
Context Processing: A Distributed Approach

Penghe Chen
NUS Graduate School for Integrative Sciences and Engineering

National University of Singapore (NUS)
Singapore

g0901858@nus.edu.sg

Hung Keng Pung
School of Computing (SOC)

National University of Singapore (NUS)
Singapore

dcsphk@nus.edu.sg

Shubhabrata Sen
School of Computing (SOC)

National University of Singapore (NUS)
Singapore

g0701139@nus.edu.sg

Wai Choong Wong
Department of Electrical & Computer Engineering

National University of Singapore (NUS)
Singapore

elewwcl@nus.edu.sg

Abstract—Context processing refers to the operation of
processing different types of context data and/or information
using different kinds of operators. These operators are applied
according to some conditions or constraints given in context
queries. Existing context aware systems process context data in
a centralized fashion to answer context queries and generate
context information. However, this method can cause scalability
issues and give poor system throughput. In this paper, we aim
to address this issue by proposing a distributed context data
processing mechanism in which the context data processing
computations of different context queries will be distributed to
different computing devices. Relying on the developed proto-
type, a performance evaluation was conducted with centralized
context data processing method as benchmark.

Keywords-Context; context-aware; ubiquitous computing; data
management; distributed; context processing; query plan

I. INTRODUCTION

The advances in the field of ubiquitous computing have re-
sulted in the proliferation of context aware applications that
are flexible, adaptable and capable of acting autonomously
on behalf of users (1). Context is any information that can be
used to characterize the situation of an entity (2), and context
awareness dictates the state in which devices or software
programs are aware of the situation and adapt changes
automatically, without requiring explicit user intervention
(1). In order to truly realize context awareness, various kinds
of context aware systems are developed to utilize context
information about the situation of its users, the environment,
or the state of the system itself to adapt their behavior (3).

An important part of a context aware system is a context
data management system which takes charge of gathering,
processing, managing, evaluating and disseminating context
information. Among these different operations of context
data management, context processing is the process in which
different context data and/or information is processed with
different kinds of operators or operations applied according

to some conditions or constraints given in context queries.
Context processing is the operation where lower level data
is converted to higher level context information that is more
meaningful and useful for users, so it is very important
for a well developed context aware system. A centralized
context data processing approach is usually adopted due to
its simplicity in development and management.

However, as the demand for context information grows
with the advent of advanced context aware applications a
centralized data processing approach may not be adequate.
One of the issues is that the central point will become a
bottleneck when handling large scale context queries which
will cause a scalability issue. Also, it severely affects the
system throughput which we define as the number of context
queries handled in a unit time interval.

Motivated by this, we proposed a distributed context
processing mechanism through which context processing
computations of different context tasks will be distributed
and executed on different computing devices automatically.
As a result, system performance upon system throughput
and resource utilization can be improved. The contribution
of this paper can be highlighted in two aspects. Firstly, we
propose a way to build context processing plan automati-
cally in runtime, and divide context processing operations
into several independent parts. Secondly, leveraging on the
context processing plan, we propose a way to process context
data for different tasks automatically in a distributed manner.

The rest of the paper is organized as follows. A system
overview of our context aware system Coalition is given in
Section 2. Section 3 will illustrate the details of distributed
context processing mechanism and its work flow. Perfor-
mance evaluation is demonstrated in Section 4. Section 5
discusses the related work and the whole paper is concluded
in Section 6.

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

II. SYSTEM OVERVIEW

Coalition (Fig. 1) is a four layer based context aware
system: physical operating space layer, data management
layer, service management layer and application layer. The
physical operating space layer includes all physical entities
such as sensors, actuators and computing devices that pro-
vide the actual context data. The context data management
layer aims to provide effective and efficient context data
organization, lookup and storage. The service management
layer manages context-aware services to handle the consoli-
dated applications. Application layer supplies interfaces that
are used to invoke services or acquire data from lower layers.
The work of this paper focuses on the data management
layer.

Coalition utilizes two main concepts to manage context
sources - physical space and context space. A physical space
is a person, object or place and provides a software module
for managing context data and communicating with other
components named as physical space gateway (PSG). Con-
text spaces are defined as domains of physical spaces with
similar context attributes, and the software module is context
space gateway (CSG). Leveraging on these two concepts,
Coalition could supports SQL-based context queries through
the query processor component. More details of Coalition
can be found in (4).

III. DISTRIBUTED CONTEXT PROCESSING

As discussed in the introduction, context processing is
the process by which context data and/or information is
processed using different kinds of operators or operations
applied according to some conditions or constraints given in
context queries. The previous version of Coalition utilizes
a centralized context processing method to handle context
queries and process context data. However, this can lead
to a scalability issue in handling large number of context
queries and affect system throughput. The proposed dis-
tributed context processing mechanism will handle these
issues through decoupling the computations of context pro-
cessing of queries from the other operations. As a result,
context data processing of different queries can be executed
independently and in parallel to improve system scalability
and throughput.

In this section, we first discuss the basic concepts related
to a context query language. We then proceed to discuss
the details of the context processing operation and introduce
the notion of a query plan. Finally, we illustrate how these
concepts can be utilized to decouple the context processing
computation from other operations in order to realize a
distributed context processing mechanism.

A. Context Query Language

A context query language (CQL) is the language with spe-
cific syntax used by a context aware system to query context
information. Context query language is crucial for querying

Figure 1. Coalition Architecture

context as it defines the way of query represented and
context information required (5). Also, a good CQL should
consider heterogeneity of context sources and different types
of operations like reasoning, filtering and aggregating (6).

Many different types of context query languages have
been proposed and designed in previous work, such as RDF-
based, XML-based, SQL-based and Graph-based CQL. An
evaluation work done by (5) indicates that SQL -based and
RDF -based query languages are better than others. In our
work, we will leverage on SQL-based Query Language to
represent context queries. The basic structure of context
query is as following:

SELECT (context attribute)
FROM (context domain)
[WHERE (constraints)]

The design of this CQL is inspired by normal SQL, so
the syntax and format is quite similar to normal SQL, and
that is why we call it SQL-based CQL. Due to the spe-
cialties of context data management, we have to admit that,
comparing with normal SQL, this CQL has less query han-
dling capability. This CQL cannot handle complex queries
containing more context attributes and context domains,
and it does not support the functionalities of ”HAVE” and

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

”SORT BY”. Additionally, the actual query analysis and
processing operations are different from normal relational
database management system. Other than the key words, the
semantics of the queries are restricted by the concepts inside
this context aware management system. A typical example
of context query in our system likes – SELECT preference
FROM PERSON WHERE location = ”Shop A”.

B. Context Processing Operation

An important aspect of context processing is the context
processing operation (CPO) which represents the specific
methods that transform low level context data into high level
context information. For example, an aggregation operation
can represent a summarized view of several low level context
data items. Context processing operations are closely related
to context query language. Based on the CQL defined in
previous subsection, we can outline the different types of
context processing operations as follows

• Filtering - operations that aim to retrieve a piece or
a set of context information leveraging on certain con-
straints to filter out unnecessary context information.

• Aggregating - operations that mainly include functions
of SUM, AVG, COUNT, MAX, and MIN of a set of
context information, and it is utilized together with
filtering operations.

• Reasoning - operations that aim to generate higher
level context information by applying certain user de-
fined rules or methods on a set of context data.

• Matching - operations that aim to match two or more
different pieces of context information based on certain
constraints.

• Sorting - operations that aim to sort a set of context
information in certain order based on certain context
information or certain constraints.

• Merging - operations that aim to consolidate a set
of context information together based on certain con-
straints.

C. Query Plan

Based on the notions of CQL and CPOs discussed
previously, we propose the concept of query plan which
aims to provide a generic representation of context query
information. Query plan is defined as an object that contains
a list of attributes to represent context query information and
a list of methods for retrieving these attribute values. As per
the current design, the query plan contains the information
about the query issuer, context domains, context attributes,
context processing operations and the query constraints. An
important piece of information is the details of the query
issuer that represents the address of the PSG that issues a
context query. The inclusion of this piece of information
in the query plan lets the PSGs holding the relevant an-
swers reply to the query issuer directly instead of going
through the query processor as an intermediary. As a result,

Figure 2. Example of Query Plan

the context processing operations can now be carried out
independently. This query plan is generated from parsing the
query according to the CQL and CQOs defined previously.
Any subsequent operations in query processing can easily
get the query information directly from the query plan object
without parsing the original query. As a result, the query
information becomes independent from CQL. We utilize this
observation to develop a decentralized approach to perform
the context processing operation. A diagrammatic illustration
of query plan is shown in Fig. 2.

D. Details of Previous Query Processing Operation

Based on the previous discussion, we observe that there is
a possibility of implementing a distributed context process-
ing mechanism to solve the scalability issue and improve
system throughput. The previous query processing operation
utilized in the middleware can be roughly divided into the
following phases as follows:

Query Parsing: parse the context query based on specified
CQL syntax and extract corresponding information of con-
text query. This phase processes context queries at syntax
level.

Query Analysis: based on the information obtained during
query parsing, further analysis is applied to extract more in-
formation, like required context information, context domain
involved and constraints of the query. This phase s interprets
the context query.

Query Distribution: based on information extract in query
analysis phase, we further identify the context sources in-
volved in each context query and distribute the query to the
relevant PSGs to collect the necessary context data.

PSG Context Data Collection: after receiving the query,
each PSG will parse the query and check whether its context
data satisfies the constraints stated in the query and report
the result to the query processor.

Context Processing: consolidate the required context
information by applying the context processing operation
extracted from the query in the analysis phase on context

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 3. Architecture of Distributed Context Processing

data collected from different PSGs. This work is done in
query processor of Coalition middleware, and all queries
utilize this single context processor to generate required
context information.

In the subsequent sections, we illustrate how the proposed
distributed processing approach modifies and improves the
aforementioned query processing operation to realize better
scalability and throughput performance.

E. Distributed Context Data Processing

The new architecture design of query processing based on
proposed distributed context processing mechanism is shown
in Fig. 3. Different from previous design, in this architecture,
Context Processor resides in PSG side rather than the query
processor in Coalition middleware. Additionally, instead of
utilizing a single context processor for all context queries,
this new design creates an individual context processor
for each PSG. As a result, those context processors can
work simultaneously for different context queries to improve
system performance.

The design of the distributed context processing mech-
anism includes two tasks. A major task is to decouple
the context processing phase from the other phases. The
next one is to shift and distribute the context processing
computations of different context queries among different
PSGs. These two tasks are solved leveraging on the design of
query plan which enables the five phases of query processing
to be loosely coupled by recording query parsing results. The
other phases can retrieve any query information directly from
this query plan object. As a result, the PSG context data
processing phase does not need to re-parse the query and
can execute independently from other phases.

Query plan can also help to distribute computations of
context data processing into different PSGs. In the central-
ized context processing mechanism, all data is processed
in the query processor where each PSG reports a matching
query answer to. However, in the proposed distributed con-
text processing mechanism, the PSGs need to be informed
the place where to report their context data and a PSG
processing the context data needs to know the relevant

Figure 4. Work Flow Diagram

operations to be applied on the data. These functionalities
can be provided using the query plan. The PSGs can utilize
the query issuer information to identify where the data needs
to be sent. Also, the PSGs can utilize the context processing
operation information to identify the operations to be applied
on the data.

F. Work Flow of Distributed Context Processing Mechanism

In order to better demonstrate how this distributed context
processing mechanism handles context queries, we describe
the operational work flow in this subsection. A diagrammat-
ical illustration of the work flow leveraging on UML activity
diagram is given in Fig. 4.

At the beginning, an application issues a context query to
its host PSG which will generate a unique ID for the query.
Also, PSG forwards the query to the query processor in
Coalition middleware. After receiving the query, the query
parser of query processor will generate a query plan for
this query by parsing it based on SQL-base CQL syntax.
Also, this query parser will check the validity of context
domain and context attribute information wrapped inside the
query. Leveraging on the query plan object, query analyzer
will extract out information of context domain and context
attribute, and then identify the group of PSGs of context
sources involved. Subsequently, query distributer retrieves a
random PSG reference from Coalition middleware utilizing
on extracted context domain and context attribute informa-
tion. Query distributer forwards query plan to host PSG to
create context processor. Meanwhile, it also forwards query
plan to the random PSG which will then flood query plan to
all PSGs involved leveraging on P2P network. Query handler
residing on each PSG of context source will check their
context data fulfills the requirements stated in query plan and
reports to corresponding context processor if it is. Context
processor created in host PSG applies context processing
operation stated in query plan on all the collected context

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 5. Average Query Time

data to generate the required context information and then
reply the context information to application.

IV. PERFORMANCE EVALUATIONS

We have implemented a prototype of this distributed con-
text processing mechanism and integrated with our context
aware system Coalition (4). A Dell PowerEdge T300 server
with four 2.83 Ghz quad-core Intel Xeon CPU was used
as the server. PSG instances are simulated by desktop PCs
where each PC had an Intel Core 2 Duo 2.83 GHz CPU and
runs the Windows XP OS.

Several hundreds of PSGs from five different context
domains were simulated: PERON, HOME, OFFICE, SHOP
and CLINIC. Queries of different domains and different
context information were continuously issued to test the
average query time and system throughput. A range cluster
based mechanism is used to restrain the number of PSGs
to be flooded for each query (7). The centralized context
processing method utilized by previous version of Coalition
is used as a benchmark to evaluate the performance of this
proposed distributed context processing algorithm.

A. Average Query Time

We first studied the average query time in case of different
number of users issuing queries concurrently. The query
time is measured as the interval between the issuing of a
query and the reception of the context information. Average
query time is measured by letting all users issue 100 queries
simultaneously and continuously. The measurements of the
currently utilized centralized context processing method
are utilized as a benchmark. The results are illustrated in
Fig. 5. The results indicate that our proposed distributed
context processing provides a significant improvement on the
average query time. The average query time is an important
indicator of system scalability because a system can easily
been break down if average query time increase so rapidly
to overtake the responding time threshold with the number
of user increasing. By observing the results, we can say that

Figure 6. System Throughput

our proposed mechanism makes the system more scalable
now.

B. System Throughput

Another performance indicator studied is system through-
put which measures the maximum number of queries that
can be processed within a unit time interval. Since count-
ing the maximum number of queries handled is not easy
especially for a distributed system, we measure the time
consumed for certain number of queries. Methods with
shorter total responding time means they can handle more
queries in a given time period and have a higher throughput.
Fig. 6 illustrates the total response time in case of different
number of total queries issued with the condition that 30
users concurrently issue queries. Compared with centralized
method, our proposed distributed context processing method
requires shorter time to process the same number of context
queries. This reflects that our proposed distributed context
processing method can increase the throughput of the mid-
dleware with regards to the number of queries processes
within a certain time period.

C. Query Time Breakdown

We also analyzed the time breakdown for the operations
included in context query processing namely the following -
query preprocessing, query distribution and context process-
ing. The query preprocessing event refers to the operations
involved in query processing including query parsing and
query analyzing. The query distribution process refers to the
flooding of the query to PSGs and local query processing in
each PSG. This also includes the queuing time for issuing
queries and reporting context data to query processor. The
context processing operation refers to the task of processing
context data to generate context information. Due to space
constraints, we only present one example here in which 20
users issue queries concurrently and continuously. Table 1
illustrates time spent of each operation in query processing.
We observe that the query preprocessing and context pro-
cessing time does not change too much but query distribution

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

TABLE I. QUERY TIME BREAKDOWN

Centralized
Context
Processing (/s)

Distributed
Context
Processing (/s)

Query Prepro-
cessing

2.3 2.4

Query Distri-
bution

38.9 8.8

Context
Processing

2.1 2.2

is significantly improved. This is consistent with the design
of distributed context processing mechanism which relives
the work load and communication congestion of Coalition
middleware. As a result, the PSGs do not need to wait longer
to issue queries and report context data.

V. RELATED WORD

There is little previous work in context aware computing
that explores specifically on how to process context data.
Most of existing work focuses on either single domain with
centralized context processing or multiple domains but cen-
tralized context processing. This state of the art demonstrates
the proposal of this distributed context processing algorithm
is novel and promising.

Some of existing systems managing context data in sin-
gle space or domain utilize centralized context processing
method. CoBra (8), which is an agent based context aware
system in smart spaces, utilizes a specialized component
called Context Broker as the central point to reason and
store context information on behalf of applications. Semantic
Space (9) leverages on semantic web technologies to manage
context data in smart spaces. Context aggregator gathers
various context markups from different context sources
and reports to context knowledge base which takes charge
of answering context queries, but both context aggregator
and context knowledge are centralized. The heart of CMF
(10) is a centralized black-board based context manager
which collects context data from all participating services
or notes and processes those context data to generate pro-
poser context information for querying. Trimmed to mobile
devices, Hydrogen (11) leverages on various adaptors to
collection context data. Meanwhile, it replies a centralized
Context Server in management layer stores all the context
information to handle context retrieval and subscription.

Some systems manage context data in multiple spaces or
domains, but utilize centralized context processing method.
SOCAM (12) can manage context data from different do-
mains and is efficient in reasoning higher level context
information leveraging ontology based context modeling
technique. However, the data management and reasoning
relies on pulling all context data into a central semantic
space. CASS (13) utilizes a server based mechanism to
abstract higher level context information and support SQL

based queries. The server serves as a central point to collect
various context data from sensor notes and derive higher
context information leveraging on rule engines. Toolkit (14)
designs various types of widgets to manage context data.
Context aggregators and context interpreters are built to
aggregate context data and derive context information. These
aggregators and interpreters are distributed and executed
for different purpose, but it lacks a systematic interface
to handle context query but let the developers specify all
required context sources in higher level. Solar (15) utilizes
operators to produce various kinds of context information, in
which computations are done in a distributed manner like our
mechanism. However, Solar requires application developers
manually define and create those operators, while our mech-
anism can automatically generate the processing operators
and produce the final context information in runtime. As
a result, application developers will not be decoupled from
details of lower level context data management.

VI. CONCLUSION AND FUTURE WORK

We propose a distributed context processing mechanism
in this paper that aims to handle large scale context queries.
Leveraging on the design of query plan, we decouple context
processing from the other query processing operations. As a
result, the proposed mechanism can execute context process-
ing part in separate computing devices; thereby improving
the system scalability and throughput. Additionally, a per-
formance evaluation is done by taking previous centralized
context processing method as benchmark. The experimental
results demonstrate that the proposed technique performs
better in terms of system scalability and throughput. As part
of our future work, we plan to extend the query capability in
handling more complex context queries which may include
more complicated context processing operations with differ-
ent conditions and more context data from different context
domains.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey
on context-aware systems,” International Journal of Ad
Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263–
277, 2007.

[2] A. Dey, “Understanding and using context,” Personal
and ubiquitous computing, vol. 5, no. 1, pp. 4–7, 2001.

[3] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni, “A survey
of context modelling and reasoning techniques,” Perva-
sive and Mobile Computing, vol. 6, no. 2, pp. 161–180,
2010.

[4] H. Pung, T. Gu, W. Xue, P. Palmes, J. Zhu, W. Ng,
C. Tang, and N. Chung, “Context-aware middleware
for pervasive elderly homecare,” Selected Areas in
Communications, IEEE Journal on, vol. 27, no. 4, pp.
510–524, 2009.

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

[5] P. Haghighi, A. Zaslavsky, and S. Krishnaswamy, “An
evaluation of query languages for context-aware com-
puting,” in 17th International Conference on Database
and Expert Systems Applications, 2006, pp. 455–462.

[6] R. Reichle, M. Wagner, M. Khan, K. Geihs, M. Valla,
C. Fra, N. Paspallis, and G. Papadopoulos, “A con-
text query language for pervasive computing environ-
ments,” in Proceedings of the 2008 Sixth Annual IEEE
International Conference on Pervasive Computing and
Communications, ser. PERCOM ’08, 2008, pp. 434–
440.

[7] S. Sen and H. Pung, “A mean-variance based index for
dynamic context data lookup,” Mobile and Ubiquitous
Systems: Computing, Networking, and Services, pp.
101–112, 2012.

[8] H. Chen, T. Finin, and A. Joshi, “An intelligent broker
for context-aware systems,” Ph.D. dissertation, 2003.

[9] X. Wang, J. Dong, C. Chin, S. Hettiarachchi, and
D. Zhang, “Semantic space: an infrastructure for smart
spaces,” Pervasive Computing, IEEE, vol. 3, no. 3, pp.
32–39, 2004.

[10] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and
E. Malm, “Managing context information in mobile
devices,” Pervasive Computing, IEEE, vol. 2, no. 3,
pp. 42–51, 2003.

[11] T. Hofer, W. Schwinger, M. Pichler, G. Leonharts-
berger, J. Altmann, and W. Retschitzegger, “Context-
awareness on mobile devices - the hydrogen approach,”
in Proceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS’03),
2003.

[12] T. Gu, H. Pung, and D. Zhang, “A service oriented
middleware for building context aware services,” Jour-
nal of Network and Computer Applications, vol. 28,
no. 1, pp. 1–18, 2005.

[13] P. Fahy and S. Clarke, “Cass - middleware for mobile
context-aware applications,” in Workshop on Context
Awareness, MobiSys 2004, 2004.

[14] A. Dey, G. Abowd, and D. Salber, “A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications,” Human-
Computer Interaction, vol. 16, no. 2-4, pp. 97–166,
2001.

[15] G. Chen, M. Li, and D. Kotz, “Data-centric middleware
for context-aware pervasive computing,” Pervasive and
Mobile Computing, vol. 4, no. 2, pp. 216–253, 2008.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

