
FETOL: A Divide-and-Conquer Based Approach for Resilient HPC Applications

Wassim Abu Abed, Kostyantyn Kucher,
and Manfred Krafczyk

Institute for Computational Modeling in Civil Engineering
Technische Universität Braunschweig

Brunswick, Germany
Emails: {abuabed, kucher, kraft}

@irmb.tu-bs.de

Markus Wittmann, Thomas Zeiser
and Gerhard Wellein

Erlangen Regional Computing Center
University of Erlangen-Nuremberg

Erlangen, Germany
Emails: {markus.wittmann, thomas.zeiser, gerhard.wellein}

@fau.de

Abstract—The inevitable increase of the frequency of hard
and soft faults in current and future high performance computing
systems motivates the need of integrated approaches to improve
the resilience of such systems. In this paper, a framework for
a fault tolerant environment termed FETOL implementing an
approach to achieve a coordinated resilience solution is presented.
FETOL is based on a software solution exploiting a Divide-and-
Conquer strategy that will offer comprehensive methods on the
middleware and application level to deal with various failure
scenarios.

Keywords—hpc; resilience; fault-tolerance; divide-and-conquer.

I. INTRODUCTION

The increasing size and complexity of HPC (High Per-
formance Computing) systems are two major factors that are
leading to an inevitable increase of the frequency of hard and
soft faults in present Peta-Flop and future Exa-Flop systems.
Therefore, these HPC systems are prone to become less robust
and the operating efficiency and reliability of such systems
tend to deteriorate profoundly. New integrated approaches
to improve the resilience of HPC systems are undoubtedly
needed in order to maintain a reasonable operation of such
systems. Recent literature surveys have shown that resilience
cannot be efficiently realised by implementing fault tolerance
mechanisms on the system level only [1]. Different application
domains have different methodological requirements to achieve
resilience of an HPC application. Hence, an integrated appli-
cation oriented approach is mandatory.

In this paper, the concept of an application oriented
framework for a fault tolerant environment termed FETOL is
presented. FETOL is an abbreviation of the German translation
”Fehler Toleranz” of ”Fault Tolerance”. FETOL is based on
a software solution exploiting a Divide-and-Conquer strategy.
In the next section, the background and motivation of the
presented work are given. The main idea of FETOL with
its central operation of breaking down the HPC application
into subtasks and grouping them into individually restartable
process bundles is explained in Section III. In Section IV,
the system architecture and design are presented including
the checkpointing and the fault tolerance mechanisms. In
Section V, the proposed approach is discussed in the context of
related work in the field. An evaluation of a new communica-
tion component developed as part of the proposed framework
is presented in Section VI. In the last section a brief conclusion
and an outlook are given.

II. BACKGROUND

Different MPI (Message Passing Interface) implementa-
tions are presently the most used parallel programming li-
braries in developing large-scale parallel applications. A par-
allel application in the context of MPI usually runs on a
cluster of computing nodes in the form of different MPI
processes. MPI processes are grouped together in a so-called
MPI communicator that takes care of the explicit and unam-
biguous identification of messages and addresses respectively.
Accordingly, the frequently needed communication for the
purpose of exchanging data or synchronising pace among these
processes is carried out via MPI library calls. In the case of
a network failure or the breakdown of one of the computing
nodes the state of an MPI communicator becomes undefined
and the entire parallel application will come to a halt and ter-
minate without any protective or recovery actions. This serious
drawback of the current existing MPI implementations causes
the interrupted parallel application to terminate irrecoverablly
and thereby the entire MPI parallel application must manually
be restarted from scratch or at least from the last checkpoint
data.

III. THE APPROACH IN FETOL

The divide-and-conquer strategy followed in FETOL aims
at implicitly overcoming the limitation in the MPI implemen-
tations that renders the parallel application irrecoverable by
grouping the processes of a parallel application into more than
one so-called PB (Process Bundle), see Figure 1. Each of these
PBs will be executed on one or more computing nodes of the
cluster. The processes within each PB communicate with each
other via native MPI using a PB specific MPI communicator.
An additional cross PBs communicator called BOND, see
Section IV-B, will take care of the needed communication
between the processes of two different PBs. This alternative
communicator is based on TCP/IP and on a multi-agent
architecture.

The execution of the parallel application is started by
sequential or parallel initialisation of all PBs, where each PB
is regarded as a separate MPI parallel application that uses a
bundle specific MPI communicator. In this case, a hardware
failure will only affect one of the PBs and accordingly only
the respective MPI communicator will be in an undefined state.
As a result, there will be no need to restart the execution of
the entire parallel application and only the affected PB must
be restarted. Moreover, restarting the defect PB from the very

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

MPI	
 MPI	

BOND	

Agent_2	

Process_n Process_1 Process_2

BOND	

Agent_1	

BOND	

Agent_n	

Process_(n
+1)

MPI_COMM_WORLD

MPI	
 MPI	

BOND	

Agent_2	

Process_n Process_1 Process_2

BOND	

Agent_1	

BOND	

Agent_n	

Process_(n
+1) MPI_COMM_WORLD

BOND

B
O

N
D

P
B

_2

P
B

_1

B
O

N
D

JM_2	

JM_1	

persistent	

memory	

I/O	

I/O	

B
O

N
D

B

O
N

D

Parent	
 JM	

duplicate	

Ressource	
 Manager	

Parent	
 JM	
 com
pute-

node

com
pute-

node

TCP

TCP

Figure 1. FETOL System architecture.

beginning can also be avoided in making use of the other PBs
that are still running. The initialisation of the new PB can
be done either from reconstructed data of the PBs that are
still alive or from available check pointing data written by the
lost PB before its crash. A coordinating middleware, called
JM (Job Manager), is responsible for restoring and migrating
any failed PB in cooperation with the resource manager that
usually controls the computing nodes of the cluster.

IV. SYSTEM ARCHITECTURE AND DESIGN

Resilient high performance computing requires the collab-
oration between different software components. These compo-
nents are: the resource manager with the associated hardware
system monitoring tools, the communication libraries used
to allow a parallel execution, the parallel application itself
with its application level techniques of data persistency and
the software monitoring and fault detection mechanisms. The
collaboration between these components is managed in FETOL
by introducing the JM middleware. Figure 1 schematically
shows FETOL’s system architecture. In the following sections
the different components of this architecture will be described
as well as the fault tolerance mechanism and the check-
pointing approach adopted in FETOL.

A. Job Manager

The JM, as a coordinating middleware, has the task of
bundling, orchestrating and extending the different function-
alities of the other software components in FETOL. Different
system and application information, which are delivered by the
monitoring tools on the system level and the soft monitoring
on the application level, will trigger the coordinated reactions
of the Job Manager.

The JM should restore and migrate any failed PB. Restoring
a PB includes managing and coordinating the process of
retrieving application state data as well as remapping the cross
PB communication channels between the restored processes
and the still running processes of the other PBs. Application
state data include the usual checkpointing data already stored
on persistent storage or/and data sets that are reconstructed
from the data of the still running processes, which are carrying
computations on partitions of the application computational
domain adjacent to that of the PB being restored. Migrating
the restored PB to run on new hardware resources is being

carried out in cooperation with the resource manager that is in
control of the compute nodes of the cluster.

The system architecture shown in Figure 1 illustrates the
implementation of the JM. The system JM consists of multiple
software instances that run on different computing nodes. Each
PB has its own JM software instance that is responsible for the
specific PB. The different PB specific JM software instances
are coordinated and managed by two identical central ”Parent
JM” software instances that operate in a synchronously parallel
fashion on two different nodes of the cluster to increase the
redundancy of the system. These two ”Parent JM” instances
assume the task of communicating with the resource manager
and the responsibility of restoring any PB specific JM with
failure. All software instances of the JM communicate and pass
the needed information between each other using the BOND
communication framework.

B. BOND

During the EU project COAST a software framework was
developed to couple multiple individual software solvers in
a flexible and distributed manner [2]. This framework allows
distributed coupling according to agent oriented programming
principles. Multi agent systems already proved their robustness
and flexibility in other distributed systems [3][4].

With the acquired experiences in multi agent frameworks
on HPC hardware, a successor framework coined BOND
has been developed. This framework has been adapted to
closely follow the programming paradigms known from MPI
programmes, yet keep some of the benefits of multi agent
platforms, such as robustness and scalability. The main use
case of BOND is within the FETOL framework, where it
serves as an alternative communication library to cover failures
of MPI.

BOND is a C++ library with the corresponding API
(programming interface). Bindings for Fortran and plain C
are targeted for a later stage of the project. Within the C++
library, Java asynchronous socket communication is being
used to deliver MPI style data buffers to a remote machine
in a distributed HPC environment. BOND communication
currently utilises the following primary communication calls:
non-blocking send operation, blocking send operation and
blocking receive operation.

On its way to the remote machine, the data is directly
transferred to a user allocated target buffer, as it is common in
MPI distributed HPC codes. The data buffer is never managed
by the Java memory management, but always remains in native
heap space. Due to this cautious data management, the Java
garbage collector does not pose an overhead for data transfers,
making communication speed via BOND comparable to that
of MPI, see Section VI. Even high performance host channel
adapters like Infiniband can be used effectively, bypassing
most of the TCP/IP protocol overhead using the socket direct
protocol.

C. MPI Program

The class of MPI programs considered in FETOL addresses
primarily stencil based applications that are based on compu-
tational domain decomposition in the form of meshes to carry

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

process1	
 process2	

bundle1	

grid

block node
block

block

node

Figure 2. Data structure of the in-house LB solver and partitioning into
bundles of processes.

on their calculations. LB (Lattice-Boltzmann) solvers can be
regarded as an important example of this class of scientific
applications. Our in-house Lattice-Boltzmann flow solver Vir-
tualFluids [5] is an adaptive MPI based parallel application
which is comprised of various cores. The software framework
is based on object-oriented technology and uses tree-like data
structures. The flow region is divided into discrete blocks on
the basis of an Octa-tree. These discrete blocks contain the nu-
merical sub-grids of the computational domain in the form of
equally dimensioned matrices of nodes per block, see Figure 2.
This structure has many advantages. The use of uniform girds
in form of matrices within blocks allows the use of efficient
algorithms and requires less computing resources since direct
addressing is possible and the cache memory of CPU can be
better utilised. Restricting the communication on the block-
edges/-areas reduces the complexity of parallelisation. These
data structures are also suitable for hierarchical parallelisation
using a combination of PThreads and MPI and dynamic load
balancing.

D. Check-Pointing Approach

Data persistency approaches in the field of fault-tolerant
HPC applications can be divided into Message-logging and
Check-pointing approaches. For the class of the scientific
applications considered in FETOL, the approach of message-
logging is not practical. Usually scientific applications of
this class exchange too much data. In the case of recovery
the live processes would have to wait too long until the
recovered process computes the current actual consistent state
and thus, the overall efficiency of the resilience mechanism
would deteriorate unacceptably.

In FETOL, an application-level checkpointing approach
is adopted and implemented in the framework of the in-
house LB solver. In contrast to the widely used system-level
checkpointing, where the system stores the complete state of
the application independently, different mechanisms of data
reduction can be implemented minimising the volume of stored
data per checkpoint.

Bundle 1 Bundle 2

Block persisted
nodes

Bundle 1 Bundle 2 Bundle 3

interpolation
blocks

a)

b)

Figure 3. Data persistency (a) the boundary nodes of all blocks are stored.
(b) recovery depending on neighbouring bundles

The individual steps of the periodical checkpointing pro-
cedure in VirtualFluids and a mechanism to deal with data
consistency are given in the following: (1) The application
periodically serialises and stores the state data of the corre-
sponding blocks of the grid of each MPI process in the file
system. (2) After saving each process state data the process
internally sets a checkpoint counter variable. (3) This action is
then synchronised by a root process that sets a global environ-
ment variable, that indicates the last successful checkpointing,
at which the state of the application is consistent.

Two different mechanisms of data recovery after failure
are implemented in VirtualFluids. The first one is based on a
data reduction strategy that minimises the volume of the stored
data per checkpoint. When checkpointing the simulation data
of a process, only the information in the boundary nodes of
each block is saved, see Figure 3 (a). The rest of the omitted
information are then interpolated for the internal nodes of
each block during the data recovery procedure. The second
recovery mechanism is applied when no checkpointing data
for a whole bundle can be retrieved at all. The missing data
are then approximated from the data of the still running
processes, which are carrying computations on partitions of
the application computational domain adjacent to that of the
bundle being restored, see Figure 3 (b).

E. Fault Tolerance Mechanism

After specifying the needed resources and the executable
binary of the Parallel Application by the user the execution of
the JM is started on the Cluster. The Resource Manager assigns
the needed resources, which were specified by the User, plus
additional so-called recovery resources to the JM. The JM

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

starts the execution of the Parallel Application on the Cluster.
The JM listens permanently to and analyses the information
delivered by the Hardware and Software Monitors. The JM
terminates when the Parallel Application successfully ends.

The occurrence of hardware faults will prevent the success-
ful execution of the Parallel Application, which will result in
two different scenarios. The first scenario happens when the
JM identifies - according to the analysis of the information
received from the Hardware and Software Monitors - any
running vulnerable process that might put the execution of
the Parallel Application at risk. In this case the JM initiates
an active fault-tolerance action by stopping and then restoring
the execution of the process bundle containing the vulnerable
process on new resources and the execution of the Parallel
Application continues.

The second scenario can occur, if the Hardware and/or
Software Monitors are totally absent as software components
or fail to report a failure. In this case the Parallel Application
might fail to continue its execution unnoticed by the JM.
For this reason, the BOND framework, which is imbedded in
the Parallel Application, will support a passive fault-tolerance
action of the JM and takes the responsibility of reporting any
failed process bundle to the JM. The JM then restores the failed
process bundle and the execution of the Parallel Application
continues.

The step of restoring a process bundle requires the retrieval
of the process state data for each process of the process bundle
being restored from the Storage System. Here the Parallel
Application retrieves the process state data stored in form of
checkpointing data from the Storage System or approximates
a set of process state data, using the still running processes’
data, i.e, the corresponding ”neighbouring” PBs.

The JM then remaps the communication channels between
the processes being restored and those still running. At the
end the JM migrates and starts the restored process bundle on
new nodes of the Cluster using its extra recovery resources.
If the extra recovery resources of the JM are exhausted,
the JM demands new recovery resources from the Resource
Manager. The latter assigns then the demanded resources
and the migration of the process bundle can be successfully
accomplished.

V. RELATED WORK

Different approaches that address the problem mentioned
in Section II have recently been proposed and implemented.
These approaches can be grouped into the two categories: MPI
based and non MPI based approaches.

MPI based approaches [6][7][8]: In [6] a ULFM (User
Level Failure Mitigation) approach is presented, where a set
of five new interfaces are added to the MPI implementation.
In contrast to [6], in this paper, no extension of the MPI
standard or implementation is suggested. Hence, protective
actions are located entirely outside the MPI implementation
and the use of arbitrary MPI implementations is possible.
The recovery processes is driven by three components (the
Job Manager, the additional communication framework BOND
and the parallel application). Only the MPI communicator
of a group of processes Bundle is replaced by restarting

a new mpirun instance that spawns replacement processes
within a new MPI communicator. The MPI communication
performance is essentially maintained inside each bundle.

The approach in [7] aims at enabling MPI implementations
to support Algorithm-based Fault Tolerant techniques, see
also [11]. It avoids any periodic checkpointing by storing the
application state only after a failure is detected. The MPI
runtime is augmented with a failure detection service and the
MPI implementation is modified. In FETOL, instead of re-
launching the entire MPI application, only the Process Bundle,
which is a subset of the parallel application, is relaunched.
The Checkpoint-on-failure approach in [7] can be integrated
bundle-wise in FETOL to support an ABFT (Algorithm-Based
Fault Tolerant) like technique used to recover data from
checkpoints.

The fault tolerance mechanism of the Job Pause Service in
[8] is implemented within LAM/MPI using the BLCR [9] as
a checkpointing library. The fault tolerance mechanism allows
live processes to remain active after a notification of a process
failure. The live processes will roll back to the last checkpoint
and retain the internal communication links. Failed processes
are dynamically replaced by new ones on spare nodes before
resuming from the last checkpoint.

The fault tolerance mechanism in [8] resembles the one
proposed in this paper to a fair extent. For example, the Job
Manager can be compared to the Scheduler daemon. BOND
can be compared to the scalable communication infrastructure
used to notify the active nodes about the replacement nodes
and reconfigure the communication infrastructure. However,
the following differences are significant: the fault tolerance
mechanism in FETOL has the scope of bundles of processes
as opposed to a single process; No modification to the MPI
implementation is necessary; Checkpointing is carried out on
the application level avoiding the lack of flexibility of the
system level checkpointing.

Non MPI based approaches [10]: In [10] an object-oriented
parallel programming library for C++ called Charm++ is
presented. It differs from traditional message passing program-
ming libraries (such as MPI) in that Charm++ is message-
driven. Furthermore, it provides a methodology and a virtu-
alisation infrastructure in which the programmer decomposes
the data and computation in the program without worrying
about the number of physical processors on which the program
will run. The runtime system is in charge of distributing those
objects among the processors.

FETOL does not offer the sophistication of Charm++ [10]
and keeps the fault tolerance mechanism as simple as possible
reducing the complexity of the implementation and the usage.
Therefore, the user application can still rely on its favourite
MPI implementation. In addition, the asynchronous commu-
nication framework BOND provides an automatic overlap of
communication with computation, which facilitates the fault-
tolerance mechanism in FETOL.

In the following, two categories of data recovery ap-
proaches that are tangential to the approach followed in this
paper are also identified and briefly summarised.

Algorithm-based fault-tolerance [11][12]: The most sig-
nificant and relevant aspect of ABFT techniques [11] is that

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

failures can be tolerated without checkpointing or message
logging. Per definition as found in the literature, for example
in [7], an ABFT uses mathematical and algorithmic properties
to reconstruct failure-damaged data and to complete operations
despite failures. The Algorithm-Based Checkpoint-Free Fault
Tolerance Technique in [12] extends the ABFT idea to recover
applications from failures, in which the failed process stops
working and the data are totally lost.

In FETOL, a data recovery strategy similar to ABFT is
adopted in that mathematical interpolations are used in two
ways: first, in recovering reduced checkpointing data, second,
in recovering and restoring missing data from living processes.
Moreover, the assumptions about the capabilities of the runtime
environment mentioned in [12] are guaranteed by FETOL.

Checkpointing and message-logging [13][14]: The partial
message logging protocol proposed in [13] is based on process
clustering and a hierarchical rollback-recovery protocol that
applies different protocols for the communications inside a
cluster of processes and for the communications among the
cluster. The group-based Checkpoint/Restart solution in [14]
combines coordinated checkpointing and message logging.
In FETOL, message logging is totally avoided, since the
properties of the scientific parallel application considered in
FETOL make the use of message logging disadvantageous
in terms of storage size and time overhead of recovery. One
more distinction between FETOL and [14] is that the parallel
application is responsible for receiving checkpoint requests
and writing and reading checkpoints, instead of modifying
mpirun. One similarity to the hierarchal rollback-recovery
protocols mentioned in [13] that should be stated is the division
of processes in groups called Bundles and the application
of different communication protocols inside and among the
different bundles. Therefore, FETOL can be regarded as a
hierarchical rollback-recovery protocol.

VI. EVALUATION

The low-level ping-pong benchmark was used to evaluate
the bandwidth performance of BOND in comparison to Intel
MPI, for given different message sizes, see Figure 4. The
different tests were conducted on a cluster based on two-socket
compute nodes equipped with 16-core AMD Opteron 6134
Magny Cours processors. The cluster is also equipped with a
GE (Gigabit Ethernet), which can achieve around 125 MB/s,
as well as with a fully non-blocking IB (QDR-InfiniBand)
network with a bandwidth of ca. 3 GB/s. An implementation of
the ping-pong benchmark using BOND was compared to the
one included in the Intel MPI benchmarks [15] compiled with
Intel MPI. The different tests have shown the following results,
see Figure 4. Over GE both implementations can sustain
nearly the full bandwidth. Moreover, both implementations
show the same quantitative bandwidth when using IPoIB (IP
protocol over the IB interconnect), however Intel MPI achieves
a slightly higher bandwidth for messages smaller than 64 kB
and BOND for messages larger than that. The usage of SDP
(the Sockets Direct Protocol), which provides the advantages
of RDMA transfers from IB to IP connections, only brings
a benefit for Intel MPI. BOND stays nearly on the same
bandwidth level in a similar way as in the IPoIB test version.
Interestingly, the bandwidth for BOND drops below 1 MB/s
when message sizes fall in the interval between 16 kB and

Figure 4. Performance evaluation - BOND in comparison to Intel MPI

128 kB. It is suspected that the unchanged performance of
BOND with SDP and the bandwidth drop could be due to
implementation details of the Java SDP interface.

VII. CONCLUSION

The full implementation of the divide-and-conquer strategy
for a coordinated resilience of an HPC application presented
in this paper is still under development. A ”proof-of-concept”
implementation is presently developed and first benchmarking
tests of the new communication component BOND were pre-
sented in this paper. The presented results show that there are
no substantial side effects of using BOND beside MPI. On the
contrary, BOND might even outperform MPI in some cases.
The implementation and test of a procedure for passive fault-
tolerance is being addressed at the time of this writing. For
the passive fault tolerance the BOND framework is exploited
as a pseudo-monitoring tool that captures and reports any
error collectively and indifferently as a failure of a process
bundle. Addressing different categories of faults will then
be handled in the context of implementing an active fault-
tolerance approach that utilises a hardware monitoring tool on
the system level and some software monitoring mechanism
on the parallel application level. A fundamental problem that
still has to be addressed for implementing an efficient active
fault-tolerance is the definition and test of quality metrics that
quantify and indicate the vulnerability of a process bundle.
The identification of system parameter thresholds that indicate
when the vulnerability of a PB is critical is a trade-off
between the increased risk of complete failure, in case no
intervention was undertaken, and the overhead incurred by
a fault prevention measure, in which the execution of a still
running PB, but yet considered as vulnerable, is stopped and
restarted as a precaution.

ACKNOWLEDGEMENT

The authors would like to thank the German Federal
Ministry of Education and Research - BMBF for supporting
this work (Grant Number 01 IH11011).

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

REFERENCES

[1] J. Daly (eds.), Inter-Agency Wrokshop on HPC Reilience at Extreme
Scale, National Security Agency Advanced Computing Systems, Febru-
rary 2012.

[2] Institute for Computational Modeling in Civil Engineering - Tech-
nische Universität Braunschweig, https://www.irmb.bau.tu-bs.de/muscle/,
retrieved: Sep. 10. 2013.

[3] E. Cortese, F. Quarta and G. Vitaglione, ”Scalability and Performance of
JADE Message Transport System,” AAMAS Workshop, Bologna, 2002.

[4] A. Helsinger, M. Thome and T. Wright, ”Cougaar: a scalable, distributed
multi-agent architecture,” Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics 2004, 2, IEEE, 2004, pp. 1910–
1917.

[5] M. Schönherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger and
M. Krafczyk, ”Multi-thread implementations of the lattice Boltzmann
method on non-uniform grids for CPUs and GPUs,” Int. J. Comp. Math.
App. 61, 2011, pp. 3730–3743.

[6] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca and J.
Dongarra, ”An Evaluation of User-Level Failure Mitigation Support in
MPI,” Proceedings of Recent Advances in Message Passing Interface
19th European MPI Users Group Meeting, EuroMPI 2012. Springer,
Vienna, Austria, Sep. 2012, pp. 193–203.

[7] W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca and J. Dongarra,
”A Checkpoint-on-Failure Protocol for Algorithm-Based Recovery in
Standard MPI,”Kaklamanis et al. (eds.) Euro-Par 2012, LNCS, vol. 7484,
Springer-Verlag, Berlin Heidelberg, 2012, pp. 477–488.

[8] C. Wang, F. Mueller, C. Engelmann and S. L. Scott, ”A Job Pause Service
under LAM/MPI+BLCR for Transparent Fault Tolerance,” International
Parallel and Distributed Processing Symposium, IPDPS 2007, IEEE
International 2007, pp. 26–30.

[9] Berkeley Lab, http://crd.lbl.gov/groups-depts/ftg/projects/current-
projects/BLCR, retrieved: Sep. 13. 2013.

[10] Parallel Programming Laboratory - University of Illinois at Urbana-
Champaign, http://charm.cs.uiuc.edu/research/charm/, retrieved: Sep. 10.
2013.

[11] K. Huang and J.A. Abraham, ”Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Transactions on Computers, Vol. c-33, No. 6,
1984, pp.518–528.

[12] Z. Chen and J. Dongarra, ”Algorithm-Based Fault Tolerance for Fail-
Stop Failures,” IEEE Transactions on Parallel And Distributed Systems,
Vol. 19, No. 12, 2008, pp. 1628–1641.

[13] T. Ropars, A. Guermouche, B. Uar, E. Meneses, L.V. Kal and F.
Cappello, ”On the Use of Cluster-Based Partial Message Logging to
Improve Fault Tolerance for MPI HPC Applications,” In Jeannot, E. ,
Namyst, R., Roman J. (eds.) Euro-Par 2011, LNCS 6852, Part I, Springer,
Heidelberg 2011, pp. 567–578.

[14] J. C. Y. Ho, C. Wang and F. C. M. Lau, ”Scalable Group-based
Checkpoint/Restart for Large-Scale Message-passing Systems.” IEEE
International Symposium on Parallel and Distributed Processing, IEEE,
2008, pp.1–12.

[15] Intel Corp, Intel MPI benchmarks, http://software.intel.com/en-
us/articles/intel-mpi-benchmarks, retrieved: Sep. 12. 2013.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

