
Access Control for Sensitive Data in Hadoop Distributed File Systems

Yenumula B. Reddy
Department of Computer Science
Grambling State University, USA

email: ybreddy@gram.edu

Abstract—User access limitations are very valuable in
Hadoop distributed file systems to access sensitive and
personal data. Even though the user has access to the
database, the access limit check is very relevant at the time
of MapReduce to control the user and to receive only
permissible data. Data nodes do not enforce any access
control on its access to the data blocks (read or write).
Therefore, Kerberos ticket granting model for user login
and user access permissions to MapReduce jobs do not limit
the unauthorized data to obtain from the access granted
database. In addition, to secure the data during processing,
the authentication and authorization of data is required. The
problems broadly include a) who will access the data, b) how
it will be encrypted, and c) stability of data processing while
the data are continuously growing. The current study
includes the security mechanisms currently available in
Hadoop systems, requirements of access control
mechanisms, and change of access control depending upon
the sensitivity of data.

Keywords—Hadoop systems; access control; distributed
file systems; MapReduce; network environment.

I. INTRODUCTION

The term big data is misleading in size and
organization. Big data means exceeding the normal
capacity and unmanageable with current available
technologies. The data can be in the form of structured or
unstructured category. It is large in the form of volume,
variety, and velocity (increasing at any given time). In
Defense organizations, big data can contain defense related
documents that include text, images, and videos. The high
sensitive data need to be analyzed and processed for real-
time response. The initial designers of data models
(hierarchical, relational, and the network) did not have an
idea of volume of current data, type of data, and speed of
growing. The Federal Government currently has a big
challenge of managing big data volume compared to any
other organization. The US health care system is expected
to grow in size to yottabytes (1024 gigabytes) soon.
Similarly, the Defense data will grow in size to yottabytes.

From 1960 to 2000, the storage, communication and
processing time was very expensive. So, the concentration
was storing the data and organizing the data using different
data management techniques (indexed, index sequential,
random, etc.). The recent developments made the storage,
communication, and processing time very cheap.
Therefore, corporations began storing all kinds of data

(images, text, symbols, different languages, and various
volume sizes) to meet the various types of emergencies.
Thus, analysis and control of data has become
unmanageable. The trend is built to elaborate models with
more test data rather than simple models. The task in
Defense organizations is to manage a large chunk of data
sets, provide additional benefits like statistical data, and
real-time answers to responsible officers. Therefore,
threats to the database need to be identified sooner, so that
the data can be protected. The query processing and threat
detection must happen in real time and with lower cost.

After year 2000, the internet usage increased
exponentially. The server and storage technology
underwent many changes. Therefore, the distributed
computing with many nodes was extremely difficult for
many reasons such as distributed locking, data parallelism
and distribution, load balancing, failure recovery, and
network congestion. The big data revolution started after
the release of “MapReduce: Simplified Data Processing on
Large Clusters” in 2004 by Google. Soon, Google became
the number one search engine. Next, Google released
another paper “The Google File System”, which is a high-
performance, widely available distributed file system that
provides the storage layer for the MapReduce processing.
The key advantage is ‘move processing to data’ rather than
‘moving the data to computer resources’.

The Hadoop project was developed in Java around
these two papers and became a new paradigm [1, 3]. The
system was adopted more in the DoD (Department of
Defense) than in other agencies. The problem in Hadoop
system design is lack of reusability of existing
applications. The Apache Hadoop defines the new Java
Application Programming Interfaces (API’s) for data
access. This means the existing applications must be
rewritten to access their big data in the Hadoop
environment. Further, more work is needed to protect the
data at source and at communication lines. Research is in
progress in understanding the Hadoop system design,
usage, and security status. Security can be improved at the
source level using Honeypots database, and at
communication level through protocol modifications.

Federated systems enable collaboration of multiple
systems, networks, and organizations with different trust
levels. Authentication and authorization procedures of a
client must be kept separate from services. The
deployment of federated security architecture was
discussed in Windows Communication Foundation (WCF)

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

mailto:ybreddy@gram.edu

[1]. WCF provides support for building and deploying
distributed systems that employ federated security.
Domain/realm, federation, and security token service
consist of primary security architecture of federated
systems.

Traditional security is about protecting the resources
within the boundary of the organization. The federated
systems require the security specification for each
function. Further, the federated systems change over time
with new participants joining and they may not all be
trusted. Therefore, individual protection domains are
required for each entity. Boundary constraints are required
depending upon the system. Therefore, monolithic security
domain will not work in federated systems.

Existing federated security systems separates the client
access, associated authentication and authorization
procedures. As the federated systems are distributed, they
need collaboration between networking, organizations and
associated systems. Maintaining security among these is
not an easy task, since multiple entities are involved.
Security threat may be unavoidable from a variety of
sources. Therefore, a high level coarse-grained security
goals need to be specified in the requirements.

The rest of the paper discusses the review of research,
security policies and proposed design. The recent
developments in federated systems security are discussed
in Section II. The proposed model is analyzed in Section
III, and controlling the user access in Hadoop systems to
the proposed model in Section IV. Section V provides the
conclusions and suggestions for future research.

II. RECENT DEVELOPMENTS

Data reside in mobile devices, social media, cloud, and
many static and dynamic storage media. IBM announced
real-time security for big data environments that include
data from mobile devices, social media, and cloud
computing [2]. Tight coupling of the name space and block
storage is possible by limiting the use of block storage
directly. Further, IBM offers data masking to de-identify
sensitive information as it moves into and out of big data
systems. The implementation is limited to 60K tasks, but
the next generation of Apache MapREduce supports 100K
concurrent tasks [3]. In MapReduce, users specify the
computation in terms of the map and a reduce function.
The underlying scheme in MapReduce package
automatically paralyzes the computation and schedules the
parallel operations so that the task uses the network and
computational facilities to perform the operations faster.
An average of a hundred thousand MapReduce jobs are
executed on Google clusters every day.

Halevy et al. [4] suggested that representing the data
of large data sources with a nonparametric model is
needed compared to summarizing parametric model
because the large data sources hold a lot of details. The
authors felt that choosing unsupervised learning on
unlabeled data is more powerful than on labeled data.
They pointed out that creating required data sets by
automatically combining data from multiple tables is an
active research area. Combining data from multiple tables

with data from other sources, such as unstructured Web
pages or Web search queries, is an important research
problem.

User logs of search engines on query clustering, query
expansion, and user generated query reformulations have
attracted many researchers in recent years. Riezler et al.
[5] studied the user queries and snippets of clicked results
to train a machine translation model to bridge the “lexical
gap” between query and document space. The authors
claimed that the model has better results on contextual
query expansion than other systems (based on term
correlations). Further, dissecting the contribution of
translation model and language model improved the search
results. The improved search models include the
combination of the correlation-based system, language-
based system, and language model filter.

Queries without understanding the full complexity of
schemas, source relationships, and query languages are
another task of the research area. Talukdar et al. [6]
presented a system in which non-expert user can create a
new query templates and Web forms to be used by any
user with related information needed. The proposed
system works with the combination of user queries with
keywords and sequence of associations used by the
system. The system processes with multiple ranked
queries, linking the matches to keywords. The query sets
attached to Web form creates a particular query so that the
user can input or fill in the blanks for search. The authors
claimed that their approach is highly promising compared
to other approaches for practical bioinformatics queries.

Thuraisingham [7] used federated database systems as
cooperative, autonomous, heterogeneous, and distributed.
The author discussed various types of security policies
such as local, component, generic, export and federated.
He further outlined the ways to generate and enforce the
security policies. Jonsher and Dittrich [8] discussed the
access control mechanisms to be applied at a global layer
and showed how they can be mapped onto less powerful
mechanisms of component database management systems.
Tari and Fernadez [9] discussed the federated access
control and secure access control in distributed object
kernel for federated database systems. They proposed a
unified security model aiming for the integration of
existing access control models, such as mandatory access
control and discretionary access control that could be
imposed on local components. The authors introduced task
agents within database agents to enforce the federated
security policies using security procedures. The proposed
idea may work better than existing procedures to secure
the Hadoop systems with limitations. Geon and Qian [10]
discussed the interoperation and security in a large
database and recommended a security design. One of the
proposals made by the authors is defining the interfaces to
preserve the security. They suggested restricted access on
direct and indirect access in these distributed systems. The
suggestions may extend to honeypot databases. Ebmayr et
al. [11] discussed the taxonomy of major design choices
and access controls for federated database environments.
Their work presents the main security mechanisms,

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

authorization, and access control through simple examples.
Neuman [12] discussed the security in federated

systems and reasons for failure. As the future technology is
based on federated systems, it is necessary to understand
the interactions and proper definition of security
boundaries. Further, engineering, development and
deployment must enforce these boundaries. Security and
fail-recovery are very important in small or large data sets.
The data recovery from failure was discussed by Gamble
[13]. Big data policies and law enforcement in Hadoop
systems was discussed by Oleskeer [14]. The research
discussed the monitoring and user accountability,
predictive policies, and the use of Hadoop systems by
enforcement agencies.

Hadoop security was discussed in the reports [15-18].
Ravi’s [15] comment on Security for Big Data in Hadoop
is a two key solution that includes authentication and
encryption. According to him, Kerberos file system has
better protection to keep the intruders away from accessing
the file system. Since the discipline is new, there has not
been much research in Hadoop security. Chary et al. [16]
presented security implementation in Hadoop systems.
Their research discussed the security in distributed systems
and current level of security in Hadoop systems. It also
includes the client access for Hadoop cluster using
Kerberos Protocol and authorization to access. O’Malley
et al. [17-18] discussed the security in Hadoop design.
They discussed the security threats from different user
groups, Kerberos authentication system, role of delegation
token in Kerberos and MapReduce implementation details.
These papers discuss the encryption, limiting access to
specific users by application, isolation between customers,
and information protection. Their research further
emphasizes the need for internal and external security for
Hadoop systems.

Roy et al. [19] presented a prototype system called
“Airavat”, a MapReduce-based system which provides
strong security and privacy guarantees for distributed
computations of sensitive data. The authors provided a
method to estimate the different parameters that should be
used and tested on several different problems. Their
proposed system has weak use cases, a complicated
process in specifying the parameters, and is not efficient in
general composition of MapReduce computations (the
MapR function followed by another mapper). Some
organizations raised critical questions on privacy and trust
of the system.

III. PROPOSED MODEL

In this paper, a dependable security model is presented
and explained how it differs from existing federated
systems. Further, it discusses the difference between
securities in federated systems and general distributed
systems.

Hadoop system users are of four types. First, use of
the facilities for storing, accessing, processing, and
transferring the information; second, acquiring
information (Google, for example) for research (to
acquire knowledge for scientific purposes); third,

accessing the globally stored information (including
blogs) for current and future applications (research &
business); and the fourth is hackers, who misuse the
information or destroy sensitive information. The main
purpose of security is to avoid unauthorized access and
save the sensitive information from the intruders.

In federated systems, security is available through
authorization and authentication. The authorization is
provided using the Key Distributed System (KDS). Every
federated user requires a security key to access the data.
The client access in Hadoop high-level architecture has
job tracker as well as task tracker. Once the client is
authorized to access the data, the data will be processed
on HDFS data nodes and package MapReduce will fuse
the information as required by the client.

If a user from one business needs service in another
business, a security token will be created to access the
resources. The security token is the authorization to
access and build the trust of the client. In Kerberos, the
new delegation token is obtained with TokenID (as in
(1)).

TokenID = {ownerID, renewerID, issueDate, maxDate,
sequenceNumber} (1)

Once the delegation token is obtained, it is valid for a
day as a default or the token can be renewed for a week.
Normally, the token is issued until the job is completed.
The additional requirements for a job token are access
limits and verification in MapR process. Access limits are
the controls on stored information. The MapR module
must verify the access rights of a user before filtering
(reduce) and deliver the filtered response to the user
query. The equation (1) is rewritten as (2) to incorporate
the access rights of a user.

TokenID = {ownerIDc, renewerID, issueDate, maxDate,
sequenceNumber, outputCheck} (2)

where ownerIDc is the identification of user access rights
and OutputCheck is verification of information after
MapR function is performed. Formula (2) also helps in
accessing blocks. Therefore, the OwnerIDc is formulated
as in (3).

ownerIDc = {ownerID, accessLimit, keyID,
expirationDate} (3)

where ownerID is the right to use, accessLimit is the
limitation of access to blocks or files
(read/write/execute/update), and expirationDate is a valid
time limit.

The access limits depend on types of files accessed
by the client. For example, a nurse in the hospital can
access patient information, unless it is restricted. The
accessLimit keyword stops access to unauthorized
information. Similarly, depending on the information,

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

sensitive or clustered, the accessLimit keyword helps in
securing the files.

In the federated security, the access limits are
required within and outside the organization. Federated
user jobs include job/task localization and shuffling the
information. For example, in Yahoo, once the user is
authenticated, the servlets check the authentication of the
user to permit the operations. For example, in a hospital, a
nurse is allowed to access the patient records. This should
be limited to the type of user and permitted information.
Similarly, for a doctor the limits apply to the medical
records of the patient. These limits are designed in
equation (2).

In federated databases, key management, access
control, policy management, auditing, and distributed
authentication are very important. The access control
design changes depending on the environment and
sensitivity of the information. Kerberos access control is
available for the federated databases. Additional controls
are required as introduced in (2) for sensitive data.

IV. CONTROLLING THE USER ACCESS TO DATABASES

Each ownerIDc is defined with a set of permissions
to the database within or outside the organization for
processing and retrieving information. Every user is
tagged an access limit ‘token’ during login. If a login user
is an intruder, the system must detect the access rights of
the user (intruder) before permitting access to the
database. The intruder is generally caught at login time or
MapR time to retrieve unauthorized information. If an
intruder is internal user and tries to access the
unauthorized information, the intruder will be controlled
with access limits to resources and further verified at
MapReduce time. Consider the objective function G with
a set of users (N), set of access rights (A), set of allowed
resources in the database (D), and the response (U).

},,,{ UDANG  (4)

where

Nni  (Set of users);

Aai  (Set of access rights);

Ddi  (Set of allowed resources in the database);

Uui  (The return result of the user query)

In the current research, the healthcare model is used
for access control. For example, if a person is admitted to
the emergency room, doctors can access the most up-to-
date medical history and related information. This
information helps the medical team to develop a
personalized treatment plan while avoiding duplicate tests
and procedures. It is assumed that a patient may be
admitted to any hospital on the globe and patient’s
medical records are available on-line to the doctors to
provide personalized treatment. Further, the access rights

to patient’s information are clearly defined to each person
attending the patient.

The following assumptions, definitions, propositions,
and theorems help us to generate the algorithms that
control the unauthorized information.

 Every authenticated user in)(Nni  will be provided

a service token to a resource within its domain with a

set of access types ia . The limitation helps to control

the user for resource access.
 For each service requested by the user, the system

generates a set of access permissions to the resources.
The services requested should not exceed the user
limits. If the requested resources are outside the user
boundaries, then the system alarms the security and
denies the request.

 Hacker is a user that does not have any role in the
system.

 An authorized user will be treated as hacker if the user
tries to access unauthorized information. For example,
the health care staff member will be treated as an
intruder if the user accesses unauthorized data or
misuses (printing and forwarding, for example) the
authorized information.

Proposition 1: If user in possesses access types
i

ki
a

,1


where k is the access limit, then the user in gets

permission to access the database only if Uai
ki


 ,1
 (the

results must match with access permission). That is
accessed information and MapR result must satisfy the
access rights.

Proposition 2: Given any two users in and jn the

operation ji nn  ; where  is null and  represents

‘different from’ (not equals). That is, two users may have
common access types. There are many examples using
doctor and nurse combination.
 Two nurses working on a patient in different shifts have

access to see the primary data about a patient (access to
the data to collect or examine the type of medicine
given at different times).

 A doctor and a nurse may have some common access
rights on a patient.

 Two doctors in different shifts attending the patient
have the same access rights.

 Two doctors working on a patient can have access to
the previous data or data collected by the nurses.

Proposition 3: For any two users in and jn the

operation ji nn  ; then the two users do not have any

common access type. That is, they must be performing
different operations on the resource (a doctor and a

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

cleaning person; a doctor and an accountant) or two
different doctors do not have any common access rights.

Proposition 4: If user in possesses resources id and

jd with access types
i

ki
a

,1
 and

j
lj
a

,1
 respectively,

then 


j
lj

i
ki

aa
,1,1

 , shows the user in do not have the

same access types on both data sets id and jd .

In other words, if user in has access types




j
lj

i
ki

aa
,1,1

 then the user in can have one or more

common access rights between the two data sets. These
cases are bound for close observation by security at the
time of data consolidation by MapR; otherwise security
threat will be alarmed.

Definition 1: The user with complete authorization access
is called a super user (S). The super user ‘S’ possesses
access rights of all users

i
ni
aS

,1
  where means

contains. All accesses of super user on the database must
be recorded.

Definition 2: The user that does not have any

authorization is called hacker (ih) and represented as H

(Hhi ) and H (hackers) the access rights

iih da  is true; iha is access rights of the

hackers,  implication to, and  is equivalent to.

Proposition 5: If),(ii dhQ is a query placed by the

hacker ih on data source id simulating the user

query),(ii dnQ then a mismatched query will be locked

and alarmed the security.

Since the hacker could get the authorization and does not

know the set of access rights ia and access to permutable

resources id , then the security takes control of the hacker

and alarms the security manager. If an unauthorized user
repeatedly accessing through a particular terminal, then
the security system locks the terminal and user access to
resources till the problem is resolved. Similar action will
be taken for batch submission.
Furthermore, the query and assigned information is
recorded as part of utility, and if the hacker poses the
same query then the query and utility will be recorded for

future intruder detection. For example, if ih pretends as

user in and try to access the information (that user in has

permissions) then the system stamps on ih as iiuh (called

hacker utility) and process as the hacker action.

Proposition 6: If an internal hacker tries to access
unauthorized information then the system will alarm the
warning to user and then send the internal security threat
to security administrator.
Let internal hacker place a query),(ii dInQ on data

source id simulating the user query),(ii dnQ . A

mismatched query will get information from security
token service. Algorithm-1 helps to handle the internal
hacker while trying to retrieve the information outside the
user bounds.

Algorithm 1:

If),(ii dnQ matches the ownerIDc of TokenID, then the

corresponding utility function iu will be generated,

else the query reflects as),(ii hdnQ , where h is a

hacker.

If the hacker is an internal user then

iii dhuhu ' (iu Internal user), alarms security

manager about internal hacker.

If iii udnQ ),(then exit;

else if iiiiii hudnQudnQ ),(&&),(then

convert),(ii dnQ as),(ii hdnQ and generate

iii dhuhu '

Store the user utility ihu that contains ii dhu ' and

inform security and keep the counter (log) in alert for
further attempts.
The Algorithm 1 helps to detect the hacker if the user tries
to gain the information with unauthorized access from the
database. The following query and Table I explains the
unauthorized access to information.

If
iiiii udhnQdnQ ),(),(or iii hudhnQ ),(then

iii hudhnQ ),(, retrieve ihu (utility from the

Hacker alarm to database) and alarm security alert;

where ihu is available in log or identified as a new hacker

and logged as new entry. The log is provided in Table I.

TABLE I. HACKER LOG AND ACTION

Hacker Status Result Action
A new

ihu New hacker, alarm

A repeat
ihu Alarm and freeze

In general, if the hacker attempts to gain access to the
database at different trimmings, the time attribute plays an
important role to detect the hacker. Algorithm 1 is
modified as Algorithm-2.

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Algorithm-2

If),,(iii dtnQ is genuine and attempted during duty times

then corresponding utility function iu will be

generated,

else the query reflects as),,(iji hdtnQ then user will get

iii dhuhu ' (where iu is internal user information

and idh '
is the hacker alarm at time jt).

If iiii udtnQ ),,(then exit (user access accepted)

else

if)),,(&(&)),,((iijiiiji hudtnQudtnQ 

Convert),,(iji dtnQ as),,(iji hdtnQ and generate

iii dhuhu ' (alarm alert to Security manager)

Note: Store the user utility ihu that contains ii dhu ' and

alert security and keep the counter for further attempts.
If the hacker is external, then divert to the KDS. If the
user hacks with authentication, then the time stamp will
help to detect the hacker. For example,

If
iiijiiji huorudthnQdtnQ ),,(),,(then

iiji hudthnQ ),,(, retrieve ihu , and alarm the

security;

where ihu is available in log or identified as a new hacker

and logged as a new entry. Table II provides the log
entries.

TABLE II. HACKER LOG AND DETECTION

Hacker Status Time Result Action
A New,

internal
Outside-
bounds ihu Detect as internal

hacker and alarm
A Repeated,

internal
Within-
bounds ihu Check for presence

of real user and alarm
and find real user

Depending upon the security level, Algorithm-2 will be
modified by adding the terminal type and log-on timings.
Terminal type and time of access attributes along with
access type attributes will protect the secret and top secret
information.

Let us assume the hospital environment in the
healthcare system. A doctor and nurse have common
access to certain information (the doctor prescribes the
medicine and the nurse is responsible for giving it to the
patient). Then, the attributes patient id, type of medicine,
and scheduled time medicine to be given to patient is
accessible by the nurse. The same attributes are also
accessible by the doctor. Therefore, the system security

depends upon the merge and decomposition of two or
more users.

Theorem 1: The security of the hospital system depends
upon time and terminal type attributes but not on the
merge and decomposition operators.

Let t
diu , be the doctor user and t

niu , be the nurse user

at any time t. The decomposition of these attributes at
time t is

  1
,,,,

t
ni

t
di

t
ni

t
di uuoruu (5)

The relation is true, since the duty timings are different.
Similarly,

   ,
,

,
,

,
,

,
,

t
ni

t
di

t
ni

t
di uuoruu (6)

where  and are terminal types and
 ,1

,
,
,

t
ni

t
di uu  shows

the doctor and nurse on the same terminal at different
times. For security purposes, the nurse is not allowed on
the doctor’s terminal, since the terminal is involved in
access rights. We can show the similar operation for
merge. This concludes that the merge and decompose
operations provide the common and combined access
types without compromising security.

Theorem 2: Any change in resource access will affect the
utility (result of merge and decomposition operators).

The resource access changes will be done by the
security authority through the Systems Administrator. The
change in access rights in any user will affect the utility
function and as a result the output of merge and
decompose (in MapR process) operations change. The
change reflects the presence of intruder. For example, if
the nurse becomes head nurse (hn) then:

1
,,

1
,,,,,,

t
hni

t
di

t
ni

t
di

t
hni

t
di

t
ni

t
di uuuuoruuuu  (7)

  1
,

1
,,,

t
hni

t
ni

t
ni

t
hni uuoruu (8)

   ,
,

,
,

,
,

,
,

t
ni

t
hni

t
ni

t
hni uuoruu (9)

It shows that the head nurse has the access rights of a
nurse and additional access permissions to resources. The
change must reflect, otherwise security alarm alerts. The
proposed system was implemented using CGI (Common
Gateway Interface) framework in Python language (V2.6)
for hospital environment. The program also uses HTML,
JavaScript, AJAX and PHP for support. The database
used is MySQL database and Hash security to encrypt the

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

password. The results were satisfactory. We are extending
the work to Hadoop database (health care environment).

V. CONCLUSIONS AND FUTURE EFFORTS

The research was concentrated on security in Hadoop
distributed file systems during access and MapReduce
operations. The authentication access limits proposed in
this paper ensure the limitations of user access to global
data and avoids the unauthorized access to data. An
objective function was created for the user access to the
database and theoretical foundations were provided. The
algorithms help to detect an intruder. The security model
includes the access rights and resulting return value. The
return value depends on the access permissions (Theorem
2).

The healthcare database is treated as a ‘Big Database’
(for global availability) because a patient may be admitted
in the hospital of his/her choice (irrespective of place and
time). The doctor on-duty needs to see the history of the
patient to avoid unnecessary tests and provide
personalized treatment. At the same time, the data are
confidential. For example, news reporters are eager to
collect information on a celebrity or an administrator
(President, Senator, or movie actor, or any similar
important person). Easy target is a hospital employee
(nurse, for example). Some unauthorized doctors may be
eager to know the sensitive data. In such cases, access
rights restrict the unauthorized access to such data.

Future efforts of projects related to ‘Federated Hadoop
systems include the design, implementation and
processing of data with security tags for sensitive data.
Develop the algorithms with appropriate access rights to
provide security to sensitive data within and outside
organization is an important research problem.

ACKNOWLEDGEMENTS

The research work was supported by the Minority
Leaders Program through contract number GRAM 11-
S567-0017-02-C2. The author wishes to express
appreciation to Dr. Connie Walton, Provost and Vice
President, Academic Affairs, GSU for her continuous
support. The author also wishes to appreciation to Prof.
Rama, T, Dean of professional studies, GSU, for proof
reading and corrections.

REFERENCES

[1] Athontication, Microsoft Patterns & Practices,
http://msdn.microsoft.com/en-us/library/ff649763.aspx
2012 [accessed: April 2013].

[2] “IBM Addresses Security Challenges of Big Data, Mobile
and Cloud Computing”,
www.03.ibm.com/press/uk/en/pressrelease/39166.wss,
ARMONK, N.Y., 18 Oct 2012 [accessed: April 2013].

[3] J. Dean and S. Ghemawat., “MapReduce: simplified data
processing on large clusters”, CACM 50th anniversary
issue, Vol. 51, issue 1, Jan 2008, pp. 107-113.

[4] A. Halevy, P. Norvig and F. Pereira., “The Unreasonable
Effectiveness of Data”, IEEE Intelligent Syst., 2009, pp. 8-
12.

[5] S. Riezler, Y. Liu and A. Vasserman,“Translating Queries
into Snippets for Improved Query Expansion,” Int. Conf.
Computational Linguistics (Coling 08), 2008, pp. 737–744.

[6] P. P. Talukdar et al., “Learning to Create Data-Integrating
Queries,” Int. Conf. Very Large Databases (VLDB 08),
Very Large Database Endowment, 2008, pp. 785–796.

[7] B. Thuraisingham, Security issues for federated database
systems, Computers & Security, 13 (1994), pp. 509-525.

[8] D. Jonscher and K. R. Dittrich, An Approach for Building
Secure Database Federations, VLDB '94 Proceedings of the
20th International Conference on Very Large Data Base,
Morgan Kaufmann Publishers Inc. (1994), pp. 24-35.

[9] Z. Tari and G. Fernandez, “Security Enforcement in the
DOK Federated Database System”, Pierangela Samarati,
Ravi S. Sandhu (Eds.): Database Security Volume X, Status
and Prospects, IFIP TC11 / WG11.3 Tenth International
Conference on Database Security, 22-24 July 1996, Como,
Italy. IFIP Conference Proceedings 79 Chapman & Hall
1997, ISBN 0-412-80820-X, pp. 23-42.

[10] L. Gong and X. Qian, Computational issues in secure
interoperation, IEEE Trans. on Software Engineering, vol.
22, 1996, pp. 43-52.

[11] W. Eßmayr, F. Kastner, G. Pernul, S. Preishuber and A. M.
Tjoa, (1995) Access Controls for Federated Database
Environments. Proc. Joint IFIP TC 6 and TC 11 Working
Conf. on Comm. and Multimedia Security, Graz, Austria.

[12] C. Neuman, “Why Security fails in Federated Systems”,
University of Southern California, 7 March 2012,
http://csse.usc.edu/csse/event/2012/ARR/presentations/201
20307-neuman-csse.pdf [accessed: April 2013]

[13] G. Gamble, “Data Recovery Solutions", R3 Data Recovery,
[accessed: October 2012].

[14] A. Olesker, “White paper: Big Data Solutions For Law
Enforcement”, June 2012, http://ctolabs.com/wp-
content/uploads/2012/06/120627HadoopForLawEnforceme
nt.pdf [accessed: January 2013].

[15] P. Ravi, “Security for Big Data in Hadoop”,
http://ravistechblog.wordpress.com/tag/Hadoop-security/,
April 15, 2013 [Retrieved - April 2013].

[16] N. Char, K. M. Siddalinga and Rahman, “Security
Implementation in Hadoop”,
http://search.iiit.ac.in/cloud/presentations/28.pdf [accessed:
January 2013].

[17] O. O’Malle, K. Zhang, S. Radia, R. Marti and C. Harrell,
“Hadoop Security Design”, http://techcat.org/wp-
content/uploads/2013/04/Hadoop-security-design.pdf,
2009, [accessed: March 2013].

[18] D. Das, O. O’Malley, S. Radia and K. Zhang, “Adding
Security to Apache Hadoop”, hortonworks report,
http://www.Hortonworks.com [accessed March 2013]

[19] I. Roy Srinath, T.V. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel, “Airavat: Security and Privacy for
MapReduce”, 7th USENIX conference on Networked
systems design and implementation (NSDI'10), 2010,
Berkeley, CA.

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

http://dl.acm.org/author_page.cfm?id=81100248818&coll=DL&dl=ACM&trk=0&cfid=309257983&cftoken=11667335
http://dl.acm.org/author_page.cfm?id=81100199690&coll=DL&dl=ACM&trk=0&cfid=309257983&cftoken=11667335
http://dl.acm.org/author_page.cfm?id=81100613978&coll=DL&dl=ACM&trk=0&cfid=332283854&cftoken=63508426
http://dl.acm.org/author_page.cfm?id=81100532703&coll=DL&dl=ACM&trk=0&cfid=332283854&cftoken=63508426
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Samarati:Pierangela.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sandhu:Ravi_S=.html
http://www.informatik.uni-trier.de/~ley/db/series/ifip/index.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Li%20Gong.QT.&searchWithin=p_Author_Ids:37342366100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaolei%20Qian.QT.&searchWithin=p_Author_Ids:37345280900&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://www.r3datarecovery.com/Data_Recovery_Solutions/
http://ravistechblog.wordpress.com/tag/hadoop-security/
http://techcat.org/wp-content/uploads/2013/04/hadoop-security-design.pdf
http://techcat.org/wp-content/uploads/2013/04/hadoop-security-design.pdf

