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Abstract—In this paper we will present a new methodology
for the development of efficient hybrid multiderivative multistep
methods for the approximate solution of the Schrödinger equation
and related initial-value or boundary-value problems with solu-
tions, which their behavior is periodical or oscillating. The main
characteristics of this new methodology are (1) the vanishing of
the phase-lag on its level of the hybrid multiderivative method
and (2) the vanishing of the its derivatives on its level of the
hybrid multiderivative method. We apply the new methodology
on a four-step hybrid type multiderivative method. A comparative
error and stability analysis will be presented for the new produced
method. The new constructed method will finally be applied to
the resonance problem of the Schrödinger equation in order to
show its efficiency.
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I. INTRODUCTION

The Schrödinger equation is a very important mathematical
model in quantum mechanics, which describes how the quan-
tum state of some physical system changes with time. This
mathematical model was first formulated in late 1925, and pub-
lished in 1926, by the Austrian physicist Erwin Schrödinger
(see for details [1])

The numerical solution of the the radial time-independent
Schrödinger equation and of the related initial-value or
boundary-value problems with periodical and/or oscillating
solutions is investigated in this paper.

The radial time independent Schrödinger equation :

q′′(r) = [l(l + 1)/r2 + V (r)− k2]q(r). (1)

is a boundary value problem. The one boundary condition is
the following:

q(0) = 0 (2)

and the other boundary condition, for large values of r,
determined by the physical conditions and parameters of the
specific problem.

In order to have the completion of the above mentioned
mathematical model, we have give the following definitions of
the functions, quantities and parameters presented in Equation
1 :

1) The function W (r) = l(l + 1)/r2 + V (r) is called
the effective potential. This satisfies W (x) → 0 as
x → ∞,

2) The quantity k2 is a real number denoting the energy,
3) The quantity l is a given integer representing the

angular momentum,
4) V is a given function, which denotes the potential.

The main purposes of this paper are (1) to introduce a
new procedure in order to obtain efficient methods for the
numerical solution of second order initial or boundary value
problems of the form q′′ (x) = f (x, q (x)) with periodical
and/or oscillating solutions and (2) to develop (based on the
previous mentioned procedure) an efficient hybrid four-step
multiderivative method.

II. DESCRIPTION OF THE METHODOLOGY

In Sciences and Engineering there are a significant number
of real problems, which have models, which can be expressed
as initial or boundary value problems of the above mentioned
category (for example, the Schrödingers equation, Duffings
equation, etc).

The new procedure for the development of efficient multi-
derivative multistep methods consists the following stages:

• The determination of the form of the hybrid multi-
derivative multistep method (i.e., method with more
that one stage, higher order derivatives and more than
one step)

• On each level of the hybrid multiderivative multistep
method the vanishing of the phase-lag
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• On each level of the hybrid multiderivative multi-
step method the vanishing of the derivatives of the
derivatives (the order of the derivatives depends from
the free parameters that the hybrid multiderivative
multistep method has)

• The determination of how much more efficient are the
new developed methods i.e., the investigation on how
the vanishing of the phase-lag and its derivative affects
the efficiency of the produced numerical methods

• The determination of how much more efficient are
the new developed methods compared with those
developed via the vanishing of the phase-lag and its
derivatives in the whole of the method (and not on
each stage).

Problems for which the algorithms presented in this paper
are efficient for this approximate solution are:

1) problems with oscillating and / or periodical solu-
tions,

2) problems in which the functions cos and sin are
presented in their analytical solution,

3) problems in which combination of the functions cos
and sin are presented in their analytical solution.

The aim and scope of the present research is the construc-
tion of a two-stage, four-step hybrid multiderivative method
with the following properties:

1) the maximum possible algebraic order
2) the vanishing of the phase-lag on each stage of the

method
3) the vanishing of the derivatives of the phase-lag on

each stage of the method. The maximum order of
the derivatives to be vanished is dependent on the
free parameters which we have. The number of free
parameters is dependent by the form of the hybrid
two-stage, four-step multiderivative method

The satisfaction of the above purposes requires the com-
putation of the phase-lag and its derivatives for the specific
method. In [2] and [3], Simos and co-authors has proved
a direct formula for the computation of the phase-lag for a
2n-step method. We mention here that the computation of
the derivatives of the phase-lag is based on the previously
mentioned formula.

In order to investigate the efficiency of the new produced
method, we will apply the following studies:

1) The local truncation of the new developed method
will be compared with those of other methods of the
same form (comparative error analysis),

2) The Stability (interval of periodicity) of the new
obtained method will be determined and

3) Finally, the new produced method will be applied to
the resonance problem of the radial time independent
Schrödinger equation (see for more details [4]) and
the results will be compared with those of other well
known methods in the literature.

III. STUDY OF THE PHASE-LAG OF SYMMETRIC 2n-STEP

METHODS

The general problem we face in the paper is the numerical
solution of the the initial or boundary value problem of the
form q′′ (x) = f (x, q (x)) via multistep multiderivative finite
difference methods.

In order to investigate the above mentioned problem we
apply the follow procedure

• We divide the interval of integration [a, b] into n +
1 intervals {xi}

n

i=0 of equal length. The length h =
|xi+1 − xi| is called step-size of the integration.

• For the approximate solution of the above described
problem we consider the general 2n-step finite differ-
ence multistep multiderivative method of the form:

n
∑

i=−n

ai qk+i = h2
n
∑

i=−n

bji f
(j)

(

xk+i, q (xk+i)
)

,

j = 0, 1, . . . (3)

where f (j)
(

xk+i, q (xk+i)
)

is the derivative of j order

of: f
(

xk+i, q (xk+i)
)

and f (0)
(

xk+i, q (xk+i)
)

=

f
(

xk+i, q (xk+i)
)

.

Using the integration step-size defined above, the
method (Equation 3) is applied over the above men-
tioned integration area. In this paper we will study
the specific category of methods (Equation 3), which
are symmetric i.e., the category of methods for which:
ai = a−i, bi = b−i, i = −n(1)n.

• We investigate now the phase-lag of the above men-
tioned method. The study demands the following
procedure:

• In order to define the phase-lag for the above category
of methods, we use the scalar test equation:

q′′ = −φ2 q (4)

• If we apply a symmetric 2n-step multiderivative
method to the above test equation (Equation 4), the
following difference equation is produced:

An(w) qk+n + . . .+A1(w) qk+1 +A0(w) qk +

+A1(w) qk−1 + ...+An(w) qk−n = 0 (5)

where w = φh, h is the step length and A0(w),
A1(w), . . ., An(w) are polynomials of w = φh.

• We note here that in our analysis the corresponding
characteristic equation is also required. The character-
istic equation of the difference equation (5) is given
by:

An(w)λ
n + ...+A1(w)λ +A0(w) +

+A1(w)λ
−1 + ...+An(w)λ

−n = 0 (6)

• The calculation of the phase-lag can be done via the
following theorem which is proved by Simos and co-
workers (see [2] and [3]):
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Theorem 1: [2] and [3] The symmetric 2n-step
method with characteristic equation given by Equation
6 has phase-lag order q and phase-lag constant c given
by:

−cwq+2 +O
(

wq+4
)

=
T0

T1
(7)

where

T0 = 2An (w) cos (nw) + . . .+

+2Aj (w) cos (j w) + . . .+A0 (w) (8)

T1 = 2n2An (w) + . . .+

+2 j2Aj (w) + . . .+ 2A1 (w) (9)

where the polynomials A0(w), A1(w), . . ., An(w) are
given above (see Equation 5 and Equation 6).
Remark 1: It is easy to see that from the above
formulae Equations 7, 8 and 9 we can compute the
phase-lag of any symmetric 2n-step multiderivative
method.

IV. THE NEW ALGORITHM

The construction of a hybrid type symmetric four-step
multiderivative method for the numerical solution of problems
of the form p′′ = f (x, p) is presented in this section.

Consider the method:

p̂n+2 = c0 pn+1 + c0 pn−1 − pn−2 +

+h2
(

a0 p
′′

n+1 + a1 p
′′

n + a0 p
′′

n−1

)

+

+h4
(

b0 p
(4)
n+1 + b1 p

(4)
n + b0 p

(4)
n−1

)

pn+2 − c1 pn+1 − c1 pn−1 + pn−2 =

= h2

[

a4
(

p̂′′n+2 + p′′n−2

)

+

+a3
(

p′′n+1 + p′′n−1

)

+ a2 p
′′

n

]

+

+h4

[

b4

(

p̂
(4)
n+2 + p

(4)
n−2

)

+

+b3

(

p
(4)
n+1 + p

(4)
n−1

)

+ b2 p
(4)
n

]

(10)

Notations for the above mentioned general family of meth-
ods :

• We define as free parameters the coefficients aj , j =
0(1)4 and bi, i = 0(1)4.

• The step size of the integration is defined as h.

• n is the number of steps,

• The approximation of the solution on the point xn is
presented as pn

• xn = x0 + nh and

• x0 is the initial value point.

A. First Layer of the Hybrid Method

Our study begins from the first method of the above
mentioned hybrid scheme:

pn+2 − c0 pn+1 − c0 pn−1 + pn−2 =

= h2
(

a0 p
′′

n+1 + a1 p
′′

n + a0 p
′′

n−1

)

+

+h4
(

b0 p
(4)
n+1 + b1 p

(4)
n + b0 p

(4)
n−1

)

(11)

Applying the method given by Equation 11 to the test
equation (4), we obtain the difference equation (5) with n = 2.
We note that Aj (w) , j = 0, 1, 2 are given by:

A2 (w) = 1, A1 (w) = −c0 + w2 a0 − w4 b0,

A0 (w) = w2 a1 − w4 b1 (12)

We demand the above scheme to have the phase-lag van-
ished. Based on the formula given by Equation 7 (for n = 2)
and taking into account the formulae given by the Equations
12, we obtain the following equation:

Phase− Lag =
1

2

T2

−4 + c0 − w2 a0 + w4 b0
= 0 (13)

where

T2 = −4 (cos (w))
2
+ 2

+ 2 cos (w) c0 − 2 cos (w)w2 a0

+ 2 cos (w)w4 b0 − w2 a1 + w4 b1 (14)

Remark 2: Equations for the first, second etc derivatives of
the phase-lag can be produced. In order to define the maximum
number of the available equations of the previous type, we
must check the free parameters of the algorithm. In our case

and since we have five parameters
(

c0, a0, a1 b0, b1

)

, we can

produce four more equations for the vanishing of the first,
second, third and fourth derivatives of the phase-lag.

Remark 3: The definition of the free parameters of the

scheme, i.e., the parameters
(

c0, a0, a1 b0, b1

)

, can be done

solving the system of equations produced by the requirement
of the vanishing of the phase-lag and its derivatives.

B. Second Layer of the Hybrid Method

Our study is continued now to the second layer of the
proposed method (10) :
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qn+2 − c1 pn+1 − c1 pn−1 + pn−2 =

= h2

[

a4
(

p′′n+2 + p′′n−2

)

+

+a3
(

p′′n+1 + p′′n−1

)

+ a2 p
′′

n

]

+

+h4

[

b4

(

p̂
(4)
n+2 + p

(4)
n−2

)

+

+b3

(

p
(4)
n+1 + p

(4)
n−1

)

+ b2 p
(4)
n

]

(15)

Applying now the second layer (15) to the test equation
(4) (following the methodology described in the previous
section for the first layer of the hybrid method), we obtain the
difference equation (5) with n = 2 and Aj (w) , j = 0, 1, 2
given by:

A2 (w) = 1 + w2 a4 + w4 b4,

A1 (w) = −c1 + w2 a3 − w4 b3

A0 (w) = w2 a2 − w4 b2 (16)

We require now the above algorithm to have the phase-
lag vanished. We again base our investigation on the formula
given by Equation 7 (for n = 2) and we take into account the
formulae given by Equations 16. Based on this the following
equation holds:

Phase− Lag =
1

2

T3

T4
= 0 (17)

where

T3 = 4 (cos (w))
2
(

−4w2 a4

+ 4w4 b4 − 1
)

+ 2 cos (w)
(

−w2 a3

+ w4 b3 + c1

)

+ w4
(

−2 b4 + b2

)

+ w2
(

2 a4 − a2

)

+ 2 (18)

T4 = −4 + c1 − w2
(

a3 + 4 a4

)

+ w4
(

b3 + 4 b4

)

(19)

Remark 4: Equations for the first, second etc derivatives
of the phase-lag can be also obtained. In order to define the
maximum number of the available equations of the previous
type, we must check the free parameters of the algorithm. In
our case and since we have seven parameters

c1, aj, j = 2(1)4 bi, i = 2(1)4, (20)

we can produce six more equations for the vanishing of the
first, second, third, fourth, fifth and sixth derivatives of the
phase-lag.

Remark 5: The definition of the free parameters of the
scheme, i.e., the parameters

c1, aj , j = 2(1)4 bi, i = 2(1)4, (21)

can be done solving the system of equations produced by
the requirement of the vanishing of the phase-lag and its
derivatives.

Based on the above developments several methods can be
obtained.

Remark 6: If we demand our hybrid multiderivative four-
step method of the form (10) to have vanished the phase-lag
and its first derivative, then the formulae (13), (17) have to
be satisfied and also the corresponding formulae for the first
derivatives. In order the above relations to be satisfied we must
have at least four free parameters. We can choose four from
the twelve free parameters of the scheme in order the above
request to be satisfied on each layer of the hybrid method.

Remark 7: If we demand our hybrid multiderivative four-
step method of the form (10) to have vanished the phase-lag
and its first and second derivatives, then the formulae (13),
(17) have to be satisfied and also the corresponding formulae
for the first and second derivatives. In order the above relations
to be satisfied we must have at least six free parameters. We
can choose six from the twelve free parameters of the scheme
in order the above request to be satisfied on each layer of the
hybrid method

The steps we have to follow for the development of the
new hybrid four-step multiderivative method are:

• Decision of the form of the method we wish to
have (this is based on the mathematical model of the
problem. If, for example, we have a problem with
oscillating behavior of the solution, the we must have
a method with vanished the phase-lag and as much as
we can derivatives of the phase-lag)

• Development of the equations, which satisfy the above

• Solution of the system of equations and determination
of the free parameters of the method

• Analysis of the produced method: local truncation
error analysis, stability analysis.

• Finally, application of the obtained method to several
well known problems in order to test the efficiency of
the new algorithms.

V. EVALUATION

The new proposed methods have the following character-
istics :

1) High algebraic order
2) Vanishing of the phase-lag on each stage of the

method
3) Vanishing of the derivatives of the phase-lag on each

stage of the method

Based on the above characteristics, the new proposed
method can be efficiently to any second order initial or
boundary value problem with oscillating solutions.
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VI. CONCLUSION

A new methodology for the construction of effective hybrid
multiderivative multistep methods for the approximate solution
of the Schrödinger equation and related problems with peri-
odical or oscillating solutions is presented in this paper. It is
mentioned that the important parts of this new methodology
are (i) the vanishing of the phase-lag on its level of the
hybrid multiderivative method and (ii) the vanishing of the its
derivatives on its level of the hybrid multiderivative method.
As an example, we applied the new methodology on a four-
step hybrid type multiderivative method. From the numerical
results produced from the application of this new developed
four-step hybrid type multiderivative method to the resonance
problem of the Schrödinger equation it is easy for one to see
the efficiency of the new methodology.
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