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Abstract—Power and energy are first-class operating concerns
for data centers, emerging supercomputers, and future exascale
machines. The power and energy measurement capabilities in
emerging systems is critical to understand and optimize power
usage according to application characteristics. In this work, we
describe our evaluation of the power monitoring capabilities of
the Zaius Power9 server. We highlight existing limitations of this
system and report on the available power domains, measurement
granularity, and sampling rate. We provide empirical power pro-
files that stress the memory system and the compute capabilities.
Furthermore, we demonstrate high-level insights of a scientific
proxy-application through its power consumption. Our goal is
to provide an empirical study for the benefit of developers and
researchers planning on utilizing the power capabilities of this
state-of-the-art architecture.

Index Terms—Power measurement; HPC; Zaius; Power9.

I. INTRODUCTION

Power and energy are becoming first-class operating con-

cerns for emerging supercomputers and future exascale ma-

chines. The implications of power and energy concerns for

supercomputers have a broad impact ranging from managing

power by utility companies to pursuing optimizations for

power and energy consumption, in addition to performance, by

system and application developers. One set of optimizations

may include shifting power from hardware components not in

the critical path to those components in the critical path of

an application. Therefore, the power and energy measurement

capabilities in emerging systems is critical to understand and

optimize power usage according to application characteristics.

On the path to exascale computing, the U.S. Department

of Energy will field two new supercomputers in 2018 fea-

turing IBM Power9 processors, NVIDIA Volta GPUs, and

the InfiniBand interconnect. For example, Sierra, hosted at

Lawrence Livermore National Laboratory (LLNL), is expected

to provide 125 petaflops within a 12 megawatt power budget.

While it is possible to rely on third party solutions to monitor

and profile power consumption [1]–[3], the Power9 processors

enable fine-grained power measurements through an on-chip

controller. In this paper, we describe our experience with

power monitoring on the Zaius Power9 server. While the

Zaius server targets data centers, we expect the lessons learned

from this study to be useful in future power studies on

supercomputers like Sierra.

The paper is organized as follows. First, Section II intro-

duces the power measurement capabilities of interest avail-

able on the Power9 processor. Section III describes the ex-

perimental setup including the testbed platform. Then, Sec-

tion IV establishes a performance baseline using several micro-

benchmarks. This is followed by Section V, where we present

a set of experiments to understand power consumption and its

limitations focusing on two use cases: the cache hierarchy and

the behavior of an application. Finally, Section VI summarizes

our findings and describes future work.

II. POWER MONITORING OVERVIEW

The IBM Power9 processor embeds an On-Chip Controller

(OCC) to monitor system information such as the power

consumption of CPU, memory, and GPUs as well as thermal

data [4]. The OCC works with other components including the

Autonomic Management of Energy Component (AMEC), the

Analog Power Subsystem Sweep (APSS), and the Baseboard

Management Controller (BMC) to read system data and to

control system settings. For example, the power of system can

be capped in which case the OCC monitors the power sensors

and throttles the CPU and memory subsystem accordingly.

There are two ways to monitor power consumption: in-band

and out-of-band [5], [6]. The out-of-band method collects the

power data without the intervention of the main processor.

The BMC can communicate with the OCC to get the power

and sensors data, which is collected periodically by the OCC.

This method allows the profiling of power consumption of a

host from another system connected on the same network.

Some example sensors collected by the OCC include the

power consumption of each processor, the temperature of each

core, the temperature of each memory DIMM, and the power

consumption of GPUs.

While the out-of-band method requires the support of sev-

eral hardware components including the BMC, the in-band

method only relies on sampling the OCC. The OCC driver

periodically copies the sensor data to main memory and makes

it accessible as hwmon sensors. Most modern systems have

sensor chips on the motherboard to support the monitor of

system status (e.g., temperature, fan speed, and voltage) and

use the hwmon kernel module to interact with those sensors.

The OCC takes 8 ms to update a block of sensors to main

memory and up to 80 ms to update all of the available sensors.

For example, the OCC takes 8 ms to read processor core

data and 64 ms to read DIMM memory data. One can use

lm sensors [7] to access these sensors. In this work, we use

lm sensors because it works with the hwmon kernel module

to read hardware sensor data from user space.
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III. EXPERIMENTAL SETUP

In this work, we investigate the power measurement capa-

bilities of the Zaius Power9 server. We conducted experiments

to investigate the power measurement interfaces; characterize

performance (i.e., computation, memory bandwidth, and mem-

ory latency) and power consumption using benchmarks; and

demonstrate how one may apply these monitoring capabilities

to a proxy application from the U.S. Department of Energy.

A. Testbed platform

Our testbed includes a Zaius Power9 server designed by

Rackspace. The server has two Power9 LaGrange processors

with 12 SMT-4 cores each and a total of 96 hardware threads.

There are 73 different CPU clock frequencies ranging from

2.0 to 3.2 GHz. Each core has 32 KB L1 cache (data and

instruction), 512 KB shared L2 cache, and 10 MB shared L3

cache. The server has 128 GB of DDR4 memory.

We use the in-band method to measure power because the

Zaius board lacks an APSS. Some important features that rely

on the APSS include out-of-band power profiling, setting a

power cap, and measuring DRAM power.

In this work, all the power measurements were collected

in-band. To avoid application interference by the power mon-

itoring thread, we bind this thread to one of the processors

and the application tasks to the other processor (there are

two processors). While we could simply dedicate a core for

the monitoring thread, we want to avoid any interference

that could result by using the shared memory bus. In future

work, we will assess this other configuration and quantify the

associated overheads. The monitoring thread, thus, measures

the power consumption of the second processor where the

application runs.

We also measured the overhead of polling the in-band power

sensors. It takes about 17 ms for each query, which means the

highest sampling rate of in-band power measurement is 17 ms.

B. Benchmarks and Mini-Applications

LMBench [8] is a benchmark suite used for analyzing

memory speed. We employ STREAM and LAT MEM RD

in LMBench to measure memory bandwidth and latency,

respectively. We use the OpenMP version of STREAM and

the single-thread version of LAT MEM RD.

LULESH [9], the Livermore Unstructured Lagrange Ex-

plicit Shock Hydrodynamics mini-application, provides a sim-

plified source code that contains the data access patterns and

computational characteristics of larger hydrodynamics codes at

LLNL. It uses an unstructured hexahedral mesh with two cen-

terings and solves the Sedov problem. Because of its smaller

size, LULESH allows for easier and faster performance tuning

experiments on various architectures.

DGEMM from the APEX benchmark suite [10] is a simple

double-precision dense-matrix multiplication code. We use it

to capture floating-point computational rate.

IV. PERFORMANCE CHARACTERIZATION

STREAM measures memory throughput and represents the

practical peak bandwidth of the memory system. The perfor-

mance of STREAM is dependent on a number of parameters

including CPU clock frequency and the number of threads.

Figure 1 shows the impact of thread concurrency and CPU

frequency. In Figure 1a, we measured the throughput of

STREAM-ADD (performs add operations on memory arrays)

as a function of thread concurrency for two CPU frequencies.

The results show that, for both CPU frequencies, STREAM

obtains the highest throughput, i.e., 126 GB/s, by running

with 12 threads. As we further increase the thread count, the

throughput gets worse due to memory resource contention.

Figure 1b shows that CPU clock frequency has a small impact

on memory throughput regardless of the concurrency level.
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Figure 1. Memory bandwidth under different configurations.

LAT MEM RD captures memory latency by measuring the

time it takes to access data residing in different levels of

memory. It controls the memory level to access by varying

the size of the input array and stride. Input arrays of small

size fit into cache resulting in faster access latency. Main

memory accesses occur when the array size is too large to

fit in cache. By measuring the time to access different array

sizes, LAT MEM RD shows the empirical latency of L1, L2,

L3, and main memory.

Figure 2 illustrates the latency (in nanoseconds) of accessing

the different caches and main memory. Figure 2a shows mem-

ory latency for multiple CPU frequencies. As CPU frequency

affects how much time one CPU cycle takes, higher CPU

frequency leads to lower latency. Focusing on a single CPU

frequency, we observe that there are four groups of latency

(steps) corresponding to the L1, L2, L3, and main memory. We
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used an array size of 8 GB, to ensure main memory accesses,

and a stride size of 128 bytes, to match the cache line size of

the Power9 processor.
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Figure 2. Impact on hierarchical memory latency.

Figure 2b illustrates the impact of stride size on latency.

When the stride size is small, one cache line can potentially

satisfy multiple data requests, thus the overall latency of

multiple data accesses is lower. When the stride size is large

enough, data load requests may cause more cache misses, thus

the overall data access latency is higher.

V. UNDERSTANDING POWER CONSUMPTION

We rely on the OCC to measure power consumption at

runtime. The granularity of power measurement is at the

processor (socket) level. Since the Zaius system does not

have an APSS, we can only measure core power (Vdd) and

nest power (Vdn). Nest power mainly includes the on-chip

interconnect and the memory controller. To account for the

remaining processor power (cache, I/O, etc.), a fixed value is

added to Vdd and Vdn to estimate total processor power (C):

Processor power = V dn+ V dd+ 35Watts (1)

The fixed 35 Watts value is defined in the Machine Read-

able Workbook (MRW), an XML description of the machine

specified by the system administrator. In addition, without an

APSS power draw of main memory or GPUs are not easily

accessible.

We use lm sensors to query instant power consumption in

user space. We make direct system calls to read the power

sensors and get the power data back as standard output. By

issuing the lm sensors call multiple times and averaging its

elapsed time, we obtained the overhead of querying sensor

data: about 17 milliseconds. We wrapped the system call with

a sleep timer, which can be used to change the power sampling

rate. For example, if we set the sleep timer to be 100 ms, the

sample rate of power profiling will be 117 ms/sample. If we

set the timer to be 0 ms, we can get the highest sample rate:

17 ms/sample. If not explicitly stated, we set the sleep timer

to 100 ms.

First, we profile the power consumption of DGEMM, a

compute intensive benchmark, and STREAM, a memory in-

tensive benchmark. Their power profiles are shown in Figure

3. There are two processors on our test system. As mentioned

before, we bind the power monitoring process to the first

processor and run the codes on the second processor to

avoid application interference by the monitoring process. As

shown in Figure 3, when the benchmarks start to execute the

core power, Vdd, increases significantly. Interestingly, even

though STREAM is memory intense, the peak core power

consumption is the same as DGEMM. STREAM, however,

stresses other components. For example, the nest power, Vdn,

is higher and shows more dynamic variation than DGEMM.

This is because the memory controller is part of Vdn. If we

could measure the power consumption of main memory, we

would expect to see pronounced differences between DGEMM

and STREAM.
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Figure 3. Power profile of compute-intense and memory-intense benchmarks.
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We also observed low points in Vdd power. This could be

the result of several factors. For example, the processor has to

wait for data from main memory. An idle processor consumes

significantly less power than a busy processor. Other factors

reducing the computational intensity of the code would affect

the power consumption of the processor. Finally, we note that

the total power consumption of the processor, C, follows the

same pattern as Vdd because of the constant factor shown

in (1) and the small or null variations in Vdn power.

A. Cache Hierarchy Power Draw

The relationship between power and memory access patterns

is important for power and energy efficiency. Figure 4 shows

the power profile of LAT MEM RD, which accesses the

different levels of the memory hierarchy as a function of

time. In order to stress the power consumption when the

code accesses the levels of memory, we ran ten instances

of LAT MEM RD concurrently. As the figure shows, as the

benchmark accesses progress from L1 to L3, the core power

consumption, Vdd, decreases. This is because load operations

become slower (see Figure 2) and the code becomes less

compute bound. When the application starts to access main

memory, the core power continues to decrease while the nest

power increases, as we would expect.
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Figure 4. Power profile of the memory hierarchy.
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Figure 5. Power profile of LULESH.

B. Application Behavior and Power Draw

The capability of profiling power consumption for scien-

tific applications is important for gaining insights into their

behavior and identifying optimization areas [5], [9]. Figure

5 shows the power profile of LULESH with the following

parameters: 48 OpenMP threads, 10 iterations, and 240 input

elements. In order to capture finer power characteristics, we

set the power sampling rate to the highest, i.e., 17 ms. From

the power profile, we can identify 10 curves with similar

patterns. They map to the 10 iterations of LULESH that do

the similar computations. Within each iteration, we observe

dynamic variations in core power consumption due to the

different code phases of LULESH within an iteration, some

of which are compute bound and others memory bound [9].

The core power profile, Vdd, also shows that the initial-

ization and completion stages have significant lower power

consumption due to the less intensive compute and memory

workload. In future work, we may instrument the application

to perform function-level power profiling.

VI. SUMMARY AND FUTURE WORK

In this work, we evaluated the power monitoring capabilities

of a state-of-the-art Zaius Power9 server. The Power9 proces-

sor is an important architecture in both data centers and high-

performance computing markets. Although there are many

sensors to monitor power and energy in the Power9 processor,

we were limited to only three power domains because of the

lack of certain components on the Zaius board such as the

APSS. Additionally, in-band power monitoring was our only

option and with this a 17ms sampling rate, which may be too

coarse to analyze small code fragments within an application.

Despite these limitations, we were able to characterize the

performance and power of this system under different config-

urations using a number of benchmarks to stress the compute

and memory capabilities. We observed that the core power

dominates the behavior of the total processor power because of

a constant factor used in its calculation. Also, changes in nest

power are subtle even when exercising the cache hierarchy.

The power profile of LULESH represented the iterative nature

of the code, as well as changes in phases based on their

memory and compute utilization.

In future work, we plan to evaluate policies to shift power

between the processor, memory, and the GPUs. To this end,

we will investigate other ways to communicate with the OCC

on the Zaius board to get access to the power of the memory

system and other sensors of interest.
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