
Modeling Interactive Digital TV Users Behavior

Samuel da Costa Alves Basilio

Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG)
Leopoldina - MG - Brazil

Email: samuelbasilio@leopoldina.cefetmg.br

Abstract—The performance evaluation required in the proposition
of new large scale distributed systems usually faces the challenge
of correct characterization of the load that is imposed on them.
In the case of proposals in the area of Digital Television (TV),
including terrestrial, cable, Satellite and IPTV, obtaining such
a characterization from real deployment scenarios has proved
to be a very difficult accomplishment due to the impediment
experimental access to these distribution networks in operation.
Thus, a researcher usually uses simulations that impose work
loads crudely approximated, or even fictitious oversized to your
system, leading uncertainty to potential service providers re-
garding the optimal sizing of the equipment required. Here, we
present a mathematical model of simple implementation, able
to represent the behavior of users of Digital TV. The model
can be parameterized to represent different states of behavior
about the system to be simulated, and thus adapt to various
scenarios of interest. We also show how this model was used in
the performance analysis of a proposed service provider.

Keywords–Digital TV; Model; User Behavior; Interaction; Sim-
ulation.

I. INTRODUCTION

When dealing with research in Digital TV, we often face
a challenge in time to validate the software developed. As
this environment involves millions of users, the developed
software have to take into account concepts such as scalability,
availability and performance, but the effort to evaluate these
features may not be trivial. Undoubtedly, the best way to
improve, correct errors and check the software requirements
is applying it in a real environment, even if with a restricted
group of users. In the case of Digital TV environment, this
done has proven to be difficult due to the fact that the real
environment is also commercial. Additionally, experimental
tests are not generally accepted. Although the use of a limited
number of users is not ideal, in most cases, it is the resource
available for researchers and software developers. This feature
can be presented as a good solution when we want to evaluate
interface, functionality, among others factors. However, when
we want to evaluate such criteria as scalability and availability,
it is not enough. In this case, a resource that can be used
efficiently, cheaply and reliably is simulations. Nowadays,
computational resources are relatively inexpensive and can
be used to simulate environments with a large number of
users. However, to use this resource, we need a reliable
model, which should represent as closely as possible the
environment behavior. The challange to use this resource is
in the development and implementation of the model to be
simulated. It is necessary that the model developer closely
observes the behavior of all the environment elements and
abstract then them in a simple model. The model must have a

balance between fidelity to the real environment and simplicity
of implementation. Moreover, a behavior model must suit to
its purpose. We should not use a desktop user behavior model
to simulate a mobile phone environment. Similarly, we should
not use a web user behavior model to simulate an interactive
digital TV load.

Knowing these problems, we present in this paper a math-
ematical model that can easily be implemented and even so
is faithful enough to reality. Furthermore, with the data from
an experiment where 27 viewers had their interactions with
TV capture along with a TV audience survey data from a
local statistics research institute, we show a parameterization
example of the proposed model. The presented model may
also be used in other contexts, such as targeted advertising and
social context analysis, audience measurement, among others.

This paper is structured as follows. Section II discusses
some related work; Section III is dedicated to mathematical
model of the behavior of users of Interactive Digital TV.
Section IV exemplifies the model instantiation for a specific
case. Finally, Section V shows the achieved objectives and
discusses future work.

II. RELATED WORK

The attempt to model the behavior of media consumption
system users is not a new work as seen in [1], where Branch
et al. characterize and model the behavior of users of their
video on demand system. But, as new ways of interaction
appear, as well as new technologies and new systems of media
consumption, existing models are often not adequate. Alvarez
et al. [2] shows an architecture for audience measurement, a
model for data consumption and some metrics to quantify the
impact of consumer. This metric is calculated in a similar way
in [3].

Along with the user behavior model, some work show a
characterization of this behavior in a real environment. That is
the case of [4], which characterizes the behavior from a system
with millions of users. An interesting metric presented in this
paper is the session time that has a paramount importance when
simulating the behavior of various users over long periods of
time.

An important point is cited in [5], where a synthetic load
generator is shown. In this paper, Costa et al. cite the need for
heterogeneity in load generators because many are reported
in the literature, but most work only a group-specific data,
such as educational. The work presented by Qiu et al. [6]
also has a generator of synthetic load but only focusing on the
Internet Protocol Television (IPTV) environment. Nevertheless,
this work has an advantage because it used data from a real
system with millions of users.
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III. INTERACTIVE DIGITAL TV USERS BEHAVIOR MODEL

Aiming to support possible future simulations, we present
in this session a Markov model of the Interactive Digital TV
users interactions. This work comes to fill a gap in the digital
TV research. It is really hard to evaluate points like scalability,
availability and performance at this area because until now
there is no model to represent the interactive digital TV user
behavior.

To define the Interactive Digital TV user behavior, we must
consider every possibility of viewer interaction. Below, we
define the possible states its transitions. Figure 1 shows the
states and the possible transitions between these states:

Figure 1. Markovian model of the users interactions.

• Ei, when an interactive application is running;
• En, when only the broadcast video is running;
• Ef , when the viewer turns off the digital receiver;
• Eg , when a native application is running.

• pif , probability of the digital receiver to be unplugged
since an interactive application was running;

• pii, probability of the viewer to continue the execution
of an interactive application;

• pig , probability of the viewer start a native application
as an interactive application was running (pausing the
execution of the interactive application);

• pin, probability of a running interactive application to
be closed or the viewer change the channel (ending
the execution of the application);

• pni, probability of an interactive application to be
started since no other application was running;

• pnn, probability of the viewer does not start any
application;

• pnf , probability of the receiver to be turned off
without any application be running;

• png , probability of the viewer start a native applica-
tion;

• pgn, probability of the viewer select a channel through
a native application (such as the electronic program
guide);

• pgg , probability of the viewer to continue running a
native application;

• pgf , probability of the receiver be turned off with a
native application running;

• pgi, probability of a native application to be terminated
after being initiated when an interactive application
was running (recovering the state of the interactive
application that was then paused);

• pff , probability of the receiver be off.
We differentiate the state where native applications (we

consider native applications those that are specific to the
digital receiver, from the factory or installed later as the
electronic program guide.) are running from the state where
interactive applications in general are because depending on
data capturing approach used it may not be possible to capture
the interactions of native applications [7]. As these native
applications are a resource provided by the digital receiver,
if the data capture approach by interactive applications is
used, user interaction with these native applications can not
be obtained. However, if the data capture approach used is
by middleware extension, all interactions may be obtained,
the ones with interactive applications such as the ones with
native applications. In both approaches, the channel change
interactions can be obtained.

Note that it is simple to specialize the presented model to
any specific case. For example, if we wanted to specify at the
initial model an arbitrary interactive application, it would only
need to add to each state Ex of the application the probabilities
pxy and pyx, where m is the number of states of the chain
Ex = {Ea1, Ea2, ..., Eam}, pxy = {pxn, pxg, pxi, pxf} and
pyx = {pnx, pgx, pix, pfx}. We also have to remove the state
Ef , which represents the final state of the application chain, as
this state is reached at some point when any of the probabilities
pxy happen.

To illustrate the specialization of the model Figure 2(a)
shows the model of an arbitrary interactive application that has
two active states, Ea1 and Ea2, and a final state Ef . To extend
the original model we remove the state Ef from the application
model and add the states Ea1 e Ea2 at the original model,
keeping the probabilities that relate the states Ea1 and Ea2 and
adding the probabilities that relate Ea1 and Ea2 with E

′

i , Eg ,
En e Ef . Note that the estate Ei that at the original model
represented all interactive application, is now called E

′

i and
represente all others interactive applications. If all applications
are represented individually, the state E

′

i can be removed from
the model. The same reasoning can be applied at the state Eg .
Figure 2(b) shows the final result.

A. Expected Session Time
An interesting metric that we can obtain from this model

is the expected session time. The session time of a viewer can
be estimated by calculating the number of steps required to
reach the state Ef . Below is the formalism to calculate this
time, taken from [8].

Let (Xn)n≥0 be a Markov chain with transition matrix P .
The hitting time of a subset A of I is the random variable
HA : Ω→ {0, 1, 2, ...} ∪ {∞} given by:

HA(ω) = inf{n ≥ 0 : Xn(ω) ∈ A}
where the infimum of the empty set ∅ is ∞. The probability
starting from i that (Xn)n≥0 ever hits A is then:

hA
i = Pi(H

A <∞).
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(a) Model of an arbitrary application

(b) Specialized model

Figure 2. Model specialization.

When A is a close class, hA
i is called the absorption proba-

bility. The mean time taken for (Xn)n≥0 to reach A is given
by:

kAi = Ei(H
A) =

∑
n<∞

nP (HA = n) +∞P (HA =∞).

For our case, we have i = {En} and A = {Ef}. It is clear
that kEf

= 0. Starting at En and performing one step, with
probability pni we reach Ei, with probability png , we reach
Eg , with probability pnf we reach Ef , and with probability
pnn we keep at En. Then:

kEn
= 1 + pnikEi

+ pngkEg
+ pnfkEf

+ pnnkEn

kEn
=

1 + pnikEi + pngkEg

(1− pnn)

The 1 appears because we count the time for the first step.
Similarly, for kEg

and kEi
, we have the following system that

solved gives the expected session time:

kEn
=

1 + pnikEi
+ pngkEg

(1− pnn)
(1a)

kEg
=

1 + pgikEi + pgnkEn

(1− pgg)
(1b)

kEi =
1 + pigkEg

+ pinkEn

(1− pii)
(1c)

B. Expected Number of Interactions in a Given Period
It is important to note that the probabilities pii, pgg

and pnn, represent the probability of the viewer continue in
its current state, running an interactive application, a native
application or not running any applications, respectively. If
at some step in the execution of this model any of these
probabilities happen, an event of interaction can be generated
or not. If at the state Ei the probability pii happen, the viewer
continues with the interactive application running. In the time
period covered by this step, he may or may not have interacted
with the application. There is, then, at this point, a probability
of generating a user interaction event. We call this probability
interaction rate at the state, being noted as peii. The same
reasoning can be applied to pgg and pnn, and we call pegg
and penn their respective interaction rates at the state.

With that, another important metric that we can calculate is
the expected number of interactions that a viewer shall perform
in a given period. Consider that whenever there is a transition
between the states Ei, Eg and En an event I is generated. This
event is an interaction. Also, when a transition where there is
no state change occurs pii, pgg and pnn an event is generated
with probability peii, pegg and penn respectively. Thus, the
probability that for each state Ei, Eg and En, we generate an
interaction event is:

I =

{
pni + png + pnnpenn , if the current state is En

pin + pig + piipeii , if the current state is Ei

pgi + pgn + pggpegg , if the current state is Eg

(2)

Observing function (2), we note that the probability of
generate an event is dependent of the current state. Therefore,
owe calculate for each step k the probability of being in each
state Ei, Eg and En. Let p(k)Ei

, p(k)En
and p

(k)
Eg

be the probabilities
in step k of being at state Ei, En and Eg , respectively, these
probabilities are given by the recursive functions system:


p
(k)
Ei

= pgip
(k−1)
Eg

+ pnip
(k−1)
En

+ piip
(k−1)
Ei

p
(k)
En

= pgnp
(k−1)
Eg

+ pnnp
(k−1)
En

+ pinp
(k−1)
Ei

p
(k)
Eg

= pggp
(k−1)
Eg

+ pngp
(k−1)
En

+ pigp
(k−1)
Ei

(3)

This way, to calculate the total amount of generated events
I(k) in k steps, we must sum for each step k the probabilies
of generate an event in each state. Formally:

I(k) =

k∑
j=1

p
(j)
En

I + p
(j)
Ei

I + p
(j)
Eg

I (4)

C. Expected Number of Applications Execution
We also can estimate the expected number of applications

execution. That metric is represented by the expected number
of visits to a state. If we extend our model so that each
interactive application is represented by an individual state, we
even shall be able to estimate the expected execution number
of an specific application.

Let,

Nj(k) =

k∑
m=1

I(Xm = j) (5)
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the number of visits to state j during times 1 to k. And let,

Gij(k) = E(Nj(k)|X0 = i) =

k∑
m=1

P
(m)
ij (6)

the average time of visits to state j during times 1 to k,
starting at i. If we consider j as our state Ei and i as our states
En and Eg , the expected number of interactive applications
execution in k time is given by

GEnEi
+ GEgEi

(7)

IV. MODEL INSTANTIATION

As part of the work [7], an experiment was conducted in
which 27 volunteers watched television and had their inter-
actions captured. All analyzed viewers watched the available
programming for 15 minutes. Using these data we conducted
an instantiation of the presented model in order to illustrate its
use.

Table I shows the quantification of used data and Table
II the probabilities found. In Table I we consider as bounce
rate the percentage between the total of executions and total
executions where after start the application, the user closed it
without making any other interaction.

TABLE I. SUMMARY OF USED DATA.

USED DATA VALUE
INTERACTIONS TOTAL 2241
CHANNEL CHANGE TOTAL 355
INTERACTIONS WITH INTERACTIVE APPLICATIONS 1886
TOTAL EXECUTIONS OF INTERACTIVE APPLICATIONS 139
AVERAGE TIME OF APPLICATIONS EXECUTION 45,02 secs
BOUNCE RATE 45.32%
BIGGEST NUMBER OF INTERACTIONS OF A SINGLE
USER IN A MINUTE

57

USERS TOTAL 27
EXPERIMENT TOTAL TIME 6 hours and 45 mins

For definition of these data, the experiment time was
discretized in seconds. From this we calculated the number
of seconds that a viewer was in each state Ei, Eg and
En. Knowing how long each viewer spent in each state and
transitions between the states it was possible to get the data
from Table II. In the experiment, every session was started in
En state.

With the probabilities it is possible to calculate the expected
session time replacing the obtained values in equations (1a),
(1b) e (1c).



kEn
=

1 + 118
13895kEi

+ 35
13895kEg

(1− 13728
13895 )

(8a)

kEg =
1 + 18

2428kEi + 13
2428kEn

(1− 2391
2428 )

(8b)

kEi
=

1 + 2
3477kEg + 133

3477kEn

(1− 3340
3477 )

(8c)

Solving the system we find:

kEn
=

19903979

22128
≈ 899.49290 (9)

TABLE II. VALUES FOR THE PROBABILITIES OF OUR MODEL.

PROBABILITY VALUE

pii
3340
3477

pin
133
3477

pig
2

3477

pif
2

3477

pgi
18

2428

pgg
2391
2428

pgn
13

2428

pgf
6

2428

pnn
13728
13895

pni
118

13895

png
35

13895

pnf
14

13895

penn
1036
13895

peii
1126
3477

pegg
482
2428

We are also able to calculate the expected number of
interactions in 15 minutes. As every session started in En

state, we have that p
(1)
Ei

= p
(1)
Eg

= p
(1)
Ef

= 0 and p
(1)
En

= 1.
Calculating the probabilities for each step k of the system (3)
and replacing Table II probabilities in the sum (4), we have:

I(900) =

900∑
j=1

p
(j)
En

(
118

13895
+

35

13895
+

13728

13895

1036

13895
)+

p
(j)
Ei

(
133

3477
+

2

3477
+

3340

3477

1126

3477
)+

p
(j)
Eg

(
18

2428
+

13

2428
+

2391

2428

482

2428
)

I(900) ≈ 82.8720 (10)

We will also estimate the amount of interactive applications
executions using (7), (3) and data from Table II. For this case,
we have that

GEnEi(k) =

k∑
m=1

P
(m)
EnEi

=

k∑
m=1

p
(m−1)
En

pni ≈ 3.45

GEgEi(k) =

k∑
m=1

P
(m)
EgEi

=

k∑
m=1

p
(m−1)
Eg

pgi ≈ 0.51

so:

GEnEi + GEgEi ≈ 3.96 (11)

Observing the results (9) and (10), we verified the accuracy
of our calculations and probabilities, as the experiment lasted
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15 minutes (900 seconds), this was the average time and
soon, the expected session time. Also the interactions total
is 2241 and the users total 27, as seen at Table I, so the
expected number of interactions is 83 interactions per user with
a 15 minutes session. (11) shows a larger error. As the total
executions of interactive applications is 139 and the users total
27, the expected amount of interactive applications executions
per user should be closer to 5. This larger error happens
because we ignore the chance of an application to be closed
and opened at an interval shorter than 1 second, this way the
current state was Ei and has not changed. For simplicity, this
possibility is not considered in our calculations.

A. Model Use to Generate Synthetic Load
Also as part of the work presented in [7], we conducted

a load test on a real server which implemented an audience
and interaction analysis service provider. This service provider
is constantly receiving data captured at the viewers digital
receiver and store this data in a relational database. The
purpose of this load test was to illustrate the use of the
presented model. In this case to generate synthetic load for
scalability and performance testing. The implementation of
this server was made using a virtual machine with the settings
shown in Table III.

TABLE III. SEVER CONFIGURATION.

SYSTEM PART TECHNICAL DETAILS
CPU Intel Xeon 2.0GHz
RAM 1GB
Cores 1 or 2
Swap 2GB
Operating System Ubuntu 12.04 LTS
HD 14GB
Web Server Apache Tomcat/6.0.35
Data Base MySQL: 5.5.31

In this test, we used the probabilities presented in Table II.
We have further increase the probabilities values peii, pegg and
penn to 1. This way, we assure that every second an interaction
would be generated and sent to our server. For the test we send
10000 requests to the server at each session. We started sending
batches of 100 simultaneous requests and check the response
time. We have been increasing the number of simultaneous
requests to reach 500. To generate this amount of requests it
takes about 150 to 800 model instances. We did this experiment
twice using the same server, at the first time with a single core
and at the second time with two cores. Figure 3 shows the
result of this test.

As was to be expected, as we increase the number of
simultaneous requests the response time for each request also
increases. When we send more than 500 simultaneous requests
our server starts to fail due to overload. It is also noteworthy
that with a small increase in computational power, response
time greatly improves on average 3.008 ms.

V. CONCLUSION

In this paper, we present a mathematical model of Inter-
active Digital TV user interactions. Despite being simple and
easy to implement, this model is sufficiently faithful to reality
and can be used for the most diverse simulations purposes. We
also showed how it is possible to extend the model to more
specific and detailed models.
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Figure 3. Time taken to complete each request.

We still use the data obtained in a field experiment as input
to the model. Thus, we exemplify the use of the model for the
calculation of certain metrics and generating synthetic load.

As future work, we propose new extensions to the pro-
posed model, increasing its specialization and complexity.
Using data from validity statistical captures would also be
very interesting, because with this, we could have a much
more reliable numerical model. But, capturing these data is
impossible considering the current audience and interactivity
measurement approaches.
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