

A RESTful Sensor Data Back-end for the Internet of Things

Antti Iivari and Jani Koivusaari

VTT Technical Research Centre of Finland Ltd

Oulu, Finland

email: antti.iivari@vtt.fi, jani.koivusaari@vtt.fi

Abstract—As rapidly increasing amounts of smart

communicating objects with sensing capabilities are generating

raw measurement and observation data, scalable back-ends

are needed to collect, store, marshal and process that influx of

machine-generated data into actionable information. The data

constantly flowing out from these embedded devices is very

periodic and structured in nature, referred to as machine-

generated data, beginning with a timestamp of some sort and

then consisting of designated fields, such as measurement

values, ranges and tags. Furthermore, as wireless sensing

devices are in many cases battery operated and resource

constrained, a mode of operation can be assumed where the

device transmits measurement data at specific intervals

between which it preserves power by sleeping or idling. This is

only one of the reasons why a RESTful approach that has been

more commonly associated with the World Wide Web, could

be appropriate when dealing with the challenges brought forth

by the Internet of Things (IoT) revolution. In this paper, initial

findings concerning a proof-of-concept back-end

implementation are presented in addition to discussing the

benefits and technologies related to a RESTful approach in

building a scalable sensor data back-end for the Internet of

Things.

Keywords-IoT; Sensor; Back-end; Data; REST.

I. INTRODUCTION

Today a rapidly increasing amount of smart
communicating objects with sensing capabilities are
generating raw measurement and observation data that in
order to be useful, must be collected, stored, marshalled and
processed in a back-end of some sort. This onslaught of
small interconnected embedded devices and the messages
they are transmitting is commonly referred to as the Internet
of Things (IoT) [1]. Typically, the kind of data constantly
flowing out from such systems is very periodic and
structured in nature, referred to as machine-generated data
[2], beginning with a timestamp of some sort and then
consisting of designated fields, such as measurement values,
ranges and tags Furthermore, as wireless sensing devices are
in many cases battery operated and resource constrained, a
mode of operation can be assumed where the device
transmits measurement data at specific intervals between
which it preserves power by sleeping or idling. This is only
one of the reasons why a RESTful approach [3], which has
been more commonly associated with the worldwide web, is
appropriate when dealing with the systems and devices in an
IoT context.

Representational state transfer, or REST [3], is a software
architectural style for designing distributed systems and it is
used for the World Wide Web. When distributed systems
and services conform to the constraints of REST they can be
called "RESTful". RESTful systems virtually always
communicate via the Hypertext Transfer Protocol (HTTP)
with the standard HTTP commands (GET, POST, PUT,
DELETE). REST has gained widespread acceptance across
the Web as an easier-to-use, resource-oriented alternative to
more complex approaches such as SOAP or WSDL. When
considering a RESTful approach for constrained very low-
power sensor devices, the CoAP protocol is particularly
interesting, as it is designed to interface with HTTP and the
Web while meeting specialized requirements such as very
low overhead and multicast support. In essence, CoAP aims
to provide a more compact version of HTTP/REST with
additional features optimized for M2M and IoT applications.
As a reliable and scalable back-end solution is a requirement
for most IoT-type applications where large amounts of
rapidly streaming machine-generated data from multiple
sources needs to be handled and stored for later processing, a
RESTful approach for implementing such a back-end is
discussed in this paper. The goal of the work described in
this paper is to design and deploy a REST-style HTTP/POST
-interface and enable IoT devices to communicate towards
the backend as effortlessly as possible.

The paper is organised as follows: In Section II the most
important characteristics of protocols and data formats for
the Internet of Things are discussed, while Section III
outlines the key building blocks of a sensor data back-end
solution. Section IV presents the prototype implementations
before we summarize and discuss some future work items in
Section V.

II. MACHINE-GENERATED DATA FROM SMART

CONNECTED OBJECTS

In order to build and design a viable back-end solution
for reliably handling large amounts of machine-generated
IoT data, the characteristics of such systems must be studied
and understood. For the purposes of the work presented in
this paper, there are two key facets of sensor data that must
be considered. First is the format of the represented sensor
data itself. Second is the message protocol with which this
machine-generated data is transmitted. Some of the most
common examples of sensor data formats in current systems
are listed as follows:

 JSON: JavaScript Object Notation is a lightweight
data-interchange format for storing and exchanging

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

data. It is easy to read and write by both humans
and machines. While JSON is a text-based format
and language independent, it is originally a subset
of the JavaScript programming language.

 CSV: Basic comma separated values are by far the
simplest and most rudimentary of commonly used
sensor data formats.

 XML: Extensible Markup Language (XML) is
essentially a set of rules for encoding documents in
a format which is readable for both man and
machine. XML also acts as a basis for some M2M
protocols [4], such as XMPP and BitXML.

Similarly, the most essential messaging protocols [5]

employed in application layer transfer of machine-generated
data and IoT-type data transfer are listed below:

 Hypertext Transfer Protocol: HTTP the tried and
true RESTful HTTP over TCP very familiar to us
all from the web service world, is a particularly
attractive option for constrained IoT devices, when
considering the almost universal availability and
compatibility of the legacy HTTP-stack on various
platforms.

 Message Queuing Telemetry Transport: MQTT is a
lightweight publish/subscribe based message
protocol especially well-suited for running on
limited computational power and lean network
connectivity.

 Constrained Application Protocol: CoAP aims to be
a generic web protocol for the special requirements
of constrained sensor environments while easily
integrating with HTTP and existing web
technologies with a very low overhead.

It should be noted that any technologies related to the REST
software architectural style, such as CoAP and HTTP, were
given special consideration during this work, as RESTful
architectures are clearly a promising and common approach
employed in many contemporary IoT-platforms and sensor
data platforms. The CoAP interaction model is similar to the
client/server model of HTTP as a CoAP request is equivalent
to that of HTTP and is sent by a client to request a resource.
However, unlike HTTP, CoAP deals with these interchanges
asynchronously over a lighter datagram-oriented transport
such as UDP. Furthermore, employing RESTful APIs will
also give the advantage of easy integration with existing web
services and other popular http-based platforms.

III. INTERNET OF THINGS ON THE BACK-END

Raw sensor data in and of itself, consisting of
measurement values or observational data corresponding to a
short time-frame, is rarely useful or informative in an
immediate or direct manner. Typically the data is transmitted
to an application back-end to be marshalled and processed
into something useful for the application at hand. The back-
end consists of an interface (such as REST) to act as the
collector towards which the sensing devices communicate
either directly or via a gateway device [6].

In a typical IoT scenario, in addition to the embedded
intercommunicating smart objects (the "things"), we have the
server-side functionality where the actual application specific
logic and data processing takes place. This is referred to as
the back-end. The back-end usually consists of three main
parts: a server, an application, and a database. In order to
make the server, application, and database communicate with
each other, server-side languages like PHP, Ruby, Python
and JavaScript are employed, and database tools like
MySQL or PostgreSQL are needed to find, save, or change
data and serve it back to the users (either man or machine) of
the service. MySQL is an open-source relational database
management system (RDBMS) and one of the most popular
ones used in modern web-applications. MySQL is also the
database of choice prototype work discussed in this paper.

A. Representational State Transfer for IoT

In technical terms REST, or Representational State
Transfer [3], is an architectural style for building networked
applications. It is based on a stateless, client-server
communications protocol and is almost always heavily tied
to the HTTP protocol. Representational State Transfer (or
REST) has become a widely accepted alternative software
architecture approach for developing scalable web services.
So called RESTful systems adhering to this principle
communicate with each other simply by using the standard
Hypertext Transfer Protocol (HTTP) with GET, POST, PUT
and DELETE -queries. The basic idea is that simple HTTP is
used to make resource calls between machines, instead of
using complicated mechanisms such SOAP to connect
services. This is essentially the same method that any web
browser today uses to retrieve (GET) data and web pages
from the internet and send (POST) input by the user to the
remote server.

The benefits of REST from an IoT perspective are easily
apparent, as it is a relatively lightweight approach to building
intercommunicating services while also being fully-featured
in the sense that there are not many things that can be done
with Web Services that can't be realized with a RESTful
software architecture in one way or another. Furthermore,
REST itself is not a "standard” as there will never be a
formal W3C specification for REST, for example. A
concrete implementation of a RESTful distributed service
always follows the following four key design principles:

 Resources expose easily understood directory
structure-like URIs.

 Transfer JSON or XML to represent data.

 Messages use HTTP methods explicitly (GET,
POST, PUT, DELETE).

 Based on stateless interactions. No client context
information is stored on the server between
requests.

While discussing the back-end prototype for a conditions

monitoring system in the next section of this paper, it is
important to note that the goal in this case is not to
implement a fully functional REST-based architecture or
interface strictly adhering to the specification. Instead, the
approach is to design and deploy a REST-like HTTP/POST -

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

web interface to enable the sensing devices to communicate
towards the backend as effortlessly as possible, as devices
such as these sensors are often extremely resource
constrained, not only in terms of processing power and
memory, but also in terms of network capabilities and battery
reserves. This has the added benefit of enabling any
communication capable device, regardless of other
operational or hardware characteristics, to push their
measurement or log data towards the back-end by simply
sending HTTP/POST-messages to the known address of the
server. Formulating a HTTP-compliant POST message with
the data included in the header as a payload is a simple
matter and computationally light-weight operation. Some of
the main benefits of implementing a RESTful service for the
Internet of Things are as follows:

 Platform-independency

 Language-independency

 Standards-based (e.g. HTTP)

 Easy to work with firewalls

Utilizing RESTful architectures in the context of IoT or
M2M applications is nothing new in and of itself. Indeed,
others have successfully designed approaches for such
systems before [7][8] based on REST.

IV. THE RESTFUL PROTOTYPE IMPLEMENTATIONS

During this work, a proof-of-concept pilot system has
been established to measure, collect and store sensor data for
the purpose of monitoring the conditions of an inhabited
building. This paper focuses solely on the technical matters
and preliminary findings concerning the back-end
implementation, while the pilot system as a whole is left as
the subject matter for another publication. In this section, the
overall structure, main technological components and the
chosen RESTful approach employed for the sensor data
back-end system are outlined. It should also be noted that a
simple but effective JSON-based sensor data format was
designed at VTT for the purposes of this work.

A. The traditional LAMP-stack

First version of the RESTful sensor back-end was built
on top of the traditional LAMP-stack [9]. The so called
LAMP stack has become the tried and true basis for web-
based applications now for two decades and the software
components that make up the stack can be found in any of
the default software repositories in most major Linux
distributions. A standard LAMP stack consists of the
following technologies: Linux as the underlying operating
system, Apache as the Web server, MySQL as the relational
database and PHP as the object-oriented scripting language.
The components of LAMP are individually freely available
Open Source Software, making them very attractive to
potential users eliminating the need to purchase expensive
commercial tools. The open licences make it possible for
anyone to develop and distribute software based on the
LAMP-stack without any licensing efforts or payments. The
source code for any of the components in LAMP can be
accessed by anyone, thus making it significantly easier to
find faults and apply bug fixes, giving the users of the stack a

degree of flexibility that is usually not available in
comparable commercial alternatives.

While each of the technologies included in the LAMP
stack are powerful and useful already in their own right, they
are often used together and their compatibility towards each
other has therefore been extended numerous times in the past
to create a truly powerful and versatile platform for web-
based applications. For these reasons, the LAMP stack was
utilized as the key enabler and technological basis for the
first prototype implementation of the back-end solution
within the conditions monitoring prototype system. The
PHP-based REST-interface for sensor data capturing
implemented in the context of the prototype also includes
support for HTTP Basic authentication as a relatively simple
access control technique to ensure an elementary level of
security in the exchange of measurement information. From
the point of view of the sensor devices, applying HTTP basic
authentication is also a very light-weight approach, as no
handshakes, costly encryption calculations or similar
procedures are required prior the transmission of data.

As discussed in the previous chapter, one of the key
building blocks of a sensor data back-end is the database for
storing the time-series data. The widely used and popular
MySQL database, also used in the prototype discussed here,
as a part of a web-based solution, works very well in
combination with a number of modern programming
languages (such as PERL, C, C++, Java, JavaScript and
PHP) and various software development frameworks. From
all of these languages, PHP is still the most popular one
because of its convenience and capabilities in the domain of
web-based application development. PHP provides a number
of useful modules to access the MySQL databases and to
manipulate data records and settings inside the database.

B. First prototype

To outline the structure of the LAMP-based first version
of the prototype, a diagram illustrating the main components
is given in Figure 1.

Figure 1. Overview of the first PHP-based RESTful IoT Back-end

prototype.

Convenient and easily deployable interoperation with

MySQL technology and the aforementioned capabilities
geared towards web-applications and services led to the
choosing of PHP as the programming language to implement

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

the required REST-like functionalities in the first version of
the IoT back-end prototype. The PHP-functionalities were
implemented by utilizing slimPHP [10], which is an open-
source micro-framework designed for rapid development of
responsive web applications and REST APIs with lots of
useful functionalities built-in such as URL-routing and
middleware architecture.

A REST –interface was programmed for storing and
retrieving JSON-based sensor data payloads sent through
standard HTTP GET and POST –messages. The sensor data
is stored into a relational MySQL database.

C. The Node.js environment

Node.js is an open source JavaScript-based platform built
on top of Google Chrome's JavaScript V8 Engine [11]. As it
provides an event-driven architecture and a non-blocking I/O
API making it very lightweight and efficient it is especially
suitable for building data-intensive real-time applications
that are scalable and run across distributed devices. Node.js
facilitates the creation of highly scalable servers without
using threading by using a simplified model of event-driven
programming and providing a rich library of various usable
JavaScript modules greatly simplifying the development of
distributed applications. In the following, some of the key
benefits of Node.js for IoT applications are listed.

 Fast code execution due to the underlying Google
Chrome's V8 JavaScript Engine.

 The event driven asynchronous API ensures that the
server never needs to wait for an API to return data.

 Highly scalable single threaded event mechanism
scales better to a larger number of requests than
traditional servers.

 Released under the open source MIT license.

D. Second prototype

The Node.js platform enables the developer to discard the
traditional and somewhat cumbersome, LAMP-stack
altogether while still providing excellent modules and built-
in capabilities for development and interacting with various
database technologies such as MySQL, as shown in Figure 2.

Figure 2. Overview of the second Node.js-based RESTful IoT Back-end

prototype.

The potential of the platform for IoT-style application
quickly becomes apparent, and as such, a second improved
experimental version was built for this work by utilizing the
more modern and scalable Node.js-platform. Functionalities
in the second version of the back-end prototype correspond
closely to the first version, but the scalability and
maintainability of the system became superior. The data
model for storing the sensor data from IoT devices into the
database was also redesigned for the second version of the
prototype system.

In addition to Node.js, some additional modules were
employed for the implementation; with the most important
one to mention being the Express framework [12], a flexible
and minimalistic application framework for rapid
development of HTTP-based web applications.

V. CONCLUSIONS

A RESTful approach for managing the rapidly incoming
streams of machine-generated data in modern IoT systems is
indeed a viable one. By harnessing modern software tools for
web application development and server side application
platforms, building scalable back-ends for the Internet of
Things becomes more fluent and productive. When
experimenting with the potential of these various
technologies more familiar from the web-application world,
it can be concluded that there is a lot of untapped potential
for managing machine-generated sensor data and exploiting
the true information value of the Internet of Things
revolution. Scalability, security, reliability and easy
deployment are just some of the observed benefits. In this
paper, we have presented the first phases of the
implementation work for a RESTful sensor data back-end.

The SlimPHP micro-framework proved to be an
excellent tool in alleviating many of the problems and
concerns with plain PHP-code or the heavier full-scale PHP
frameworks, but as running PHP as the back-end code still
required separate underlying Web server (such as Apache)
there is a degree of cumbersomeness that can’t be overcome
with the LAMP-stack. The Node.js platform provided a
flexible and dexterous alternative when implementing
various features and interfaces for the second version of the
prototype back-end. With the Node.js platform as a basis,
superior flexibility and agility, in both deployment and
maintaining phases, when compared to the standard LAMP-
stack could be observed. Furthermore, due to the
asynchronous and event driven nature of the Node.js
technology, it is also expected to scale better for larger
number of requests.

Some items are left altogether as next steps for the
following phases of the work and future publications. Further
comparisons and quantitative measurements on the
performance and scalability of these back-end technologies
are one topic of future interest. Enhanced security features
for data privacy and system robustness are another item
considered as next steps. Also, comparing the suitability of
different database technologies as the amount of incoming
sensor data starts nearing Big Data –volumes and different
processing engines for data analytics become necessary, is
another topic left for future work.

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

ACKNOWLEDGMENTS

The research from DEWI project (www.dewi-project.eu)
leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement n°
621353 and from TEKES.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,

“Internet of things (IoT): A vision, architectural elements, and
future directions” Future Generation Computer Systems, vol.
29, no. 7, pp. 1645 – 1660, 2013.

[2] K. Monash, "Examples and definition of machine-generated
data", URL: http://www.dbms2.com/2010/12/30/examples-
and-definition-of-machine-generated-data/ [retrieved: April,
2016]

[3] L. Richardson and S. Ruby, Restful Web Services, 1st ed.
O’Reilly Media, May 2007.

[4] A. Iivari, T. Väisänen, M. Ben Alaya, T. Riipinen & T.
Monteil, “Harnessing XMPP for Machine-to-Machine
Communications & Pervasive Applications” Journal of
Communications Software & Systems, Vol. 10 Issue 3, 2014,
pp.163-178.

[5] V. Karagiannis, "A survey on application layer protocols for
the internet of things." Transaction on IoT and Cloud
Computing 3.1, 2015, pp.11-17.

[6] J. Latvakoski et al., “A survey on M2M Service Networks”,
Computers , vol.2, 2014, pp.130 - 173.

[7] W. Colitti, K. Steenhaut, N. De Caro, B. Buta and V. Dobrota,
"REST Enabled Wireless Sensor Networks for Seamless
Integration with Web Applications," Mobile Adhoc and
Sensor Systems (MASS), 2011 IEEE 8th International
Conference on, Valencia, 2011, pp. 867-872.

[8] D. Guinard, V. Trifa and E. Wilde, "A resource oriented
architecture for the Web of Things," Internet of Things (IOT),
2010, Tokyo, 2010, pp. 1-8.

[9] G. Lawton, "LAMP lights enterprise development efforts",
Computer, 2005, 9: 18-20.

[10] V. Vaswani, “Create REST applications with the Slim micro-
framework” URL:
http://www.ibm.com/developerworks/library/x-slim-rest/
[retrieved: April, 2016]

[11] J. R. Wilson, Node.js the right way. Pragmatic Programmers,
2014.

[12] A. Mardan, Pro Express. js: Master Express. js: The Node. js
Framework For Your Web Development. Apress, 2014.

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

