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Abstract—This paper presents a near real-time stereo matching
method with acceptable matching results. This method consists of
three important steps: SAD-ALD cost measure, cost aggregation
in adaptive window in cross-based support regions and a refine-
ment step. These three steps are well organized to be adopted by
the GPU’s parallel architecture. The parallelism brought by GPU
and CUDA implementations provides significant acceleration in
running time. This method is tested on six pairs of images from
Middlebury dataset, each possibly declined within different sizes.
For each pair of images it can generate acceptable matching
results in roughly less than 100 milliseconds. The method is also
compared with three GPU-based methods and one CPU-based
method on increasing size image pairs.

Keywords - GPU; Real-Time Stereovision; SAD-ALD;
Adaptive Window; CUDA.

I. INTRODUCTION

Stereo matching is one of the most extensively studied prob-
lems in computer vision. In years, people take their time into
stereo matching algorithm designing for new achievements in
the matching accuracy and the processing efficiency. Even with
many algorithms introduced every year, the two concerns of
accuracy and speed still tend to be contradictory in reported
results: accurate stereo methods are usually time consuming.
Some algorithms use large support windows for robust cost
aggregation [1]–[3], and the disparity computation step is
formulated as an energy minimization problem and solved with
slow-converging optimizers [4]; In other studies, segmented
image regions are used extensively as matching units [5],
surface constraints [6], [7] or post-processing patches [8].
These techniques significantly improve the matching quality
by paying considerable computation costs. As a result, people
tend to look for new possibilities on Graphics Processing
Unit (GPU) platforms. However, current accurate stereo al-
gorithms employ some key techniques, which seem not to
be suitable for parallel GPU architecture. As proved in [9]–
[12], it will be tricky and cumbersome to directly take these
techniques into GPU applications: large aggregation windows
require extensive iterations over each pixel; some optimization,
segmentation and post-processing methods require complex
data structures and sequential processing. In spite of these
difficulties, GPU is sill promising to fast stereo matching
applications because of its powerful parallel computing ability.
In fact, there already exist three GPU-based methods, namely,
CostFilter [13], PlaneFitBP [12] and ADCensus [14] in the
top 20 of Middlebury repository [15]. They all have near real-
time performance. Trying to outperform them, we propose a

brand new method, which also has near real-time performance,
but simple computing components. It can naturally scale
according to the image sizes. Our method is a correlation-
based technique, which falls into the class of local dense stereo
matching approaches. It includes the following key characters:

• SAD-ALD cost measure combining the adapted Sum
of Absolute Differences (SAD) measure and the Arm-
Length-Differences (ALD) measure. The usage of ALD
is inspired by the similarity of the pixel’s support region
and that of its homologous pixel. This combined measure
provides more accurate matching results than common
aggregation methods.

• Improved cross-based regions for efficient cost aggrega-
tion. Proposed by Zhang et al. [16], the support regions
are based on cross skeletons with accurate cross con-
struction and cost aggregation by reusing middle-ranking
disparity data.

• A simple refinement process with support region voting.
This simple process proves to be quite effective with little
time consuming.

• Efficient system implementation on GPU with Compute
Unified Device Architecture (CUDA).

This paper is organised as follows. Section II presents the
stereo-matching steps of the proposed method. Section III
details the experiment carried out on a set of increasing size
images from Middlebury dataset, with regard to both GPU and
CPU methods. Section IV concludes the paper.

II. STEREO MATCHING STEPS

A. Adapted Matching Cost

The method is a local dense stereo matching method. It
respects the very assumption that color information of the
neighbors of a left pixel should be close to those of the same
neighbors of its homologous right pixel in the right image.
So, the matching costs are defined between the left pixel and
the candidate right pixels in the corresponding line (epipolar
line) in the right image. The cost is shifted over all possible
pixels so that a matching cost between the left pixel and each
candidate in the right image is obtained. By the aggregation
of matching cost and the winner-takes-all method, the final
disparity estimation is realized by selecting the candidate pixel
with the lowest matching cost.
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The SAD matching cost is adapted as (1).

SAD(xl, y, d) =
[
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]
×

|IlR(xl, y)− IrR(xl − d, y)||IlG(xl, y)− IrG(xl − d, y)|
|IlB(xl, y)− IrB(xl − d, y)|

 (1)

In the formula, | · | is the absolute value, d is the spatial shift
along the horizontal epipolar line (or we call it the disparity
of the two pixels), and |Ili(xl, y) − Iri(xl − d, y)|(i=R,G,B)

are the absolute difference (AD) of three color components in
the two chosen pixels. For the coefficient matrix of the three
color components, we choose the
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]
according to

the Bayer Filter Mosaic [17], which uses twice as many green
elements as red or blue to mimic the physiology of the human
eye.

Since these pixels of horizontal lines with the same parity
in left and right color images are characterized by the same
three color components, we can reasonably assume that the
color points of two homologous pixels are similar. Because the
matching cost compares the color points of left and right pixels
located on the same horizontal lines, they reach an extremum
when the shift is equal to the disparity.

An assumption for matching cost aggregation is that a pixel
and its homologous pixel should have the similar support
region arm-length in vertical direction as shown in Fig. 1.
This implies that the arm-length data can be used to enhance
the matching results in most regions of the image pairs. So,
we update the matching cost equation as (2),

MatchingCost(xl, y, d) = SAD(xl, y, d)

+K ×
∑
j

|ALlj(xl, y)−ALrj(xl − d, y)|

where j = (Up arm, Bottom arm)

(2)

In the formula, |ALlj(xl, y)− ALrj(xl − d, y)| is the differ-
ence of their arm-length (AL) in vertical direction, and the
parameter K is a empirical preset value. The arm-length (AL)
is equivalent to absolute difference of their coordinates in the
same direction (|xp−xp′ | or |yp− yp′ | for pixel p and one of
its endpoint pixel p′, detail in Section B).

We find that this enhancement can evidently reduce the
errors in most regions (the advantage degrades in those areas
where both the color and the shape repeat).

B. Cross-based Cost Aggregation

In this step, each pixel’s matching cost over its support
region is aggregated, to reduce the matching ambiguities and
noise, in the initial cost volume in order to pick out the best
candidate pixel. As it is mentioned in the previous section, the
matching method respects the very assumption that the color
information of neighbors of a left pixel is close to those of
the same neighbors of its homologous right pixel in the right
image. Meanwhile, for matching cost aggregation, there is also
two simple but effective assumptions, the first is the one that a
pixel and its homologous pixel should have the similar support
region arm-length in vertical direction, as shown in Fig. 1.

For updating the matching cost equation, the second one is
that neighboring pixels with similar colors should have similar
disparities. Many well known cost aggregation methods have
adopted this assumption such as segment support [6], adaptive
weight [3], geodesic weight [1] and those proposed for GPU
systems such as simplified adaptive weight techniques with
1D aggregation [11], [18] and color averaging [9], [12], either
require too many segmentation operations, expensive iterations
or lead to matching quality decrease owing to maladjustment
of GPU’s parallel architecture. Some other researchers have
formulated the matching cost step as a cost filtering problem
[13] and made the matching quality be well guaranteed by
smoothing each cost slice with a guided filter.

Zhang et al. [16] have proposed a cross-based matching
cost aggregation method. This method can be adopted to G-
PU’s parallel computation architecture and produce aggregated
results comparable to the adaptive weight method but with
less computation time. Moreover, this method constructs a
support region for every pixel, which can provide supplemental
information for later processing steps.

(a) Cross Construction

(b) Cost Aggregation

Fig. 1: Cross-based aggregation.

As it is shown in Fig. 1(a), cross-based aggregation is
carried out by a two-step-process. In the first step, an upright
cross in constructed for every pixel. The support region of a
given pixel, such as p in the Fig. 1(a), is modeled by merging
the horizontal arms of the pixels (such as the pixel q in Fig.
1(a)) lying on the vertical arms of pixel p. Generally, every
pixel has four arms and the length of the arms is set by an
endpoint pixel p′ in the same direction that does not obey both
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the two following rules:
1) Dc(p, p

′) < σdc and Dc(p
′, p′′) < σdc, where

Dc(p, p
′) = max|Ii(p) − Ii(p

′)|(i=R,G,B) is the color
difference between the pixel p and the pixel p′ , and p′′

is the predecessor of p′ lying between p and p′ while σdc
is a empirical preset threshold value.

2) Ds(p, p
′) < σds, where Ds(p, p

′) = |p−p′| is the spatial
distance, which is equivalent to absolute difference of
their coordinates in the same direction (|xp−xp′ | or |yp−
yp′ |) while the σds is a empirical preset maximum length
measured in pixels.

These two rules provide constraints in the four arm directions
both on color similarity and arm length with parameter σdc
and σds. After the cross construction step, the support region
for pixel p is modeled by merging the horizontal arms of
all the pixels lying on p’s vertical arms (as done for q for
example in Fig. 1(a)). In the second step, shown in Fig. 1(b),
the aggregated costs over all pixels are computed by firstly
summing up the matching costs horizontally and secondly
summing up these horizontal sum results vertically to get the
final costs.

In some too textured regions, the color and the shape both
repeat, which leads to degradation in matching results. We
find that the reason for this degradation lies in the shape of
aggregation support region. As seen in Fig. 1(a), we take the
pixel at the end of pixel p’s right arm as example, for this
pixel, its up arm and bottom arm could be very short (less
than 2 pixels), so, in the aggregation of its matching cost,
there will be not enough information to achieve a unique
minimum in the Winner-Takes-All processing, which leads to
marching errors at this pixel. As a solution to this problem,
we artificially enlarge the arms of a pixel to two pixels if its
support region is too small, to make sure that the matching
cost aggregation processing can have enough information for
stereo matching. This operation provides a slight improvement
in matching results in paying no computation time cost.

C. Simple Refinement

After the previous step, the disparity results of both the left
image and the right image contain some outliers in certain
regions that should be corrected by further operations. A
simple refinement is carried out after detecting these outliers.

The outliers in the left image are detected with left-right
consistency check: for a given pixel p, it is classified into
outliers if this equation does not hold true: d̂Lp = d̂R(p−d̂Lp)

where d̂Lp is the estimated disparity for pixel p in the left
image and d̂Rp is the estimated disparity for pixel p in the
right image.

These detected outliers are these errors that should be cor-
rected. The most current accurate stereo matching algorithms
use segmented regions for outlier handing [7], [8], which are
not suitable for GPU architecture. Here, what we use is a
simple voting refinement in reusing the support region infor-
mation. We still take the pixel p in the left image as example,
all the reliable disparities lying in its cross-based support

region are sorted by their disparity values. The disparity value,
which repeats the most (has the most votes), is denoted as d̂′Lp

, its repeating frequency is denoted as Fp(d̂′Lp), the number
of reliable pixels are denoted as Sr

p and the total number of
pixels in its support region are denoted as Sp. The disparity
value of outlier pixel p is then replaced with d̂′Lp if these
inequations hold true: Fp(d̂′

Lp)
Sr
p

> σF ,
Sr
p

Sp
> σS . If not, the p’s

disparity will be updated with nearest reliable disparity [19]
in its support region.

These parameters are given in Table I, which will be kept
constant in all the following experiments.

TABLE I: EXPERIMENT PARAMETERS.

K σdc σds σF σS

1.12 12 10 0.4 0.55

III. EXPERIMENTS

A. Platform and CUDA Employments

Our experiments are carried out both on CPU and GPU.
For the CPU, it is a Intel(R) Core(TM)2 Duo CPU E8400,
3.00GHz, each of the two cores with a cache of 6144KB.
The GPU used in the experiments is a GPU GeForce GTX
570 of NVIDIA. It has 15 multiprocessors of 32 cores, the
total amount of global memory is 1280 Mb (constant memory
65536 Kb, shared memory per block 49152 Kb). The system,
on which the experiment is evaluated, is Ubuntu 11.04, 32
bits.

The programming interface we used for parallel compu-
tation on GPU is the Compute Unified Device Architecture
(CUDA). The parallel computation work is realized by a kernel
function which is executed concurrently by multiple threads on
data elements. All these threads are organized into a two level
concepts: grid and block. A kernel has one grid which contains
multiple blocks. Every block is formed of multiple threads. The
dimension of grid and of blocks can be one-dimension, two-
dimension or three-dimension. The performance of GPU with
CUDA is closely related to thread organization and memory
accesses, which should attract much attention according to
various computation works and GPU platform. Based on our
experimental platform, given an image of size W × H , we
briefly lay out the CUDA settings and the parameter values
mentioned in our algorithm.

In our experiments, we use two-dimension blocks of size
16×16. Every thread takes care of one pixel at the three steps:
matching cost computation, aggregation of the matching cost
and refinement. So, for the W × H image, there are three
grid each containing W × H threads distributed to the three
matching steps and the size of grid is obtained by W+16−1

16 ×
H+16−1

16 . In the cost computation step, a grid is created with
W ×H threads, every thread takes care of one pixel for the
matching cost value computation at a set of given disparities. A
logical 3D memory space will be employed to store matching
costs obtained by this grid for the following steps.
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TABLE II: COMPARATIVE EVALUATION ON THE FOUR MIDDLEBURY DATA SETS OF THREE DIFFERENT SIZES
BY DIFFERENT GPU PROGRAMMING VERSIONS. ‘COMPUTATION TIME (CT)’ AND ‘PERCENTAGE OF BAD
PIXELS (PBP)’ .

Partial Demosaiced Full Color Gray level GPU Ada
Image Size PBP CT (s) PBP CT (s) PBP CT (s) PBP CT (s)

Rocks1
Small size 28.76 0.214 25.81 0.191 24.58 0.146 24.28 0.068
Half size 32.24 0.679 27.87 0.715 25.82 0.913 24.91 0.239
Full size 37.06 5.811 31.20 5.717 28.93 8.235 28.40 2.275

Aloe
Small size 27.08 0.214 24.96 0.192 23.96 0.115 23.69 0.063
Half size 29.33 0.698 25.78 0.697 24.94 0.68 24.22 0.217
Full size 30.26 5.955 28.98 5.875 26.04 5.595 25.99 2.180

Cones
Small size 39.18 0.234 29.77 0.229 28.76 0.276 18.90 0.079
Half size 46.98 2.123 37.36 1.548 36.91 3.024 35.26 0.812
Full size 52.14 20.569 44.85 11.502 45.16 19.881 44.18 6.159

Teddy
Small size 45.27 0.23 32.23 0.23 29.86 0.284 23.67 0.112
Half size 53.69 2.12 38.38 1.55 37.77 3.246 36.09 0.999
Full size 57.36 27.09 46.58 11.51 47.37 24.922 45.98 6.783

Avg. 39.95 5.495 32.82 3.330 31.68 5.610 28.84 1.666

(a) Comparison on computation-time (s).

(b) PBP(%) comparison results.

Fig. 2: Comparison of the methods on the ‘Aloe’ image pair.

In the cost aggregation step, a second grid of size W ×H
is created, so that each pixel has one thread to take care of
its matching cost aggregation and then the Winner-Takes-All
processing aiming at a winner pixel from a set of candidate
pixels, which will be the estimated disparity at the pixel. Here,
data reuse with shared memory is considered in this step to
reduce the accesses into the global memory space for saving
time.

For the simple refinement, the platform does the executions
concurrently on the estimated disparity images, a third grid of

size W ×H is employed to make sure that each pixel has one
thread for its refinement processing.

B. Experimental Results

We test our method on the standard image pairs from the
Middlebury datasets. Firstly, we take into the test these four
pairs of three different sizes (measured in pixels):

- Small size: Rocks1: 425×370; Aloe: 427×370; Cones:
450×375; Teddy: 450×375

- Half size: Rocks1: 638×555; Aloe: 641×555; Cones:
900×750; Teddy: 900×750

- Full size: Rocks1: 1276×1110; Aloe: 1282×1110;
Cones: 1800×1500; Teddy: 1800×1500

We first compare our method with three other methods that
we implement also on GPU. These methods are the partial de-
mosaicing matching method originally proposed by Halawana
[20] and the classic fixed windows matching method, treating
full color image and gray-level image separately. The results
are shown in Table II. The PBP column reports the percentage
of bad pixels, whereas the Computation Time (CT) column
reports the computation time in seconds. We can verify that
our adaptive method competes with the other ones on all these
four pairs both in matching quality and in computation time,
as it is shown in Fig. 2 more intuitively. Better performance
comes from a new support region and different structure
of computation, in comparing with the other methods. The
other three methods use square window for cost aggregation.
They always have the problem of adjusting the window
size: small windows do not contain enough information to
allow a correct matching or for a unique minimum in the
matching cost, while at the opposite, too large aggregation
windows may cover image regions containing pixels with
different disparities, which violates the assumption of constant
disparity inside the aggregation window. The upright cross
support region used in this method has no such weakness.
Here, the cost aggregation window could be well adjusted to
make sure that only those useful pixels are covered, and it
could be big enough to have sufficient information for a good
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stereo matching result, which offers important contribution to
matching quality. Meanwhile, the cost computation, the cost
aggregation are organized into two different CUDA girds, each
does a part of the stereovision work. This partition leads to
less memory coalescence but better profit from GPU’s massive
mathematical capacity, feeding back a short running time. It is
worth noting that near-real time computation is achieved for
the small size images, since computing time may reduce to
about less than 100 ms. Our method puts most of the data on
the global memory space and carefully treats the coalescence
of memory access with proper programming structures and
adapted usage of cached memory space of GPU such as shared
memory and texture memory for intermediary data, which
makes our method be very extensible and scalable for large
image pairs.

TABLE III: COMPARATIVE EVALUATION ON THE FOUR MIDDLE-
BURY DATA SETS OF THREE DIFFERENT SIZES BY DP AND OUR
METHOD. ‘COMPUTATION TIME (CT) ’ AND ‘PERCENTAGE OF
BAD PIXELS (PBP)’ .

CPU DP GPU Ada
Image Size PBP CT (s) PBP CT (s)

Rocks1
Small size 25.49 0.509 24.28 0.068
Half size 27.71 1.811 24.91 0.239
Full size 27.85 14.194 28.40 2.275

Aloe
Small size 26.90 0.544 23.69 0.063
Half size 28.46 1.842 24.22 0.217
Full size 29.72 14.534 25.99 2.180

Cones
Small size 21.57 0.583 18.90 0.079
Half size 28.89 4.903 35.26 0.812
Full size 35.32 37.736 44.18 6.159

Teddy
Small size 20.80 0.590 23.67 0.112
Half size 27.95 4.881 36.09 0.999
Full size 33.51 37.704 45.98 6.783

Avg. 27.85 9.986 28.84 1.666

We also compare our method with a standard Dynamic
Programming (DP) matching method that we implement on
CPU, and the results are presented in Table III, and in Fig.
3 more intuitively. These two methods can achieve similar
matching quality but our method outperforms the dynamic-
programming method in computation time with about five to
ten times acceleration. On the four small size image pairs, the
dynamic-programming method can finish its work in less than
half a second, however, our system does have work done in
100 milliseconds.

Finally, some disparity results are presented in Fig. 4. These
results concern the four images allowed in the Middlebury
database for general comparison and ranking. These images
are the small size images Tsukuba, Venus, Teddy and Cones.
The ranking evaluations is shown in Fig. 5. Our method gives
back the best results for the Venus image pair among the
four image pairs. Generally speaking, the matching quality
of the method is not very competitive in comparing to some
other very sophisticated methods on CPU, especially for the
Tsukuba image pair, in some regions of this image pair, near
the shoulder or the lamp for example, the color is too dark and

(a) Comparison on computation-time (s).

(b) PBP(%) comparison results.

Fig. 3: Comparison to Dynamic Programming on ‘Aloe’ image pair.

the color components’ values are far out of the ordinary, which
become as the noises to the matching method. Different from
the methods on CPU, which take at least half a second to do
the stereo matching, our method requires only 0.017 seconds
for Tsukuba pair, 0.053 seconds for Venus pair, 0.079 seconds
for Cones pair and 0.112 seconds for Teddy image pair.

IV. CONCLUSION

This paper presented a stereo matching method suitable
to GPU’s parallel architecture with good performance when
looking at the trade-off between accuracy and computation
time. The method is formed of three steps: SAD-ALD cost
measure, cost aggregation in adaptive window in cross-based
support regions and a refinement step to reduce the matching
errors in the disparity results. Every step is well organized
so that this method can be adopted efficiently by the GPU’s
parallel architecture. Experiment results show the accuracy and
the efficiency of this method: this method can handle some
pairs of images from Middlebury database within roughly 100
milliseconds with acceptable matching quality both in non-
occluded regions and depth discontinuities. Furthermore, the
approach scales well as the image size increases.

Although the running time is short, the implementation in
real time is still a great challenge. As the cost aggregation
step takes the biggest proportion of running time, looking for
a more efficient way to further accelerate cost aggregation and
finding out a set of robust experiment parameters to improve
matching quality can be interesting topics for future studies.
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Fig. 4: Matching results for the four basic Middlebury image pairs: Estimated disparity map (first row) and disparity matching
error maps (second row) with threshold 1 where the errors in unoccluded and occluded regions are marked in black and gray
respectively.

Fig. 5: The rankings in the Middlebury datasets with the error percentages in different regions.
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