
P2P4GS: A Specification for Services Management in Peer-to-Peer Grids

Bassirou Gueye and Ibrahima Niang
Département de Mathématiques et d’Informatique

Université Cheikh Anta Diop
Dakar, Senegal

Email: {bassirou.gueye, ibrahima1.niang}@ucad.edu.sn

Olivier Flauzac and Cyril Rabat
CReSTIC, UFR Sciences Exactes et Naturelles

Université de Reims Champagne Ardenne
Reims, France

Email: {olivier.flauzac, cyril.rabat}@univ-reims.fr

Abstract—The grid-based peer-to-peer architectures were
used either for storage, data sharing and computing. So far,
the proposed solutions of grid services are generally based
on hierarchical topologies, which present a high degree of
centralization. The main issue of this centralization is the
unified management of resources. Therefore, it is difficult to
react rapidly against failures that can affect end-users. In this
paper, we propose an original specification, called P2P4GS,
that enables self-managed services in peer-to-peer grids. The
objective is to design a self-adaptive solution allowing services
deployment and invocation based on the paradigm of peer-
to-peer services. These tasks are completely delegated to the
platform and are achieved through a transparent manner to
the end-user. The proposed specification is not linked to a fixed
peer-to-peer architecture or to a services management protocol.
Furthermore, we propose a detailed illustration of our P2P4GS
specification.

Keywords-Peer-to-peer network; Grid computing; Web Ser-
vices; Information Systems.

I. INTRODUCTION

Grid Computing is a technology which aims to offer
to virtual organizations and scientific community virtually
unlimited computing resources [1][2]. The goal of such a
paradigm is to enable to virtual organizations (VO) the
federated resource sharing in dynamic and distributed en-
vironments. Indeed, end-users can access large computing
and storage resources that they could not operate otherwise.

The emergence of Web Services [3] provided a framework
that initiated its alignment with the grid computing technolo-
gies as well as cloud computing [4]. These convergences
allowed the appearance, on one hand, of grid services [5][6]
and on the other hand, of cloud services [7][8].

Indeed, grid services are the result of research established
by the OGF (Open Grid Forum) and leading to the OGSA
(Open Grid Service Architecture) [5] and the OGSI (Open
Grid Service Infrastructure) [6]. These grid services enable
to use resources more rationally. This is due to leveraging
load-balancing mechanism between nodes. A particular ef-
fort was made in order to normalise the grids services. Like
Web Services, the goal is to gather resources in order to
promote the development of applications that use grid based
services.

Notwithstanding, grids that use the concept of services are
generally based on highly centralized hierarchical architec-
tures [2][9]. This centralization involves an unified manage-
ment of resources as well as a difficulty to react promptly
against failures and faults that affect the community (the
community designates the set of nodes of the grid).

To overcome these drawbacks, convergence solutions of
grid computing and peer-to-peer systems have been proposed
[10][11][12][13]. However, a semantics of the services exe-
cution chain does not exist in the literature. Most of proposed
solutions around peer-to-peer grids are limited on resource
discovery and are generally distinguished by the type of
search algorithm used.

The main goal of this paper is to present a new specifica-
tion of services management in a grid computing based on
peer-to-peer architecture. This specification, called P2P4GS
(Peer-To-Peer For Grid Services), presents the originality to
not dissociate the peer-to-peer infrastructure to the service
management platform. Indeed, we propose to separate the
peer-to-peer grid management layer to the location and
runtime services layer. Since the proposed specification
is generic, any combination of peer-to-peer protocol in
accordance with the constraints of our model could be
composed with any services execution platform. Deployment
as well as invocation is absolutely delegated to the platform.
Consequently, both tasks become transparent to the end-
user. In fact, the end-user can be a simple user who has
no knowledge of the system (a student or a researcher for
instance) or an administrator of grid services.

The remainder of the paper is organized as follows.
Firstly, Section II is devoted to present an overview on the
related work. Next, in Section III, we describe the model that
we use, as well as different aspects of the P2P4GS speci-
fication. Subsequently, we propose a detailed illustration of
our specification in Section IV. Finally, Section V concludes
the paper and outlines our future works.

II. RELATED WORK

The remote code execution has been defined in various
manners. The possibility to remotely call a procedure led to
the concept of RPC (Remote Procedure Call). RPC speci-
fication specifies how information is exchanged between a

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

consumer (client) and a resource (server). Different imple-
mentations that consider different languages, protocols and
systems have been proposed. For instance, we can cite the
following implementations based on Web Services: XML-
RPC, SOAP [3]. RPC concept has been transferred in the
grid either from libraries that enable technical solutions, like
Globus [14], or directly from the solutions that are designed
to ensure grid RPC. However, the proposed solutions are
hierarchical and need centralization points that gather the
related information to a given service. For example, tools
such as DIET [9] should register their requirements (e.g.,
computational or memory resource, data resource, applica-
tions, etc.) on a fixed centralization point.

In addition, in the case of Web Service execution on the
Internet, solutions of deployment [6] and resource discovery
[15][16] in such environments have been proposed. In fact,
the authors of [15] proposed a hierarchical topology of
web services for resource discovery in Grids based on
Globus Toolkit. In this proposed solution, the Grid system is
divided into virtual organizations (VO). On the other hand,
Fouad et al. [16] presented scalable Grid resource discovery
through a distributed search. The proposed model includes
the application layer which provides a web interface for
the user and the collective layer which is a web service to
discover resources. The resource discovery model contains
the metadata and resource finder web services to provide a
scalable solution for information administrative requirements
when the grid system expands over the Internet.

Nevertheless, these works are based on solutions with
hierarchical architectures that have a very low degree of
dynamicity and whose infrastructural services are them-
selves centralized. Indeed, these centralized or hierarchical
approaches suffer from a single point of failure, of bottle-
necks in highly dynamic systems, and lack of scalability in
highly distributed environments [17].

Fortunately, grid and P2P systems share several features
and can profitably be integrated. Convergence of the grid
system with the philosophy and techniques of the P2P archi-
tecture is a promising approach to alleviate the disadvantages
of traditional grid systems. Torkestani [18] asserted that P2P
Grids exploit the synergy between the Grid system and peer-
to-peer network to efficiently manage the Grid resources
and services in large-scale distributed environments. The
decentralized approach can enhance scalability and fault-
tolerance but it induces a very large network traffic and may
limit search effectiveness. In addition, Marin Perez et al.
[19] argue that the ultimate goal of building P2P Grid is to
integrate the P2P, Grid, and Web Services.

However, most of proposed solutions with respect to
peer-to-peer grids are limited to the resource discovery
[10][11][12][13][18] and are generally distinguished by the
type of search algorithm used. The authors of the survey
[20] argue that the resource discovery (which aims to
discover appropriate resources based on a requested task)

is one of the essential challenges in Grid. There are certain
factors that make the resource discovery problem difficult
to solve. For instance, Torkestani [13] proposed a multi-
attribute distributed learning automata-based resource dis-
covery algorithm for large-scale peer-to-peer grids. Based on
the learning automata theory, the author proposed a method
that enables to route the resource query through the path
having the minimum expected hop count toward the grid
peers including the requested resources.

III. OVERVIEW OF THE P2P4GS SPECIFICATION

Initially, we defined the concepts related to the various
components of our systems. Then, in order to present our
specification, we describe the application model.

A. Preliminaries

1) Node concept: a node is a machine (with acceptable
computational power) or a site (cluster). We assume that
each node has a unique identifier in the communication
network. Nodes are in charge of the local management
of the network. Therefore, they collectively provide the
tasks described in Section III-B. Moreover, they manage
the execution platform, which ensures the following tasks:
the deployment, the life cycle of services, the management
of requests and their executions. In addition, each node
maintains a table called “Service Registry”, which lists the
services owned by this node, as well as the other services
located inside the grid and learn during a discovery process.

2) Service concept: the services can be viewed as dif-
ferent objects that are integrated to the runtime platforms
located in each node. A service is characterized by:
• the implementation platform;
• the required resources for its execution (computational

power, data resource and connection resource, etc.);
• the format and constraints according to the requested

invocation and obtained results.

B. Modelization

We define an architecture model composed of four layers.
This enables us to define each layer independently. Indeed,
with this model, each layer solves a number of problems
(handles a number of tasks required by the overall system),
in order to provide well-defined services to the higher layers.
Figure 1 illustrates the architecture of our specification.
In the following, we describe the different layers of the
architecture.

1) Physical layer: this layer provides addressing, routing
and communication functions. We are modeling this layer as
a directed and connected graph G1 = (V,E1) where V is the
set of nodes that host the services and E1 the set of directed
communications links between the nodes.

These definitions allow taking into account the different
characteristics of the network:

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

service
application /

bookingconference

messaging

P2P link

e−learning

System Proxy

Layer

Physical

routing communication

in getId neigh send receive route

deploy lookup invoke exec save

adressing

node

web

Application
Layer

M
anagement
Layer

peer

P2P Layer

agenda

link

communication
link

Legend

Legend

Legend

communication

Legend

Simple Node

Location Proxy

Invocation Proxy

Information

Figure 1: Architecture of P2P4GS specification

• security elements such as firewalls that restrict the
possibility of communication of the nodes;

• configuration and implementation elements of the net-
work such as the NAT.

2) P2P layer: it corresponds to the peer-to-peer mid-
dleware and provides communication functionalities and
maintenance of the topology. P2P layer is modeled as
an undirected and connected graph G2 = (V,E2) where V
corresponds to the set of nodes that hosting the services and
E1 the set of undirected communications links between the
nodes established by the P2P protocol.

We assume that this layer offers at the minimum the
following primitives :

• in() : this primitive is executed by a new node that is
connected to the P2P community;

• getId() : returns the P2P node’s identifier;
• neigh() : retrieves the list of all its P2P neighbors;
• send(id, message) : sends a message to a node identi-

fied by “id” in the system;
• receive() : receives a message from a node of the

system;
• route(id, message) : routes a message to a destination.

Therefore, any peer-to-peer system presenting these basic
features can be exploited by our specification.

3) Management layer: this layer constitutes the core of
our specification. All tasks of management, administration
and maintenance of a service are defined in this layer. These
tasks ensure the management of life cycle of a given service.
Indeed, P2P4GS specification provides a set of primitives
that are “deploy”, “lookup”, “invoke”, “exec” and “save” for
respectively deployment, location, invocation, execution and
recording of a service. These primitives are described in
Section III-C.

Given that the size of distributed systems grows in terms
of number of nodes, services and users, in order to ensure
scalability, we propose to limit the knowledge on some
nodes that we call proxies. In fact, we define three types
of proxies: the ISP (Information System Proxy), the IP
(Invocation Proxy) and the LP (Location Proxy) for effec-
tively ensure function of the primitives above mentioned.
According to the P2P paradigm, the status of the nodes is not
fixed and can evolve during execution. Note that, the default
node status is Simple Node. The different proxy nodes are
described in Section III-D.

4) Application layer: this layer is the upper layer that
interfaces with the end-users. Primitives of the underlying
layer are exploited by different platforms with whom they
interact in order to provide services to Application layer.
Note that, the access to P2P grid resources will be done in
a transparent manner with respect to the end-user.

C. Services specification in P2P environment

In this section, we define the set of primitives and specific
operations to the services runtime on our P2P grid system.

1) Service deployment (“deploy”): the service deploy-
ment requires the detection of nodes that are able to host and
execute a given service. A subset of nodes of the community
will be candidates for hosting the service. The following
strategies can be used in order to select the node that hosts
the service among the candidate nodes:

1) a random strategy based on a random selection of a
node where the service will be deployed on;

2) a balanced strategy based on statistic data gathering
about nodes, and selection of the less loaded nodes
where the service can be deployed on;

3) a first node strategy based on exploration: the first
node able to support the service is selected.

Remark 1. The first strategy needs to know all candidate
nodes for deployment; the second one to know all candidate
nodes and information on each; the third limits the required
knowledge and also reduces the communications costs but
can cause problems of load-balancing.

2) Service location (“lookup”): the service location is
the first step of a service execution process. Each node
of the peer-to-peer grid has a table called Service Registry
that stores node’s identifier of the grid according to their
signatures. “lookup” can be considered as a local service.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

Indeed, it is available on each node of the community, but
cannot be invoked from a remote machine.

Any node of the P2P4GS community that receives a ser-
vice location request, invokes the “lookup” function which
performs the following operations:
• if the service is located on the node, this latter returns

its identifier and information about the service (e.g.,
binding, invocation constraints, ...);

• if the service is not located on the node, then :
– if the node knows the location of service, it routes

the request to the node that hosts it;
– if the node does not know the location of service,

it forwards the request to its neighbors.

Remark 2. The required service may be missing within the
grid, whether due to a failure, otherwise because it has not
been yet deployed. In this case, we can use an algorithm
like PIF (Propagation of Information and Feedback), which
returns to the entry point (III-C3) an error code that will be
sent to the sender of the request.

3) Service invocation (“invoke”): the invocation of a
given service can be achieved from any node of the com-
munity. In the case where an outside node of community
wishes to invoke a given service, it passes through a node
of the community which becomes “entry point” and thus its
“invocation point”. This entry point is in charge of making
the invocation of the service, retrieves the result and returns
it to the request source.

Remark 3. A node “entry point” is a node from which an
end-user logs in to access the community. In fact, the system
provides to the end-user a kind of black box in which all
tasks will be done in a transparent manner. Note that any
node of the community can serve as an “entry point”.

4) Service execution (“exec”): once the request has
reached the node that keeps the service, it is executed. The
first step is to identify the required invocation parameters for
the execution. The execution can either produce the result,
or trigger an error. Once the result has been produced, it is
routed to the “invocation point”.

5) Service recording (“save”): it is possible to exploit
the platform through research without memory of services
on each invocation. As we stated previously, we can increase
the performance of our platform with distributed service reg-
istries. We plan the construction of these registries according
to two main strategies:
• Flooding deployment: in this first strategy, the diffusion

of the information on the service location will be
achieved according to a flooding approach.

• Broadcast-based on response invocation: in this second
strategy, the location information will be broadcast after
the response of the invocation. Each node that relays
the response towards the invocation point will store the
information on the service location.

Remark 4. In order to avoid a node overloading-memory
by the service register, it is possible to aggregate information
on several consecutive nodes.

D. Specification of the node proxy concept

As our specification is not related to a particular peer-
to-peer architecture, we propose an organizational model of
nodes in the system which tends to limit the knowledge on
some nodes called proxies in order to avoid an overloading-
memory of the community nodes. In fact, we propose to
limit knowledge about the location on some nodes in the
system (as well as their list of services) on nodes we call
ISP (Information System Proxy).

An ISP acts as an information system for a set of nodes.
Consequently, it knows the location of a certain number of
services in the community.

In order to limit the ISP overload, we delegate invocation
and execution services tasks for nodes called IP (Invocation
Proxy). Moreover, services have not the same execution
constraints in terms of CPU, RAM, execution platform,
etc., Thus, a node is defined as IP for a given service,
if it knows its location and respects its implementation
constraints. Therefore, IP node owns the client part of this
service (stub).

A node having only a knowledge about the location of
a given service but not having its stub will be called LP
(Location Proxy) for this service.

It should be noted that a node is both invocation proxy
and location proxy for its own services.

Remark 5. In order to avoid the overload of the memory
of the ISP, IP and LP nodes, we propose to remove the
knowledge about a given service at the end of a TTL (Time-
To-Live). Accordingly, a service that is rarely requested will
not be stored indefinitely. In contrast, a node will be always
an invocation proxy for a service frequently requested of the
fact that its TTL will be reset after each new invocation. In
the case of the ISP nodes, this TTL is only applicable on
services known through other ISP nodes.

IV. MANAGEMENT OF THE P2P4GS COMMUNITY NODES

In this section, we describe a detailed illustration of
our specification. We firstly present the creation process
of the P2P4GS community. Afterwards, we describe the
location and deployment processes of a given service in this
community.

A. Organization of the P2P4GS community

Given that nodes of a grid present minimum capacities
in terms of CPU, memory and bandwidth, any node can
potentially become ISP. Thus, no election of ISP node is
necessary. Moreover, in a large-scale environment where
nodes are geographically dispersed, the network does not
formed spontaneously. Therefore, using the concept of di-
rect neighborhood, we propose a progressive ISP election

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

according to node’s connection. We assume that direct
neighborhood of a node is established upon first connection
and can evolve during execution.

We define the concept of direct neighborhood as follows:
for any pair of nodes (u, v) of the P2P4SG community, u
and v are direct neighbors if and only if:
• u can communicate with v and vice-versa. This means

that there exists a bidirectional communication link
between u and v;

• u knows v in its list of neighbors and vice-versa.
The following steps describe the process creation of P2P4GS
community:
• The first node connected to the system (then it does not

have any neighbors), elects itself as ISP ;
• Any new node that connects to the system checks its

neighborhood table:
– If it has at least one ISP as neighbor then it keeps

its status (simple node). Moreover, if it has hosted
services, it sends information on services to its ISP
that will update their Service Registry ;

– Otherwise, it elects itself as ISP and informs its
neighbors.

B. Elasticity management in the P2P4GS community
As large scale systems can be highly dynamic, discon-

nection of a node can occur at any time. In order to ensure
scalability, it is necessary to take into account the discon-
nection of the nodes. Thus, according to the disconnected
node’s status, we propose these following approaches.
• Disconnection of a simple node: in this case, its services

become unavailable. As noted in Remark 5, if a service
remains unavailable until end of the TTL, its knowledge
will be deleted at the different service registries having
recorded it.

• Disconnection of a LP node: in this case, source node
will start a new process of discovery if it does not know
another LP for desired service.

• Disconnection of an IP node: same treatment as the
case of a disconnected LP.

• Disconnection of an ISP node: in this case, one of the
following events occurs:

– In the case of the service location, processing
remains the same as those IP or LP node;

– In the case of the service deployment, if candidate
node has other ISP neighbors, it sends services
information to its ISP neighbors that will update
their Service Registry. Otherwise, it elects itself as
ISP and informs its neighbors.

C. Location and deployment process in the P2P4GS com-
munity

In this section, we first describe the service location pro-
cess by using the example shown in Figure 2. Subsequently,
we explain the deployment process.

5 S6

S6 S5

S2 S1

S1 S2 S3

S6S4
SX

SX

SX

end−user

2 S3

S5

S4 S

(e)

S4 S4

Simple node

invokable service

localized service

owned service

lookup()
(a)

(f)

(c)

(d)

(b)

Entry point

ISP
S

Legend

5
S

Figure 2: Example of location process in P2P4GS community

In this example, the end-user is connected to its entry
point and the requested service is named S5 (a). If the entry
point knows the location of the requested service, it directly
responds to the end-user by sending the corresponding
service address. Else, if the node does not know the location
of the service, it forwards the request to its ISP neighbors
(b).

Any ISP that receives the location request consults its
registry and performs a following tasks:
• if the service is registered, it responds to the source

node by sending the corresponding service address;
• otherwise, we propose two strategies in order to explore

others node’s community:
– construction of a structured overlay formed by ISP;
– utilization of a wave algorithm such as the PIF for

example.
The first strategy allows ISP nodes to communicate to

each other in order to facilitate the processing of location
request. However, this method induces costs for maintaining
the overlay. The second limits the necessary knowledge
therefore it is simpler to implement. However, it presents
a non-negligible communication cost.

In this example, we have used the structured overlay
formed by ISP nodes (c). According to the used approach,
if the service is found, the response takes the opposite path
of the location request. By using the “save” primitive, all
intermediate ISP and the entry point node will update their
service registry (d, e, f). Note that, as we have showed in
Remark 5, a TTL is applied on this knowledge.

In the case of the deployment of a new service within the
community, one of the strategies (random, balanced or first
node) proposed in Section IV.C.1 can be applied. Note that
for these strategies, the election process of node candidate
keeps typically the same approach as for the location of ser-
vice. The request will be based on the execution constraints
(CPU, memory resource, execution platform, etc.) of the
service to be deployed. Once the deployment is successfully
completed, the candidate node sends to its ISP neighbors the
information on the new hosted service.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an original specification of a
“self-managed service in peer-to-peer grid” named P2P4GS.
This specification is generic, not linked to a fixed peer-to-
peer architecture or a given services management protocol.
Given that the size of distributed systems grows in terms
of number of nodes, services and users, we have proposed
to limit the knowledge on some nodes that we have called
proxies, in order to ensure scalability. After having described
our model, as well as different aspects of the P2P4GS
specification, we have presented a detailed illustration of
this specification.

Currently, we are working on the validation of our spec-
ification under Oversim framework based on OMNeT++
simulator in order to evaluate: service’s deployment and
location in each strategy, communication cost in terms of
messages and fault tolerance mechanisms.

As future work, we plan to implement and compare our
specification with other existing solutions.

REFERENCES

[1] I. Foster and A. Iamnitchi, “On death, taxes, and the conver-
gence of peer-to-peer and grid computing,” in Peer-to-Peer
Systems II. Springer, 2003, pp. 118–128.

[2] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the
grid: Enabling scalable virtual organizations,” International
journal of high performance computing applications, vol. 15,
no. 3, pp. 200–222, 2001.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web services
- Concepts, Architectures and Applications. Springer Verlag,
ISBN 3-540-44008-9, chapter 5, 2004.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica
et al., “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50–58, 2010.

[5] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,
A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Subra-
maniam et al., “The open grid services architecture (ogsa),
version 1.5.” OGF Specification GFD-I. 080, July 2006.

[6] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, and
P. Vanderbilt, “Open grid services infrastructure (ogsi), ver-
sion 1.0,” June 2003.

[7] S. Bhardwaj, L. Jain, and S. Jain, “Cloud computing: A study
of infrastructure as a service (iaas),” International Journal of
engineering and information Technology, vol. 2, no. 1, pp.
60–63, 2010.

[8] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright,
“Performance analysis of high performance computing appli-
cations on the amazon web services cloud,” in IEEE Second
International Conference on Cloud Computing Technology
and Science (CloudCom), 2010, pp. 159–168.

[9] E. Caron and F. Desprez, “Diet: A scalable toolbox to build
network enabled servers on the grid,” International Journal
of High Performance Computing Applications, vol. 20, no. 3,
pp. 335–352, 2006.

[10] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mor-
dacchini, M. Pennanen, K. Popov, V. Vlassov, and S. Haridi,
“Peer-to-peer resource discovery in grids: Models and sys-
tems,” Future Generation Computer Systems, vol. 23, no. 7,
pp. 864–878, 2007.

[11] T. Kocak and D. Lacks, “Design and analysis of a distributed
grid resource discovery protocol,” Cluster Computing, vol. 15,
no. 1, pp. 37–52, 2012.

[12] D. Chen, G. Chang, X. Zheng, D. Sun, J. Li, and X. Wang,
“A novel p2p based grid resource discovery model,” Journal
of Networks, vol. 6, no. 10, pp. 1390–1397, 2011.

[13] J. A. Torkestani, “A multi-attribute resource discovery algo-
rithm for peer-to-peer grids,” Applied Artificial Intelligence,
vol. 27, no. 7, pp. 575–598, 2013.

[14] I. Foster, “Globus toolkit version 4: Software for service-
oriented systems,” Journal of computer science and technol-
ogy, vol. 21, no. 4, pp. 513–520, 2006.

[15] T. Gomes Ramos and A. C. M. A. de Melo, “An extensible
resource discovery mechanism for grid computing environ-
ments,” in Cluster Computing and the Grid, 2006. CCGRID
06. Sixth IEEE International Symposium on, vol. 1. IEEE,
2006, pp. 115–122.

[16] F. Butt, S. S. Bokhari, A. Abhari, and A. Ferworn, “Scalable
grid resource discovery through distributed search,” Interna-
tional Journal of Distributed and Parallel Systems (IJDPS),
vol. 2, no. 5, pp. 1–19, 2011.

[17] Y. Deng, F. Wang, and A. Ciura, “Ant colony optimization
inspired resource discovery in p2p grid systems,” The Journal
of Supercomputing, vol. 49, no. 1, pp. 4–21, 2009.

[18] J. A. Torkestani, “A distributed resource discovery algorithm
for p2p grids,” Journal of Network and Computer Applica-
tions, vol. 35, no. 6, pp. 2028–2036, 2012.

[19] J. M. Marin Perez, J. B. Bernabe, J. M. Alcaraz Calero, F. J.
Garcia Clemente, G. M. Perez, and A. F. Gomez Skarmeta,
“Semantic-based authorization architecture for grid,” Future
Generation Computer Systems, vol. 27, pp. 40–55, 2011.

[20] N. Jafari Navimipour, A. Masoud Rahmani,
A. Habibizad Navin, and M. Hosseinzadeh, “Resource
discovery mechanisms in grid systems: A survey,” Journal
of Network and Computer Applications, pp. 389–410, 2013.

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

