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Abstract—Many production processes consist of repetitive, 
almost identical sub-processes. Process models are needed for 
state estimation and control purposes. Models are frequently 
formed from an analysis of input-output data relations of the 
overall process. For a repetitive process, the model of the 
repeated process is a functional root of the relation. Functional 
roots are introduced and symbolic approaches are presented. 
We propose to find functional roots via Symbolic Regression to 
model repetitive processes. As a first proof of principle we 
show the suitability of this approach with two basic and well-
known problems in the scientific field of physics and nonlinear 
dynamics. The exact solutions of these problems are available 
from textbooks and can be used to assess the results of our 
approach. The first step in our project work therefore is to 
develop suitable concepts and technologies. The next steps will 
include analyzing real world data in cooperation with our 
project partners. 

Keywords- Symbolic Regression; Manufacturing; Functional 
Roots; Machine Learning. 

I.  INTRODUCTION 

Many manufacturing tasks and processes are composed 
of a repetition of some simple process steps, since the 
necessary power of the repeated process must only be a 
fraction compared to the power needed in a single-step 
process. In fact, repeating manufacturing tasks represent an 
important group of manufacturing tasks and are of high 
practical relevance. 

One of the problems is that manufacturing conditions 
restrict the observation of the material properties during the 
process, which therefore can often not be quantified. In such 
cases only the initial and final state of the material or work 
piece is known. The knowledge of the intermediate material 
qualities is mandatory for optimal process control. It is 
represented by a process model, which has to be established 
for the process under consideration. 

There are several methods used to model the dynamics of 
nonlinear complex systems [1]. Conceptually, they can be 
split into two classes. The first class includes prior domain 
knowledge from human experts. For example numerical 
simulations like finite elements or phase field methods 
simulate the behavior of systems with domain knowledge 
from human experts. The second approach is to use 
phenomenological or general base function models which try 

to fit the observed behavior of the systems as good as 
possible. The latter approach includes many machine 
learning, data mining and statistical methods. 

The second class can be further refined in modeling via 
symbolic [2] (e.g., general formula expressions) and 
subsymbolic (e.g., dedicated base function class, support 
vector machines or neural networks) representations. 
Symbolic learning representations can be interpreted by 
human domain experts and they can help to understand the 
process in a more formal way. Therefore this class does not 
only aim to model the system behavior. Sometimes the 
human experts are able to identify previously unknown facts 
of the observed process.  

In contrast subsymbolic representations are black boxes. 
In most cases it is very difficult or impossible to interpret the 
behavior of the learnt representation. In our approach, we 
interpret mathematical formulas as one form of symbolic 
representation which can be used to gain additional insight 
into the system behavior. 

The remaining part of the paper is organized as follows: 
In Section 2, we introduce the relation between industrial 
processes and functional roots. Section 3 gives a summary of 
the background and of related work. Additionally the 
proposed method is further described. Section 4 introduces 
the sample experiments and Section 5 the results of the 
method application. A summary is drawn in Section 6 with 
an outlook to future work. 

 

II. INDUSTRIAL PROCESSES AND FUNCTIONAL ROOTS  

One of our project tasks is to develop algorithms which 
are able to model the behavior of manufacturing processes. 
In the first steps we identified an important class of recurring 
problems which will be described in the following part of 
this subsection. 

Technical processes like steel rolling or annealing are 
often recursive repetitions of some simple processes where 
the repeated application fulfills the original task. The main 
reason for such a recursive process is that the elementary 
process is much easier to handle. Figure 1 shows a schematic 
example of a steel mill. Stripes of metal are rolled in a 
sequence of up to seven identical stands where the task is to 
reduce their initial thickness of some centimeters down to 
some millimeters. That means that the resulting semi-
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manufactured products of a subprocess are the input of the 
next almost identical sub-process. This continues until the 
target properties are reached. 

In Figure 1, a block of steel with known property
inx is 

transformed by n stands to a stripe with the measurable 
property

outx .  

The total process F can be modeled as a whole, but 
revealing a description of a single stand 

if  is equivalent to 

computing functional roots of F. Intermediate values 
ix  are 

not accessible, but might be important to know for optimal 
process control.  

 

 
Figure 1.  Model of a steel mill. 

 
Due to technical reasons, it is impossible to measure 

some parameters like the profile of the stripes between the 
stands and the intermediate processing steps. However, this 
information is essential for optimal process control. 
Therefore, a model of a single stand can be generated from 
the measured values of the incoming and outgoing material 
and the fact that the transformation occurred in a number of 
identical steps. In [4], the whole process line is successfully 
modeled by a neural network. In [5], system identification of 

F and if is done with neural networks. The disadvantage of 

this method is that the results are subsymbolic and cannot be 
interpreted by a human expert.  

III. BACKGROUND AND RELATED WORK 

A. Functional Roots  

In one sense, the concept of functional roots (aka iterated 
functions) is the inverse problem to the well-known 
compositions of a function with itself. The function f(x) is 
not known, but its composition with itself is given. For 
example, what is f(x) such that f(f(x))=F(x), where F(x) is a 
given function. This question is an important part of the 
theory of functional equations and the areas of application 
appear in various fields such as computer science (e.g., 
recursions), dynamic systems or chaos theory. Little 
mathematical theory is known to find functional roots. It can 

be shown that functional roots of all orders exist for at least 
all continuous and strictly increasing real-valued functions 
[7]. Theoretical solutions for the problem do only exist for 
specific cases, such as monotonic functions. There is no 
formal way to find solutions for the general case.  

Nevertheless, they have practical significance and few 
tools can solve them. Symbolic Regression is one solution 
method [8] and in this paper we present our first results. 

 
Definition: Given an arbitrary function :)(xF , 

the function f(x) with f(f(x))≡F(x) is called a functional or 
iterative root of F. 

Higher order roots can be defined as 

)()...))((...()( xFxfffxf k  and the function 
kFf /1 is a k-th iterative root of F. 

 
Some simple examples are shown in Table 1. 
 

Functional Root Solution 
xxF )(  xxf )(  

1)(  xxF  

2

1
)(  xxf  

2)( xxF   2
)( xxf   

4)( xxF   2)( xxf   

Table 1. Functional roots. 

To find a functional root to a problem seems on the first 
sight appealing because of its apparent simplicity and its 
natural idea. But, already the simple function 2)( 2  xxF  
requires deep mathematical insight to be solved. In [8], it 
was shown that one analytical solution is 

))
2

(cos2cos(2)( 1 x
xf  , which is not intuitive at 

first sight. 
As a final remark, it should be mentioned that functional 

roots represent a universal concept and their use is not 
limited to the optimization of industrial processes. 
Applications range from data analysis to chaos theory.  
 

B.  Classical Regression Analysis and Symbolic 
Regression  

Regression analysis [9] is one of the basic tools of 
scientific investigation enabling identification of functional 
relationship between independent and dependent variables. 
The general task of regression analysis is defined as 
identification of a functional relationship between the 
independent variables x = [x1, x2, … , xn] and dependent 
variables y = [y1, y2, … , ym], where n is a number of 
independent variables in each observation and m is a number 
of dependent variables.  

The task is often reduced from an identification of a 
functional relationship f() to an identification of the 
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parameter values of a predefined (e.g., linear)  function.  
That means that the structure of the function is predefined by 
a human expert and only the free parameters are adjusted.  
From this point of view Symbolic Regression goes much 
further. 

Like other statistical and machine learning regression 
techniques Symbolic Regression also tries to fit observed 
and recorded experimental data. But unlike the well-known 
regression techniques in statistics and machine learning 
Symbolic Regression tries to identify an analytical 
mathematical description and it has more degrees of freedom 
in building it. A set of predefined (basic) operators is defined 
(e.g., add, multiply, sin, cos) and the algorithm is mostly free 
in concatenating them. Unlike the classical regression 
approaches which optimize the parameters of a predefined 
structure also the structure of the function is free and the 
algorithm both optimizes the parameters and the structure of 
the basis functions. 

There are different ways to represent the solutions in 
Symbolic Regression. For example informal and formal 
grammars have been used in Genetic Programming to 
enhance the representation and the efficiency of a number of 
applications including Symbolic Regression [10]. 

Since Symbolic Regression operates on discrete 
representations of mathematical formulas non-standard 
optimization methods are needed to fit the data. The main 
idea of the algorithm is to focus the search on promising 
areas of the target space while abandoning unpromising 
solutions (see [3] for more details). In order to achieve this, 
the Symbolic Regression algorithm uses the main 
mechanisms of Genetic and Evolutionary Algorithms. In 
detail they are mutation, crossover and selection [6] and they 
are used to operate on an algebraic mathematical 
representation.  

This representation is encoded in a tree [6] (see Figure 2).  
Both the parameters and the form of the equation are subject 
to search in the target space of all possible mathematical 
expressions of the tree.  

In Symbolic Regression, many initially random symbolic 
equations compete to model experimental data in the most 
promising way. Promising are those solutions which are a 
good compromise between correct prediction quality of the 
experimental data and the length of the symbolic 
representation. 

The operations are nodes in the tree (Figure 2 represents 
the formula 6x+2) and can be mathematical operations such 
as additions (add), multiplications (mul), abs, exp and others. 
The terminal values of the tree consist of the function's input 
variables and real numbers. The input variables are replaced 
by the values of the training data set.  

 
Mutation in a symbolic expression can change the 

mathematical type of formula in different ways. For example 
a div is changed to add, the arguments of an operation 
changed (e.g., change 2*x to 3*x), delete an operation (e.g., 
change 2*x+1 to 2*x), or add an operation (e.g., change 2*x 
to 2*x+1). 

 

 
Figure 2.  Tree representation of the equation 6x+2. 

The fitness objective in Symbolic Regression, like in 
other machine learning and data mining mechanism, is to 
minimize the regression error on the training set. After an 
equation reaches a desired quality level of accuracy, the 
algorithm returns the best equation or a set of good solutions 
(the pareto front). In many cases the solution reflects the 
underlying principles of the observed system. 

 

C. Proposed Method  

In this article, we introduce an approach which uses 
Symbolic Regression to model the intermediate processing 
steps of manufacturing tasks. Mathematically, this is 
equivalent to the problem of computing iterative or 
functional roots: Given the equation F(x)=f(f(x)) and an 
arbitrary function F(x) we seek a solution for f(x). The major 
advantage of this approach is the interpretability of the 
identified solutions.  
 

IV. SAMPLE EXPERIMENTS 

In the following two subsections, we give a brief 
description of the two application scenarios of our first 
experiments. It should be noted that the next stage of our 
project is to evaluate the quality of the proposed 
methodologies on real-world data from industrial partners  

 

A. Free Fall 

 
The Free Fall textbook problem belongs to the 

elementary problems in physics and every first-year student 
in physics will probably be familiar with it. Nevertheless, 
we used it as starting point to gain a better understanding of 
the developed methodologies and functional roots.  

In a nutshell, the free fall describes a vertical motion of 
an object falling a small distance close to the surface of a 
planet. It is a good approximation in air as long as the force 
of gravity on the object is much greater than the force of 
aerodynamic resistance, or equivalently the object's velocity 
is always much smaller than the stationary velocity. 

 
B. The Logistic Function 
 
     A discrete map is the inverse to a functional root and is 
basically a sequence defined by the successive compositions 
of a function with itself. If, for example, we consider a 
function f from R to R, for each value in the domain we can 
define a sequence ( )(),...,(),(, 2 xfxfxfx n ), whereby 
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)(xf k

 describes the k times concatenation 

ffff  ... . 

 

 
Figure 3.  Bifurcation diagram. 

      There are many reasons why we may be interested in a 
sequence of this sort. For instance, the iteration of a suitable 
function can be successful in describing an event in the real 
world which is considered at discrete steps, such as the 
growth of a population of rabbits through its generations. 
The Logistic Function is defined as 

)1( 11   nnn xrxx , r > 0.         (1) 

      It is easy to check that this is the equation of an upside-
down parabola, which goes through the origin and the 
intercepts the x-axis at x = 1. This function is a good model 
of growing populations, but it has also peculiar 
mathematical properties.  
    The function has three different defined ranges with 
different behavior. 
0 ≤ r ≤ 1: the function converges to 0.  
1 < r ≤ 3: the function converges to the attractor 1 – 1/r. 
3 < r ≤ 4: the function shows a periodic-doubling 
bifurcation. It starts with one attractor and approaches chaos 
via period doubling.  
    The logistic function is particularly interesting when 

52 r . In this case, the dynamic system shows a 
deterministic chaotic behavior. That means that the system 
behavior is very sensitive to its initial conditions and 
infinitesimal variations for a dynamic system lead to large 
variations in behavior.  
      Figure 3 shows the Bifurcation or Feigenbaum diagram. 
The bifurcation parameter r is shown on the horizontal axis 
of the plot and the vertical axis shows the possible long-
term population values of the logistic function. Only the 
stable solutions are shown here, there are many other 
unstable solutions which are not shown in this diagram. The 
bifurcation diagram shows the forking of the possible 
periods of stable orbits from 1 to 2 to 4 to 8 etc. Each of 
these bifurcation points is a period-doubling bifurcation. 

 

V. EXPERIMENTS AND RESULTS 

      In our project, we have developed a Symbolic 
Regression framework. Additionally we adapted this 
algorithm to search for solutions for functional roots 
(F(x)=f(f(x))). 
One of the main challenges posed in this paragraph is to 
modify algorithms to determine mathematical equations 
which are able to interpolate observed systems behavior. 
These data were measured at different points in time. In 
other words, we want to learn a function which is able to 
interpolate the dynamics of a system for nonlinear behavior. 

A. Free Fall 

      As a starting point of our project we analyzed the well-
known physical free-fall problem. The experiment setup is 
easy: An object is falling from attitude h0 to h1. On level h0 

it has the velocity v0 and on level h1 v1. The starting velocity 
is varied and the resulting speed is measured on level h1.  
With knowledge of the necessary physical laws it is easy to 
find the correct answer. E.g., with knowledge of the energy 
theorem, attitude m and gravitation a the function is 

2
101

2
0 2

1
)(

2

1
mvhhmamv 

        (2) 
 
      The task was to determine a formula which satisfies the 
following conditions for time  

20

t
ttm




 
),()),((),(),( 000011 hvfhvgghvghv mm 

      (3) 
 
Replacing g with the function: 

),(),( 00 hvghv mm 
with

2
00

0

8

1

2

1
2

1

tatvhh

tavv

m

m





(4) 
the iterated function is f and g is the iterated function of f. 
      In a first step we generated a training set of 40 learning 
examples.  
      Then we used the Symbolic Regression algorithm to 
search for the solution. The operation set contained addition, 
subtraction, multiplication, division, sine, cosine, 
exponential, logarithm function. The terminal values 
consisted of the function's input variables and real numbers. 
      The main task was to learn a functional root for this 
function. Several experiments showed that the developed 
Symbolic Regression system had no problem in finding the 
iterated function for this first sample experiment.  
      It was good starting point, but a more complex problem 
was needed.  

B. The logistic function 

      The logistic function is defined as )1( 11   nnn xrxx . 
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      At first, we generated a training set of 70 data sets. 4 
times r was varied (see Figure 4). The vertical lines show 
the different r. In this first example each data set consists of 

a multitude of triples with 1nx , nx and r . 

 
Figure 4.  Training Data. 

 
      In a first step of our experiments, we tried to learn r with 

given 1nx  and nx .  

      The algorithm started with the following operation set: 
addition, subtraction, multiplication, division, sine, cosine, 
exponential, logarithm functions. The terminal values 
consisted of the function's input variables and real numbers. 
As expected the system was able to detect the correct 
formula:  

2
11 )(  


nn

n

xx

x
r

         (5)

 

 
      The next experiment was to find a formula which is able 
to predict 

nx  without a given r. To solve the problem, it is 

not sufficient to make 1nx  available to the learning 

algorithm. Therefore, we added 2nx  (predecessor of 1nx ) 

to the data set und detected the formula which describes 

each point nx of the Feigenbaum-Diagram with only two 

given points 1nx , 2nx : 

2
2

2

2
1

3
1









nn

nn
n xx

xx
x         (6) 

      Remarkably, this formula is able to describe every nx  

with only two given data points 1nx , 2nx  and without 

given r. 
 

Functional root 
      The final experiment for the logistic function experiment 
was to determine the functional root of the logistic function 
with given r. Unlike in the former experiments, our 
algorithm was not able to find an exact analytical solution to 

this problem. But, experiments with a separated validation 
data set showed that they are good approximation to this 
problem.  
      Again, our Symbolic Regression algorithm was 
searching for the solution with the operation set of addition, 
subtraction, multiplication, division, sine, cosine, 
exponential, logarithm. The terminal values consisted of the 
function's input variables and real numbers. 
      Two runs of the Symbolic Regression algorithm found 
the following solutions:  

) x+ 517cos(3.7038*r*)sin(x*1.0578035

r)r),,((x

1-n1-n

1n  nxff
     (7) 

 

)x*2.3924117 + 149cos(1.9426

*r*0.42397907 + 0.30775887

)),,((x

1-n

1n   rrxff n

      (8) 

 

VI. CONCLUSIONS 

      In this paper, we address the task to find mathematical 
formulas to functional roots with Symbolic Regression. A 
practical real-world application is the interpolation of 
recursive repetitions of manufacturing tasks. This problem 
arises in many scientific fields but few existing tools can be 
used to find the functional root analytically or to analyze 
them. Our approach is applicable to arbitrary problems, and 
does not require deep mathematical insight into this research 
field. It is especially favorable for analyzing systems in 
which little expert knowledge is available. 
      In a first step of our project, we demonstrated the 
feasibility of this approach by two well-known problems. 
Based on the results from our Symbolic Regression analyses 
we found a solution for the logistic function which is able to 
predict the next time step with arbitrary and unknown r and 
only with two previous data measurements.  
      Our results show that Symbolic Regression is a suitable 
tool for modeling the dynamics of systems and to find 
functional roots for iterated processes of arbitrary behavior 
and dynamics.  
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