a Rayleigh number of 1e4 and free-
slip boundary conditions for the velocity.

In Figure 6, we present the temperature distribution for
both two- and three-dimensional cases. In Table II, we
present output values obtained with both the 2D and 3D
version of the GAIA code.

Figure 6. 2D-3D comparison for Ra = 1e4, ∆ηT = 1: left 2D
temperature distribution; center: 2D scaled radii temperature distribution;
right: 3D temperature distribution.

Table II
COMPARISON OF THE RESULTS OBTAINED USING THE 2D

VERSION AND 3D VERSION OF THE GAIA CODE; THE
PARAMETERS USED ARE Ra = 1e4, ∆ηT = 1 AND FREE SLIP

BOUNDARIES.

Case vrms |T | Nutop Nubot Nuavg

GAIA 2D 46.239 0.382 4.710 4.662 4.686

GAIA 2D scaled 29.817 0.277 3.721 3.633 3.677

GAIA 3D 39.243 0.208 4.029 4.021 4.025

C. Comparison with COMSOL Multiphysics c© 3.5

Next we show a comparison with the commercial product
COMSOL Multiphysics c© 3.5. The sets of tests used for
comparison with the COMSOL software [4] include one
isoviscouse test with Ra = 1e4 and one temperature-
dependent viscosity test with Ra0.5 = 1e4 at a non-
dimensional reference temperature Tref = 0.5. The acti-
vation energy and surface temperature from equation (6)
are chosen in such a way that the viscosity contrast across
the computational domain is ∆ηT = 1e6. For the tests
computed using the GAIA code, we use a projected 2D grid,
while in COMSOL the mesh is fully irregular. While with
GAIA uses finite volume discretization, the discretization
scheme in COMSOL is finite element based. In contrast to
the 2D-3D comparison tests from the last subsection, we
use here no slip top boundary condition for the momentum
equation to suppress unrealistic zero-mode from appearing
in COMSOL. In Figure 7, we present the results for the
isoviscouse case. Both the temperature slice and the velocity
field indicate a good agreement between the two codes. The
temperature distribution show the same convection structure
with fout thermal upwellings (plumes) on the axes. The
maximum velocity is 49.54 for the GAIA case and 49.495
for the COMSOL run and exhibits identical distribution
with high velocity in the areas where a thermal upwelling
or a downwelling forms. The next comparison shows a
temperature-dependent viscosity case using the Arrhenius
viscosity law. In Figure 8, the temperature distribution show
similar structure to the previous isoviscouse cases, however
due to the temperature-dependent viscosity, the upwelling
form changes since the bouyancy term in the conservation
of momentum equation decreases with increasing viscosity.
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Figure 7. 2D comparison for Ra = 1e4, ∆ηT = 1; left: 2D temperature
(top) and velocity (bottom) distribution with GAIA; right: 2D temperature
(top) and velocity (bottom) distribution with COMSOL Multiphysics c©
3.5.

Figure 8. 2D comparison for Ra0.5 = 1e4, ∆ηT = 1e6; left: 2D
temperature (top) and velocity (bottom) distribution with GAIA; right:
2D temperature (top) and velocity (bottom) distribution with COMSOL
Multiphysics c© 3.5.

The highest velocity is in the regions of high temperature
(thermal upwellings) since there the viscouse forces are
weaker than in the rest of the mantle. In these cases, due
to the temperature-dependent viscosity, a stagnant lid forms
on top of the convecting mantle.

In Table III, we show further output values for both the

isoviscouse cases (∆ηT = 1) and the temperature-dependent
viscosity case (∆ηT = 1e6) obtained with the 2D Version
of the GAIA code and with the COMSOL Multiphysics c©
3.5 software.

Table III
COMPARISON OF THE RESULTS OBTAINED USING THE GAIA

CODE AND COMSOL MULTIPHYSICS c© 3.5 SOFTWARE; THE
PARAMETERS USED ARE Ra = 1e4, AND NO-SLIP

BOUNDARIES.

Case vrms |T | Nutop Nubot Nuavg

GAIA 2D 27.347 0.488 3.255 3.222 3.2385
∆ηT = 1

COMSOL 2D 24.966 0.488 3.238 3.139 3.1885
∆ηT = 1

GAIA 2D 19.396 0.535 2.143 2.121 2.132
∆ηT = 1e6

COMSOL 2D 15.257 0.535 2.124 2.087 2.1055
∆ηT = 1e6

D. Comparison with published results

Next we compare 2D results with other published results.
The following table lists benchmark results for an isovis-
couse case and a temperature-dependent viscosity case (Bl
stands for [1] and Ha for [6]). Ra1 is the bottom Rayleigh
number. In Figure 9 and Figure 10 we show the temperature
distribution and the Nusselt number. The results listed in

Table IV
COMPARISON WITH PUBLISHED RESULTS; BL STANDS FOR
BLANKENBACH ET AL.[1] AND HA STANDS FOR HANSEN ET

AL.[6].

Case Grid Ra ∆ηT Nutop Nubot Nuavg

Bl 18x18 1e7 1e3 − − 9.57

24x24 1e7 1e3 − − 9.63

This 32x325 1e7 1e3 9.5 9.6 9.55

Ha 60x180 1e6 1 − − 17.20

This 96x1017 1e6 1 16.83 17.17 17.0

Figure 9. Left: Nusselt numbers as a function of time and right: 2D
Temperature slice corresponding to the case from Blankenbach et al. [1].
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Figure 10. Left: Nusselt numbers as a function of time and right: 2D
Temperature slice corresponding to the case from Hansen et al. [6].

Table IV show a good agreement between the two cases
computed using GAIA 2D framework and the corresponding
cases from [1] and [6]. Although the models from [1] and
[6] use 2D box grids, the differences in the Nusselt numbers
between [1], [6] and GAIA are within 1.2%. The two cases
presented in Figure 10 and Figure 11 show a time-dependent
behavior. Unlike the previous cases, the Nusselt number
plotted in the right part of the figure varies with time until
a quasi-steady-state is reached where the Nusselt number
oscillates around a mean value.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented several methods for domain
decomposition of 2D spherical grids and a formula for
computing the resulting number of halo-cells and there-
fore the communication overhead. The performance tests
show a super-linear speedup for the 2D simulations and a
computation time needed to reach a steady-state solution at
least one order of magnitude smaller than the one needed
for the three dimensional cases. Further, comparison of
2D and 3D results show a good agreement in convection
mode (number of thermal upwellings and downwellings) and
Nusselt number. The validation with the commercial product
COMSOL Multiphysics c© 3.5 yieled satisfying results for
both isoviscouse and temperature-dependent viscosity cases.
Comparison with other published results showed similar
results for the Nusselt numbers.

A future goal is to include active compositional fields
in our model. For this, further benchmarks as well as
performance tests will be needed.
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