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Abstract—In this paper, we study probabilistic and rough
set approaches to missing attribute values. Probabilistic ap-
proaches are based on imputation, a missing attribute value is
replaced either by the most probable known attribute value or
by the most probable attribute value restricted to a concept.
In this paper, in a rough set approach to missing attribute
values we consider two interpretations of such value: lost
and “do not care”. Additionally, we apply three definitions
of approximations (singleton, subset and concept) and use an
additional parameter called α. Our main objective was to
compare probabilistic and rough set approaches to missing
attribute values for incomplete data sets with many missing
attribute values. We conducted experiments on six incomplete
data sets with as many missing attribute values as possible.
In these data sets an additional incremental replacement of
known values by missing attribute values resulted with the
entire records filled with only missing attribute values. Rough
set approaches were better for five data sets, for one data set
probabilistic approach was more successful.

Keywords-Data mining; probabilistic approaches to missing
attribute values; rough set theory; probabilistic approxima-
tions; parameterized approximations

I. INTRODUCTION

In this paper, we compare two methods handling missing
attribute values based on probability theory with a rough
set approach to missing attribute values represented by two
interpretations of missing attribute values (lost and “do not
care”), three definitions of approximations (singleton, subset
and concept) and on a parameter called α.

In probabilistic methods for missing attribute values, the
most frequently used in data mining practice, in our first
method called Most Common Value for Symbolic Attributes
and Average Value for Numerical Attributes (MCV-AV), for
symbolic attributes a missing attribute value was replaced
by the most probable known attribute value (the most
frequent). For numerical attributes, a missing attribute value
was replaced by the average of known attribute values. In
the second probabilistic method, called Concept Most Com-
mon Value for Symbolic Attributes and Concept Average
Values for Numerical Attributes (CMCV-CAV), for symbolic
attributes a missing attribute value was replaced by the most
common value restricted to the concept that contains the
missing attribute value. A concept is the set of all cases

(records) with the same decision value (labeled the same
way by an expert). Thus, for symbolic attributes a missing
attribute value was replaced by a known attribute value with
the largest conditional probability given the concept to which
the case belongs. For numerical attributes, a missing attribute
value was replaced the average of known attribute values
restricted to the corresponding concept.

Using a rough set approach to missing attribute values,
we may distinguish two interpretations of missing attribute
values: lost and “do not care”. The former interpretation
means that an attribute value was originally given, however,
currently we have no access to it (e.g., the value was
forgotten or erased). For data sets with lost values we try to
induce the rule set from known data. The latter interpretation
represents, e.g., a refusal to answer a question. For example,
patients suspected of having flu may refuse to tell the
value of the attribute Eye color since they may consider
it irrelevant. For data mining from data sets affected by
such missing attribute values we replace a “do not care”
condition by all possible attribute values.

An idea of lower and upper approximations is a basic
idea of rough set theory [1], [2]. For incomplete data sets
there exist many definitions of approximations. In this paper,
we use three types of approximations: singleton, subset
and concept [3]. A probabilistic (or parameterized) approx-
imation, associated with a probability (parameter) α, is a
generalization of lower and upper approximations. For very
small α, the probabilistic approximation becomes the upper
approximation. For α = 1, the probabilistic approximation
is a lower approximation [4]. Probabilistic approximations
for complete data sets were studied for years, the idea was
introduced in [5] and further developed in [6]–[15]. Such
approximations were explored from a theoretical view point.
The first paper on experimental validation of such approx-
imations, for complete data sets, was [16]. For incomplete
data sets probabilistic approximations were generalized in
[4]. Results of experiments on probabilistic approximations
for incomplete data sets were presented in [16]–[21]. In all
of these papers, rough set approaches to mining incomplete
data were not compared with any other approaches to
missing attribute values.
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TABLE I. An incomplete decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 high ? no yes
2 normal no yes yes
3 ? yes no yes
4 high no yes yes
5 high ? yes yes
6 very-high no no yes
7 * no * no

The main objective of this paper was to compare (experi-
mentally) probabilistic and rough set approaches to missing
attribute values for incomplete data sets with many missing
attribute values. Our main result is that a rough set approach
to missing attribute values was successful on five out of six
data sets since it provides smaller error rates, a result of
ten-fold cross validation. Our data sets had as many missing
attribute values as possible. With an additional incremental
replacement of known values by missing attribute values, the
entire records were filled with only missing attribute values.

Section II describes the formal foundation of characteristic
sets that form the basis of the probabilistic approximations
we explore in Section III. Furthermore, we consider the
problem of definability and its relationship to probabilistic
approximations in Section IV. The results of our experiments
are analyzed in Section V and further examined in the
conclusion of this paper.

II. CHARACTERISTIC SETS

We assume that the input data sets are presented in the
form of a decision table. An example of a decision table
is shown in Table I (a similar table was presented in [22]).
Rows of the decision table represent cases, while columns
are labeled by variables. The set of all cases is denoted by
U . In Table I, U = {1, 2, 3, 4, 5, 6, 7}. Some variables
are called attributes while one selected variable is called a
decision and is denoted by d. The set of all attributes will
be denoted by A. In Table I, A = {Temperature, Headache,
Cough} and d = Flu.

An important tool to analyze data sets is a block of an
attribute-value pair. Let (a, v) be an attribute-value pair. For
complete decision tables, i.e., decision tables in which every
attribute value is specified, a block of (a, v), denoted by
[(a, v)], is the set of all cases x for which a(x) = v, where
a(x) denotes the value of the attribute a for the case x. For
incomplete decision tables the definition of a block of an
attribute-value pair is modified.

• If for an attribute a there exists a case x such that
a(x) = ?, i.e., the corresponding value is lost, then the

case x should not be included in any blocks [(a, v)] for
all values v of attribute a,

• If for an attribute a there exists a case x such that the
corresponding value is a “do not care” condition, i.e.,
a(x) = ∗, then the case x should be included in blocks
[(a, v)] for all specified values v of attribute a.

A special block of a decision-value pair is called a
concept. In Table I, [(Flu, yes)] = {1, 2, 3, 4, 5, 6}.
Additionally, for Table I

[(Temperature, normal)] = {2, 7},
[(Temperature, high)] = {1, 4, 5, 7},
[(Temperature, very-high)] = {6, 7},
[(Headache, no)] = {2, 4, 6, 7},
[(Headache, yes)] = {3},
[(Cough, no)] = {1, 3, 6, 7},
[(Cough, yes)] = {2, 4, 5, 7}.

For a case x ∈ U the characteristic set KB(x) is defined
as the intersection of the sets K(x, a), for all a ∈ B, where
the set K(x, a) is defined in the following way:
• If a(x) is specified, then K(x, a) is the block

[(a, a(x))] of attribute a and its value a(x),

• If a(x) =? or a(x) = ∗ then the set K(x, a) = U.

Characteristic set KB(x) may be interpreted as the set of
cases that are indistinguishable from x using all attributes
from B and using a given interpretation of missing attribute
values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes.

For Table I and B = A,

KA(1) = {1, 4, 5, 7} ∩ U ∩ {1, 3, 6, 7} = {1, 7},
KA(2) = {2, 7} ∩ {2, 4, 6, 7} ∩ {2, 4, 5, 7} = {2, 7},
KA(3) = U ∩ {3} ∩ {1, 3, 6, 7} = {3},
KA(4) = {1, 4, 5, 7} ∩ {2, 4, 6, 7} ∩ {2, 4, 5, 7} = {4, 7},
KA(5) = {1, 4, 5, 7} ∩ U ∩ {2, 4, 5, 7} = {4, 5, 7},
KA(6) = {6, 7} ∩ {2, 4, 6, 7} ∩ {1, 3, 6, 7} = {6, 7}, and
KA(7) = U ∩ {2, 4, 6, 7} ∩ U = {2, 4, 6, 7}.

The characteristic relation R(B) is a relation on U defined
for x, y ∈ U as follows

(x, y) ∈ R(B) if and only if y ∈ KB(x).
The characteristic relation is reflexive but—in general—it

does not need to be symmetric or transitive. In our example,
R(A) = {(1, 1), (1, 7), (2, 2), (2, 7), (3, 3), (4, 4), (4, 7),
(5, 4), (5, 5), (5, 7), (6, 6), (6, 7), (7, 2), (7, 4), (7, 6), (7,
7)}. For Table I the relation R(A) is neither symmetric nor
transitive. A relation R(A) that is an equivalence relation is
called an indiscernibility relation [1], [2].

III. PROBABILISTIC APPROXIMATIONS

The singleton probabilistic approximation of X with the
threshold α, 0 < α ≤ 1, denoted by apprsingletonα (X), is
defined as follows
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{x | x ∈ U, Pr(X|KB(x)) ≥ α}, (1)

where Pr(X|KB(x)) =
|X∩KB(x)|
|KB(x)| is the conditional prob-

ability of X given KB(x).

A subset probabilistic approximation of the set X with
the threshold α, 0 < α ≤ 1, denoted by apprsubsetα (X), is
defined as follows

∪{KB(x) | x ∈ U, Pr(X|KB(x)) ≥ α}. (2)

A concept probabilistic approximation of the set X with
the threshold α, 0 < α ≤ 1, denoted by apprconceptα (X), is
defined as follows

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α}. (3)

For Table I, all distinct probabilistic approximations (sin-
gleton, subset and concept) for [(Flu, yes)] are

apprsingleton0.5 ({1, 2, 3, 4, 5, 6}) = U,

apprsingleton0.667 ({1, 2, 3, 4, 5, 6}) = {3, 5, 7},

apprsingleton0.75 ({1, 2, 3, 4, 5, 6}) = {3, 7},

apprsingleton1 ({1, 2, 3, 4, 5, 6}) = {3},

apprsubset0.5 ({1, 2, 3, 4, 5, 6}) = U,

apprsubset0.667 ({1, 2, 3, 4, 5, 6}) = {2, 3, 4, 5, 6, 7},

apprsubset0.75 ({1, 2, 3, 4, 5, 6}) = {2, 3, 4, 6, 7},

apprsubset1 ({1, 2, 3, 4, 5, 6}) = {3},

apprconcept0.5 ({1, 2, 3, 4, 5, 6}) = U,

apprconcept0.667 ({1, 2, 3, 4, 5, 6}) = {3, 4, 5, 7},

apprconcept0.75 ({1, 2, 3, 4, 5, 6}) = {3},

As follows from our example, all three probabilistic
approximations, in general, are distinct, even for the same
value of the parameter α. If a characteristic relation R(B)
is an equivalence relation, all three types of probabilistic
approximation: singleton, subset and concept are reduced
to the same probabilistic approximation. Additionally, if α
is small but greater than 0 (in our experiments such α was
equal to 0.001), a probabilistic approximation is called upper
[4]. For α = 1, a probabilistic approximation is called lower
[4].

TABLE II. Data sets used for experiments

Data set Number of Percentage of

cases attributes concepts missing attribute values

Breast cancer 277 9 2 44.81
Echocardiogram 74 7 2 40.15
Hepatitis 155 19 2 60.27
Image segmentation 210 19 7 69.85
Lymphography 148 18 4 69.89
Wine recognition 178 13 3 64.65

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 0.2 0.4 0.6 0.8 1 

Er
ro

r r
at

e 
(%

) 

Parameter alpha 

Singleton, ? 

Singleton, * 

Subset, ? 

Subset, * 

Concept, ? 

Concept, * 

Figure 1. Results of experiments with Breast cancer data set

IV. DEFINABILITY

Let B be a subset of the set A of all attributes. For
incomplete decision tables, a union of some intersections
of attribute-value pair blocks, where such attributes are
members of B and are distinct, will be called B-locally
definable sets. A union of characteristic sets KB(x), where
x ∈ X ⊆ U will be called a B-globally definable set. Any
set X that is B-globally definable is B-locally definable, the
converse is not true [4].

Singleton probabilistic approximations—in general—are
not even locally definable. For example, the singleton prob-
abilistic approximation of [(Flu, yes)] with the threshold α
= 0.667, i.e., the set {3, 5, 7}, is not A-locally definable.
Indeed, in all attribute blocks which contain the case 5 (there
are two such blocks, [(Temperature, high)] and [(Cough,
yes)], 5 is in the same block with cases 4 and 7. Thus,
any definable case containing 5 must contain cases 4 and 7.
The set {3, 5, 7} does not contain case 4.

On the other hand, both subset and concept probabilistic
approximations are A-globally definable. Obviously, if a set
is not B-locally definable then it cannot be expressed by
rule sets using attributes from B.
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Figure 2. Results of experiments with Echocardiogram data
set
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Figure 3. Results of experiments with Hepatitis data set

V. EXPERIMENTS

For our experiments we used six real-life data sets that are
available on the University of California at Irvine Machine
learning Repository, see Table II. For every data set a set of
templates was created. Templates were formed by replac-
ing incrementally (with 5% increment) existing specified
attribute values by lost values. Thus, we started each series
of experiments with no lost values, then we added 5% of
lost values, then we added additional 5% of lost values,
etc., until at least one entire row of the data sets was full
of lost values. Then three attempts were made to change
configuration of new lost values and either a new data set
with extra 5% of lost values were created or the process was
terminated. Additionally, the same formed templates were
edited for further experiments by replacing question marks,
representing lost values by “*”s, representing “do not care”
conditions.
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Figure 4. Results of experiments with Image segmentation
data set
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Figure 5. Results of experiments with Lymphography data
set

For any data set there was some maximum for the
percentage of missing attribute values. For example, for the
Breast cancer data set, it was 44.81%.

For rule induction we used the Modified Learning from
Examples Module version 2 (MLEM2) rule induction algo-
rithm, a component of the Learning from Examples based
on Rough Sets (LERS) data mining system [23], [24].

VI. CONCLUSIONS

A comparison of two probabilistic approaches to missing
attribute values is presented on Table III. This table shows
that for incomplete data with many missing attribute values,
the MCV-AV method is better for four data sets (Echocardio-
gram, Hepatitis, Lymphography and Wine recognition) while
the CMCV-CAV method is better for two data sets (Breast
cancer and Image segmentation).
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Figure 6. Results of experiments with Wine recognition data
set

TABLE III. Error rate for MCV-AV and CMCV-CAV

Data set Error rate in percent

MCV-AV CMCV-CAV

Breast cancer 30.69 29.96
Echocardiogram 22.97 27.03
Hepatitis 19.35 21.29
Image segmentation 72.86 64.76
Lymphography 41.22 47.97
Wine recognition 31.46 44.38

Similarly, Figures 1–6 show that for four data sets (Breast
cancer, Hepatitis, Image segmentation and Lymphography
the best rough set approach is based on concept approxi-
mations. For remaining two data sets (Echocardiogram and
Wine recognition the best rough set approach is based on
singleton approximations. For all six data sets the smallest
error rate is always associated with missing attribute values
interpreted as lost. Note that with the exception of the

TABLE IV. Error rate for the better of MCV-AV and
CMCV-CAV and the best rough set approach

Data set Error rate in percent
better of best rough

MCV-AV and CMCV-CAV set approach

Breast cancer 29.96 27.08
Echocardiogram 22.97 27.03
Hepatitis 19.35 17.42
Image segmentation 64.76 63.81
Lymphography 41.22 37.84
Wine recognition 31.46 26.97

Echocardiogram data set (where the best value is associated
with any alpha, between 0.001 and 1), for remaining five
data sets the smallest error rate occurs always for some
alpha larger than 0.001 and smaller than 1. Moreover, for the
parameter α close to one, error rate associated with “do not
care” conditions is close to 100% due to small probabilistic
approximations, as exemplified by Breast cancer, Image
segmentation and Wine recognition data sets.

Finally, a comparison of the best of the two probabilis-
tic approaches to missing attribute values (MCV-AV and
CMCV-CAV) is presented in Table IV. This table shows
the best results accomplished using rough set theory with
three parameters: kind of approximation (singleton, subset
and concept), two interpretations of missing attribute values
(lost and “do not care” condition) and α (0.001, 0.1, 0.2,...,
1). The better results for five of the data sets is the rough
set approach, while for only one data set (Echocardiogram)
the better approach is achieved by the MCV-AV method.
However, statistically, the superiority of a rough set approach
is insignificant. Clearly, more experiments are needed to
compare probabilistic and rough set approaches to missing
attribute values.

Theoretically, we should not use singleton probabilistic
approximations for data mining, see Section IV. Neverthe-
less, our experiments show that—in practice—singleton ap-
proximations are worth considering, since rule sets induced
from such approximations classify unknown cases using the
sophisticated LERS classification system [23], [24].
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