
Ontology-based Management of a Network for Distributed Control System

Dariusz Choiński, Michał Senik, Bartosz Pietrzyk

Silesian University of Technology
Faculty of Automatic Control, Electronics and Computer Science

Gliwice, Poland
e-mails:{dariusz.choinski@polsl.pl, michal.senik@polsl.pl, bartosz.pietrzyk@student.polsl.pl}

Abstract—In this paper, we propose an ontology-based analysis
and management of a domain in which initially unspecified
number of Industrial Automation (IA) data servers compatible
with Open Platform Communication (OPC) specification are
available for processing. The result of the performed analysis is
an ontology-based Multi-Agent System (MAS) compatible with
the Foundation for Intelligent Physical Agents (FIPA)
specification that is capable of reliable management in a
nondeterministic environment conditions in which not only
data servers can change over time in number, but their
hierarchical data structures as well. The first step of the
presented analysis involves explicit knowledge formalization by
means of a Unified Modeling Language (UML). The goal is to
obtain complete, hierarchically structured, constrained, human
readable ontology in a UML class diagrams format,
representing both topology of the domain and its dynamic
process control data. The second step is to translate the
obtained UML class diagram into First Order Logic (FOL)
expressions. The goal is to establish more detailed domain
knowledge as well as to check consistency and assure
confidence of the derived UML class diagram. The third step is
to explicitly formalize the domain ontology in a machine
interpretable extensible markup language (XML) schema
(XSD), based on the derived UML class diagram. The goal is to
have a possibility of automatic generation of hierarchically
structured, class source code that, together with parent UML
model and FOL expressions, will serve as a baseline for the
domain integration system development.

Keywords-Network management; Multi-Agent Systems;
Ontology; FOL; FIPA; OPC; XML; hybrid systems; concurrent
programming.

I. DOMAIN INTEGRATION SYSTEM CONCEPT

In the presented domain integration systems, there is a
predefined number of database servers, storing both
historical and real-time hierarchical data and a
nondeterministic number of OPC Data Access (DA) IA
servers, serving as source of real-time, process control data.
Each server can be accessed by numerous different client
applications. OPC standard [1] was established as a method
for efficient communication between automation devices
and systems. One of the basic specifications is the OPC DA
which defines the communication between the client and the
server hosting the real-time process data. Data Access
Clients have access to data from the automation system via
Data Access Servers. The communication interface between

the client and the server is completely independent of the
physical data source. The OPC DA specification also
defines two main structures for describing data shared by
the server. These are the namespace (Namespace) and the
OPC objects. The namespace provides hierarchically
structured, control process data. The structure of the OPC
objects is flat and is created by the client application. The
OPC object, within the established structure, is attributed to
identifiable characteristics, such as: the value of the
corresponding variable, the time of measurement, the
quality measurement and others [2][3]. Cooperation with
OPC DA servers is established through the Java Native
Interface (JNI) wrapper, which is based on the native OPC
DA library. Cooperation with database servers is established
through the NHibernate database entity framework wrapper
[4].

The presented domain integration system concerns usage
of partially autonomous, proactive and self-managed MAS
as an integration solution. Resulting from such an approach,
there is a number of different types of agents that have to
cooperate together, performing their highly specialized set
of activities, in order to perform integration tasks correctly
[2][3][4]. The idea of cooperation, as communication
between agents, using serialization of speech acts, requires
the creation of an ontology that allows partitioning of the
message by the agent, so that the intentions of the objectives
are clear and unambiguous. At the same time, it should be a
feature of the ontology which is easily processed by both
man and machine. Therefore, the rationale for the MAS
domain integration system development is an OPC-based
ontology. The structure of the transmitted information is
particularly important in the use of Multi-Agent technology
in control and design of control systems. The set of
concepts, which in this case is a description list of the data
points, used and controlled variables in the whole process of
designing the control system and its software is practically
constant. What changes, mainly, is the structure of mutual
connections and the structure of the information used for
decision making and activities related to the control. An
obvious advantage of the system of agents that
communicate using messages based on a universal
definition of a FIPA standard [5] is the ability to remotely
boot services, regardless of the particular software
implementation. Within the commonly used protocols in the
domain, it is necessary to know the structure of instances of

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

the individual objects performing services or storing
information and for the MAS this knowledge is formalized
by means of ontology.

The rest of this paper is organised as follows. The second
section presents a high level, abstract description of an
automation system analysis based on Petri Nets and
ontologies. The third section proposes a solution to validate
the obtained ontologies’ UML class diagrams by means of
additional FOL formulas. The fourth section presents
general rules of conversion from UML class diagrams to
FOL formulas. The fifth section presents a sample
conversion from ontology-based, UML class diagrams to
corresponding FOL formulas, proving the correctness of
obtained ontology.

II. DYNAMIC DOMAIN EVENTS RESPONSE

Resources, as a part of the greater domain, are usually
treated as a source of a variety of different pieces of
information that need to be integrated and analyzed in order
to be meaningful. These data are usually stored in a
resource’s hierarchical memory structures. The process of
the fast data collection and analysis of those pieces of
information is an essential activity for each integration
system resulting in a proper and efficient domain control and
maintenance. Both the data structure and the resource
allocation are essentially dynamic, and thus, can change over
time. The inability to synchronize automatically with each
other causes confusion and various different data integrity
problems. It is worth mentioning that the synchronization
process always depends on various different reconfiguration
and reorganization processes. To achieve such an
autonomous and proactive domain integration system,
additional detailed analysis of a domain from the perspective
of each underlying integrated resource is required. The
performed analysis ought to treat a resource as a finite state
machine and result in explicitly defined state set that would
cover its whole functionality. It is important to notice that
those states must not lead to the integration system deadlock
in any way as each state should have its transition conditions,
predecessor and successor states clearly defined. To achieve
this, a states reachability graph has to be created, and, since
Petri Nets [6] is a widely accepted tool to perform such an
analysis, it is a fairly easy and straightforward task (Figure
1).

UML class
diagram

FOL
formulas

XML XSD
schema

automatic
source code
generation

Petri net
reachability

graph

Figure 1. Iterative approach to domain integration system engineering.

However, this is only the initial step towards domain
integration system creation. Since Petri Nets is still just a

human only interpretable tool; a more sophisticated and
expressive tool, such as ontology, is required. Ontology
possesses enough capabilities to formalize the gathered
domain knowledge in both human and machine readable
format. It can describe both static properties of the system
and its runtime states in which the system can reside, as well
as the conditions of transitions between those states.
Ontology can model anything starting from the tiniest
domain element to vast hierarchies of domain resources.
Based on the ontology, parts of the domain integration
system can share their knowledge and cooperate to solve
integrated system’s problems [2][3]. Technically, ontology is
a set of very simple and much more complex rules, such as
concepts, predicates and actions, which can be created in
many available programming languages, such as Java, C# or
XML [2][3]. Each ontological expression can be organized
in a hierarchical structure, which means that simpler entities
can be nested in more complex ones.

III. ONTOLOGY-BASED ANALYSIS AND ENGINEERING

In the proposed domain, integration system ontology is a
fundamental element serving as a formal domain and its
integration system specification, communication medium
and domain integration system implementation base. Based
on such an ontology, a detailed analysis can be performed,
which allows to obtain peek quality of a domain integration
system. Ontology-based analysis and engineering activities,
however, require a good and comprehensive visual tool that
could enhance ontology expressiveness and improve
obtained results quality. For many experts in this field,
UML and its class diagrams especially, have gained much
credit. However, UML class diagrams along with their
many useful features tend to contain also a lot of implicit
knowledge that concerns declaration of classes and their
methods, classes’ generalization and accessibility level.
Implicit, hidden knowledge always causes unnecessary
problems during domain analysis and its integration system
implementation. This is even more concerning, knowing
that, in time, UML class diagrams, tend to grow
uncontrollably fast in their size and complexity, which
introduces a problem of domain knowledge maintenance.
To eliminate or at least to reduce the impact of these
problems, ontology-based UML class diagrams can be
greatly enhanced with support of FOL [7]. By doing so,
each single class and their hierarchies can be additionally
supported with numerous FOL assertions.

Combined together, UML class diagrams and FOL
assertions can produce a more complete, detailed and
complementary description of a domain and its integration
system. Such an approach to ontology engineering allows us
to prove its soundness and check its consistency level,
which in turn allows for the pre implementation domain
integration system validation assuring its foundations. It is
worth mentioning that the presented ontology-based
analysis and engineering are essentially iterative activities,
which also means that they end when enough confidence

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

and knowledge about the integrated domain has been
gathered and formalized explicitly (Figure 1).

However, for the ontology to be reused during domain
integration system implementation and communication
processes, it has to be defined in a machine interpretable
format. A widely accepted solution to this problem would
be to reuse XML XSD schema as it possesses enough
expressive power to be not only analyzed by a machine but
by a human as well. Because the ontology was modeled by
means of UML class diagrams, it is also the most reasonable
and convenient approach since translation to XML XSD
schema is rather straightforward and well documented.
However, the resulting XML XSD schema is still just a
static representation of an ontology, which is just a static
description of a domain and as such, XML XSD schema can
only be reused as data validation tool during runtime. The
true potential of reusing XML XSD schema is perhaps the
possibility of automatic source code generation (Figure 1).
In such a case, XML XSD schema stands as a template for
the ontology class hierarchy source code creation, which can
only improve consistency and interoperability amongst
various different domain integration system elements.

For the sake of this paper and analysis of the domain
integration system, it was decided to focus only on a
simplified part of the system that involves various different
OPC DA servers, host machines and operating agents.

IV. GENERAL RULES OF UML TO FOL TRANSITION

However, before any implementation, automatic source
code generation, XML XSD schema creation and any FOL
analysis, a set of general rules of conversion between UML
class diagram model and FOL expressions has to be
specified. Generally, in order to speak about FOL sentences
predicates, such as class, argument, argument type,
multiplicity, association and natural number has to be
introduced (1).

 (1)

UML class diagrams, much alike the ontologies, allow for
declarative modeling of the static structure of a domain, in
terms of concepts and their relationship [7]. Single class in
each UML class diagram denotes a set of objects with
common features and in FOL it will be represented as a
unary predicate C (1). Common features of each class are
expressed by means of its underlying attributes. Each
attribute is characterized by name, type and multiplicity and
in FOL it is represented as a binary predicate a (1). To
represent the type of an attribute in FOL a unary predicate T
(1) will be used. Each attribute characterizes with
multiplicity. Even single valued attribute has one. In order
to express multiplicity, first of all, a natural number unary
predicate NatNum (1) has to be specified [8].

 (2)

Natural numbers in FOL (2) can be characterized by means
of one natural number constant symbol 0 and one successor
unary predicate S (1) (2). For each n value, if n is natural
number so is S(0), S(S(0))and S(…(S(n)). Natural number
will help us in defining multiplicities [7] for each available
class attribute for which the FOL expression (3) holds.

 (3)

An expression (3) states that for each x instance of class C
there exists such value y of type T related to instance x by
means of an a attribute. The multiplicity [7] of attribute a is
denoted by FOL expression (4), which states that for each
instance x of class C there exists such value y of type T that
references to x by means of an attribute a that has at least i
and at most j values.

 (4)

Hierarchical relationships between different classes are
modeled by means of an association relationship which is
very much alike attribute but differs in the level of
accessibility. While an attribute models properties that are
local to a class, an association models properties that are
shared amongst different classes. An association [7] can be
a binary or a n-ary relation, thus what holds for the binary
association holds also for n-ary one. In FOL, association
between various different classes without association class
defined is represented as a n-ary predicate A (1) for which
the FOL expression (5) holds. An expression (5) states that
association instances have to be of correct classes.

 (5)

An association between different classes that has related
association class is represented by a unary predicate A and n
binary role names predicates r0…rn (6)(7)(8).

 (6)

 (7)

 (8)

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

An assertion (6) types the association. It specifies that for
each instance of association class A, instance value y that
relates to x by means of role ri is of specific class type Ci.
An assertion (7) refers to the fact that there exists only one
instance value y for each single role ri of A. An assertion (8)
specifies that there is only one instance of association class
that faithfully represents one particular relation. Special
kind of a binary association between two classes that
corresponds to a containment relationship is an aggregation.
It specifies that each containing class owns a set of
contained classes instances (9). An aggregation [7]
relationship does not need an additional association class,
thus in FOL it can be specified as a binary relation (9).

 (9)

In the object-oriented domain, the notions of inheritance
and polymorphism are very important. Both are often used
interchangeably and both refer to the notion of
generalization. Generally, class hierarchy is a result of a
composition of several generalizations (10).

 (10)

Class hierarchies usually form complex structures and
usually during domain integration system analysis it is often
required to formalize various different and smaller class
subcategories. To do that, it is important to specify both
class disjointness (11) and completeness (12) notions [7].
Disjointness refers to the notion that single object cannot be
an instance of two different subclasses at the same time.
Completeness refers to the fact that each subclass is also an
instance of at least one superclass.

 (11)

 (12)

The methods, static or instance, are the executable part of
each class. Each such method defines class competencies
and the body of those methods represents how the class and
its instances interact with a domain. Class methods are
functions from the class or class instance to which a method
is associated and possibly additional parameters to instances
or simple values [7]. In FOL, a class method is represented
by a n-ary predicate f (13) with up to fx+fi+fo arguments,
where fx is an instance of the parent class, fi is the number of
input parameters and fo is the output of the method.
Therefore, it is easy to deduce that an instance method

without input parameters will be defined by a binary
predicate with fx+fo number of arguments. FOL predicate f
has to additionally satisfy a set of assertions that will
explicitly specify method consistency (14) and correct
typing of method’s input and return parameters (13). Both
assertions, as a result, allow capturing explicitly notions of
overriding and overloading that in UML class diagrams are
rather hidden from ones perspective.

 (13)

 (14)

 (15)

V. DOMAIN INTEGRATION SYSTEM ANALYSIS

Based on the general rules of transition between UML
class diagram and FOL, further domain integration system
analysis can be performed that might reveal the flaws of the
obtained model. The presented analysis results, however,
were not generated automatically by means of any
additional tool as no such tool is currently available. Each
given FOL formula was manually derived during additional
domain integration system UML class diagram analysis
proving its soundness, correctness and consistency. Such an
approach allows decomposing complex analysis problems
into simpler ones; thus, it helps to describe integration
issues in more details. Without such an approach, no
scalable, open and reconfigurable domain integration system
could be engineered. For the sake of better understanding, in
the presented work, only a simple part of domain integration
system was chosen. The part that was selected incorporates
four different, hierarchically related to each other, concepts
representing general domain characteristics (16), various
different PC-based and IA-based workstations (17),
industrial OPC DA servers (19) and intelligent, autonomous
software agents (18).

MAXISConcept class (16) (Figure 2) is a general,
domain ontology, integration system, abstract base class that
defines a few different common methods (16) that have to
be inherited and overridden on each ontology subclass level
to meet specific ontology subclass requirements and to be
used it has to be inherited.

Figure 2. MAXISConcept class.

100Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

 (16)

HostConcept class (17) (Figure 3) models a workstation
machine on which OPC DA servers and agents can be
deployed. It derives MAXISConcept class and overrides its
methods to provide their specific implementation it also
defines two members HostName and HostIp accessible
through public getter and setter methods.

Figure 3. HostConcept class.

 (17)

AgentConcept class (18) (Figure 4) relates to the notion of
intelligent, autonomous software agent that can cooperate
with other different agents exchanging various different
ontological messages under certain conditions in the given
domain area solving assigned tasks according to designed
functionality. It derives HostConcept class providing more
specific implementation for each inherited method and is
univocally characterized by its AgentLocalName class
member.

Figure 4. AgentConcept class.

 (18)

Figure 5. OpcServerConcept class.

OpcServerConcept class (19) (Figure 5) relates to the

OPC DA industrial server that provides various different
real-time data from an underlying process. Similar to the

101Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

AgentConcept class, OpcServerConcept class also derives
HostConcept class providing more specific implementation
for each inherited method. OpcServerConcept class defines
OpcServerProgramId member to univocally distinguish
operating OPC DA server.

 (19)

Class hierarchy always imposes numerous constraints,
which are implicit in UML class diagram model (Figure 6),
however, to improve readability, each such constraint can be
defined explicitly (20).

Figure 6. Simple domain integration system class hierarchy.

 (20)

VI. CONCLUSION

UML class diagrams are fundamental during engineering
of each domain integration system. However, each such
diagram tends to hide many simple but important facts
therefore, an additional tool that can precisely capture such
implicit knowledge has to be introduced. The presented
analysis focuses on a precise, detailed specification and
hierarchical relationship of each domain element, showing
an easy way to produce a comprehensive and

complementary description of an integrated domain using
both UML class diagrams and FOL expressions. Such
analysis is not a trivial task as it requires multiple iterations
to obtain satisfactory results and thus confidence about
integrated domain details. However, the goal of this analysis
is not simply to obtain multiple FOL assertions and better
UML class diagrams. The main goal is to produce a most
detailed description of a scalable, open and reconfigurable
domain integration system that can faithfully operate under
nondeterministic conditions. To achieve this, resulting
ontology-based UML class diagram has to be transformed
into a machine interpretable format. The most reasonable
solution to this problem is to translate the UML class
diagram into XML XSD schema, which in turn can be
straightforwardly reused during both implementation and
runtime.

ACKNOWLEDGMENT

This work was supported by the National Science Centre
under grant No. 2012/05/B/ST7/00096 (D. Choinski) and by
the Human Capital Operational Programme co-financed by
the EU from the financial resources of the European Social
Fund-project no. POKL. 04. 01. 02-00-209/11 (B. Pietrzyk)

REFERENCES

[1] F. Iwanitz and J. Lange, OPC–Fundamentals, Implementation
and Application. Huthig Verlag Heidelberg, 2006.

[2] D. Choinski and M. Senik, 2010. “Collaborative Control of
Hierarchical System Based on JADE.” In: Y. Luo (ed.),
CDVE 2010, LNCS. vol. 6240, Springer, Heidelberg, pp.
262-269.

[3] D. Choinski and M. Senik, 2011. “Multi-Agent oriented
integration in Distributed Control System.” In: J. O'Shea et al.
(eds.), KES-AMSTA 2011, LNAI. Vol. 6682, Springer,
Heidelberg, pp. 231-240.

[4] D. Choinski and M. Senik, “Multi-Agent System for
Adaptation of Distributed Control System.” ICINCO 2012,
pp. 206-211.

[5] F. Bellifemine, G. Caire, and D. Greenwood, Developing
Multi-Agent Systems with JADE. John Wiley & Sons,
Chichester, 2007.

[6] J. L. Peterson, Petri net theory and the modeling of systems.
Prentice Hall, 1981.

[7] D. Berardi, D. Calvanese, and D. G. Giacomo, “Reasoning on
UML class diagrams.” Artif. Intell. 168(1-2): pp. 70-118,
2005.

[8] S. Russel and P. Norwig, Artificial Intelligence a Modern
Approach, 3rd ed. Prentice Hall, 2010.

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

