
A Multi-Objective Particle Swarm Optimizer Based
on Diversity

Dennis R. C. Silva and Carmelo J. A. Bastos-Filho
University of Pernambuco

Recife, Brazil
Email: carmelofilho@ieee.org

Abstract—This paper presents a novel multi-objective op-
timization algorithm based on Particle Swarm Optimization
(MOPSO-DFR), which uses a global density estimator mechanism
called Diversity Factor (DF) to select the cognitive and the social
leaders. MOPSO-DFR also uses DF to update and to prune the
external archive, whenever it is necessary. We used well known
metrics to evaluate the results generated by our proposal in
seven widely used benchmark functions. We also compared our
approach to other four multi-objective optimization algorithms
called MOPSO-CDR, SMPSO, NSGA-II and SPEA-2. The results
showed that MOPSO-DFR outperforms the other approaches in
most cases.

Keywords—swarm intelligence; particle swarm optimization;
multi-objective optimization

I. INTRODUCTION

Multi-objective optimization refers to the simultaneous op-
timization of two or more conflicting objective functions. For
Multi-Objective Optimization Problems (MOPs), it is expected
to obtain a set of trade-off solutions in a single run of an
optimization algorithm. Besides, MOP with multiple decision
variables are often difficult to tackle. Because of this, many
approaches have been recently proposed for solving MOP in
a faster and more efficient way. Meta-heuristics have been
successfully applied to solve MOPs in the last years and most
of the recent interesting approaches are based on evolutionary
computation or swarm intelligence.

Particle Swarm Optimization (PSO) is one of the most
used swarm intelligence algorithms. PSO was proposed by
Kennedy and Eberhart in 1995 [1] and it was inspired by the
behavior of flocks of birds. In general, PSO is used for solving
single objective optimization problems in hyper-dimensional
spaces with continuous variables. Due to the simplicity and
fast convergence, some approaches based on PSO have been
proposed to tackle MOPs. The first Multi-Objective Particle
Swarm Optimizer (MOPSO) was proposed in 2002 by Coello
Coello et al [2]. Since then, many other MOPSO approaches
have been proposed. All of them propose to change the policy
to select the cognitive and social leaders, that are used to
update the velocity of the particles, and/or to define a criterion
to update the External Archive (EA), which is used to store
the non-dominated solutions obtained along the search process.
Santana et. al [3] presented the MOPSO-CDR and successfully
showed that one can use Crowding distance (CD) to select
the leaders and to update the EA. They also showed that
MOPSO-CDR outperforms some previous approaches, such
as m-DNPSO [4] and CSS-MOPSO [5]. Nebro et. al [6] also

proposed an interesting speed-constrained approach which is
also useful for many-objective optimization.

Although there are many proposals presented in the lit-
erature, the policies to select the leaders and to update the
EA are based on measures that evaluate local features within
the EA, such as CD [3]. Recently, Zhan et al [7] proposed
a global measure to assess the diversity of the whole swarm.
We propose here to use this global measure, renamed in this
paper as Diversity factor (DF), to evaluate the diversity of the
solutions within the EA in order to properly select the leaders
and to update the EA.

This paper is organized as follow. In Section II, we
present some basic concepts on Particle Swarm Optimization
and Multi-Objective Optimization. In Section III, we briefly
describe some approaches for tackling MOPs. We present our
novel MOPSO approach based on the DF in Section IV. In
Sections V, we present the simulation setup and some results in
well known benchmark functions, including a comparison with
MOPSO-CDR, SMPSO and two widely used multi-objective
evolutionary computation optimizers (NSGA-II and SPEA-2).
In Section VI, we give our conclusions and present some future
works.

II. BASIC CONCEPTS

In this section we present basic concepts regarding Particle
Swarm Optimization and Multi-objective optimization.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic, bio-
inspired, population-based global optimization technique [1].
The population is called swarm and the individuals are called
particles. Each particle moves within the search space with an
adaptive velocity looking for promising regions. Each particle
i has four main attributes: the current position in the d-
dimensional space ~xi = (xi1, xi2, ..., xid), the best position
found so far in the search process ~pi = (pi1, pi2, ..., pid),
the best position found by its neighborhood so far ~ni =
(ni1, ni2, ..., nid) and the velocity ~vi = (vi1, vi2, ..., vid).
The velocity and the position of every particle are updated
iteratively according to the following equations:

~vi(t+1) = ~vi(t)+c1 ·r1 ·(~pbest− ~xi)+c2 ·r2 ·(~nbest− ~xi), (1)

~xi(t + 1) = ~xi(t) + ~vi(t + 1), (2)
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where i is the label of the particle, c1 and c2 are the cognitive
and the social acceleration coefficients, respectively. r1 and r2

are two random numbers generated by an uniform distribution
in the interval [0, 1].

B. Multi-Objective Optimization

A minimization MOP can be stated as:

minimize ~f(~x) := [f1(~x), f2(~x), ..., fk(~x)] (3)

subject to:
gi(~x) <= 0i = 1, 2, ...,m, (4)

hi(~x) = 0j = 1, 2, ..., p, (5)

where ~x = (x1, x2, ..., xn) ∈ R is the vector on the decision
search space; and gi(~x) and hj(~x) are the constraint functions
of the problem.

The best solutions that solves a MOP are called non-
dominated solutions. The concept of dominance is given by:
given two vectors ~x and ~y, ~x dominates ~y (denoted by ~x ≺ ~y)
if ~x is better than ~y in at least one objective and ~x is not
worse than ~y in any objective. ~x is not dominated if does not
exist another solution ~xi in the current population such that
~xi ≺ ~x. The set of non-dominated solutions in the objective
space found by a particular algorithm trying to solve a MOP
is known as Pareto Front.

In order to measure the quality of the Pareto Front obtained
by the algorithms, several metrics have been proposed. The
following metrics will be used in this paper.

1) Coverage Set (C): is used in order to evaluate the con-
vergence reached by the algorithm [8]. Equation (6) presents
how to calculate C using two different Pareto Fronts A and
B:

C(A, B) =
|{b ∈ B;∃a ∈ A : a � b}|

|B|
, (6)

where |B| represents the amount of solutions belonging to the
Pareto Front B.

If the value C(A, B) = 1, all solutions of B are dominated
by the solutions of A. On the other hand, if C(A, B) = 0, none
of the solutions of B are dominated by A.

2) Spacing (S): is used in order to evaluate the distribution
of the non-dominated solutions within the Pareto Front. S is
calculated according to Equation (7) [9].

S =

√√√√ 1
n − 1

n∑
i=1

(d̄ − di)2, (7)

where di = minj(|f i
1(~x)− f j

1 (~x)|+ |f i
2(~x)− f j

2 (~x)|), i, j =
1, ..., n, d̄ represents the average distance betwen all adjacent
solutions and n is the number of non-dominated solutions.
S = 0 means that all non-dominated are equidistant.

3) Maximum Spread (MS): measures the Euclidian distance
between the two farthest solutions within the Pareto Front. MS
is calculated using Equation (8) [10]:

MS =

√√√√ M∑
m=1

(maxn
i=1f

i
m −minn

i=1f
i
m)2, (8)

where n is the label of the non-dominated solutions and M
is the number of objectives of the problem. High values for
MS means that the Pareto Front covers a significant area of
the objective space.

4) Hypervolume (HV): is defined by the hypervolume in
the objective space covered by the Pareto Front [8]. It is
calculated by summing the area formed by the union of all
hypercubes, where each hypercube is generated by one of the
non-dominated solutions and a reference point in the objective
space.

III. RELATED WORK

This section aims to present a brief review of some related
work.

A. APSO - Adaptive PSO

APSO was proposed by Zhan et al [7] in 2009. APSO
is a variation of the PSO that self-adapts the acceleration
coefficients and the inertia factor depending on the diversity
of the swarm at the current iteration. They proposed to define
an evolutionary state for the swarm based on Evolutionary
Factor. There are four possible states: Convergence, Escape,
Exploration and Exploitation. We used the Evolutionary Factor
to define the Diversity Factor (DF), which is used in our
proposal (MOPSO-DFR).

B. MOPSO-CDR: Multi-objective PSO Using Crowding Dis-
tance and Roulette Wheel

MOPSO-CDR was proposed by Santana et al in 2009 [3].
In MOPSO-CDR, particles select the social leaders by using a
Roulette Wheel based on CD. The strategy used to update the
cognitive leader also uses the dominance criterion and CD
when the current position and the current social leader are
incomparable. A similar mechanism is used to prune the EA.
Non-dominated solutions that present higher CD values, i.e.
particles in less crowded regions, have more chances to be
selected as social leaders.

C. SMPSO: Speed-constrained Multi-objective PSO

SMPSO [6] incorporates a constriction mechanism in order
to limit the maximum velocity of particles and enhance the
search capability of the algorithm. SMPSO also have an
EA, but does not use roulette wheel to select the social
leaders. The cognitive leader is just updated if it dominates the
current position. Moreover, SMPSO uses a speed-constriction
approach proposed originally by Clerk and Kennedy [11] and
bounds the accumulated velocity [6].
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D. NSGA-II - Nondominated Sorting Genetic Algorithm II

NSGA-II is a very well known and widely used evolution-
ary algorithm for tackling multi-objective problems proposed
by Deb et al in 2002 [12]. The most important feature of
NSGA-II is that it uses a fast non-dominated sorting mech-
anism and CD for comparing the quality of the solutions.
NSGA-II uses dominance ranking to classify the population
into a number of layers, since NSGA-II does not use an EA.
The truncation of the population for the next generation uses
CD to define which individuals are better within the same
layer.

E. SPEA-2 - Strength Pareto Evolutionary Algorithm

SPEA-2 is a multi-objective evolutionary algorithm pro-
posed by Zitzler et al in 2001 [13]. SPEA2 uses elitism
and EA. The non-dominated solutions in the EA are ranked
according to a strength rule based on dominance. It presents
a good performance since it differentiates the quality of the
solution within the EA.

IV. MOPSO-DFR: MULTI-OBJECTIVE PSO USING
DIVERSITY FACTOR AND ROULETTE WHEEL

In this section we introduce our contribution, which aims to
obtain a better convergence in MOPs. We name our proposal as
Multi-objective Particle Swarm Optimization using Diversity
Factor and Roulette Wheel (MOPSO-DFR).

We propose here a diversity estimator, called Diversity
Factor (DF). DF is used to select the cognitive and social
leaders, and to update and prune the EA as well. DF is based
on the Evolutionary Factor used in the APSO algorithm [7]. In
order to calculate the DF , one needs to calculate the average
distance from the particle i to the other particles within the
Pareto Front using Equation (9).

di =
1

N − 1

N∑
j=1,j 6=i

√√√√ M∑
k=1

(xk
i − xk

j )2, (9)

where N is the number of the particles of the Pareto Front
and M is the number of objectives of the problem.

After this, one can calculate DF for each particle within
the EA by using Equation (10).

DFi =
di − dmin

dmax − dmin
, (10)

where DFi is the DF of the particle i, di is the average
distance of particle i to the other particles, dmax and dmin are,
respectively, the maximum and minimum average distances.
One can observe that DF is a global estimator of diversity
within the Pareto Front.

A. Cognitive Leader Selection

The cognitive leader selection process is crucial for the
convergence and efficiency of the algorithm. We propose here
a similar strategy to the one used in MOPSO-CDR. In our
approach we use DF , instead of CD. We update ~Pbest if the
current position of the particle dominates ~Pbest. If they are

non-dominated, the selection is performed using the EA. The
two nearest solutions from the current position and ~Pbest are
found in the EA. After this, we check which one presents the
higher DF . If the nearest solution from the current position has
the higher DF value, ~Pbest is updated to the current position,
otherwise ~Pbest remains.

B. Social Leader Selection

The social leader selection mechanism affects the conver-
gence capability and the distribution of the solutions along the
Pareto Front. The MOPSO-DFR algorithm selects the social
leader from the EA using a roulette wheel with the DF of
each particle as the sorting criterion.

C. External Archive Pruning

In each iteration we include all new non-dominated so-
lutions in the EA and remove the solutions that became
dominated. It is common to limit the number of solutions in
the EA. In order to avoid to exceed the maximum number of
solutions in the EA, we sort the solutions according to the
DF value and discard the worst non-dominated.

D. Novel Update Velocity Equation

We proposed to include a fourth term in the equation used
in the MOPSO-CDR [3] to update the velocity of the particles.
The modified equation is given by:

~vi(t + 1) = ~vi(t) + c1 · r1 · (~pbest − ~xi)
+c2 · r2 · (~nbestDF

− ~xi) + c3 · r3 · (~nbestCD
− ~xi),

(11)

where ~nbestDF
is selected based on DF and ~nbestCD

is selected
based on CD as in [3]. c3 is the acceleration coefficient
associated to this new leader, r3 is a random number generated
in the interval [0, 1].

V. SIMULATION SETUP, RESULTS AND DISCUSSION

A. Simulation setup

For MOPSO-DFR and MOPSO-CDR, we used a constant
mutation rate equal to 0.5 and the inertia factor linearly
decreasing from 0.4 to 0. For the SMPSO, the acceleration
coefficients are randomly chosen in the interval [1.5, 2.5] and
the mutation rate is equal to 0.166. For NSGA-II and SPEA-2,
we used the crossover rate and the mutation rate equal to 1.0
and 0.05, respectively. We used 100 particles (or individuals)
for all algorithms and the maximum number of non-dominated
solutions in the EA equal to 100. We run 300, 000 fitness
function evaluations.

We used a widely used set of benchmark functions called
DTLZ, which was proposed by Deb et al [14] in 2005. We used
the following functions: DTLZ-1, DTLZ-2, DTLZ-3, DTLZ-4,
DTLZ-5, DTLZ-6 and DTLZ-7.

All tables presented in the paper shows the average value
and the (standard deviation) after 30 trials. The best results are
bolded to facilitate the visualization.
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B. Parametric analysis

Since we are proposing to include a fourth term in the
equation used to update the velocity, it is necessary to perform
a parametric analysis. Thus, we executed simulations using
several different sets of configurations for the acceleration co-
efficients. These configurations for the acceleration coefficients
are shown in Table I. One can observe that we almost do not
vary the values of c1. We decided to not vary it significantly
since the major change in the algorithm regards on the social
leaders selection. For the values of c2 and c3, we considered
the combination of fractions of the original value of c2 used
for the MOPSO-CDR.

TABLE I. ACCELERATION COEFFICIENT CONFIGURATIONS ASSESSED
FOR THE MOPSO-DFR.

c1 c2 c3

MOPSO-DFR-A 1, 49445 1, 49445 1, 49445
MOPSO-DFR-B 1, 49445 1, 49445 0, 0
MOPSO-DFR-C 0, 9963 0, 9963 0, 9963
MOPSO-DFR-D 1, 49445 0, 74722 0, 74722
MOPSO-DFR-E 1, 49445 0, 96966 0, 48483
MOPSO-DFR-F 1, 49445 0, 48483 0, 96966
MOPSO-DFR-G 1, 49445 1, 93932 0, 96966
MOPSO-DFR-H 1, 49445 0, 96966 1, 93932

Table II shows the simulation results for all MOPSO-
DFR configurations for the DTLZ-1 problem. One can observe
that the Coverage for MOPSO-DFR-A outperformed the other
configurations (the results are slightly better when compared
to MOPSO-DFR-G and MOPSO-DFR-H). This means that the
Pareto Front generated by configuration MOPSO-DFR-A dom-
inates the Pareto Fronts obtained by the other configurations.

We also analyzed one case without the CD-based so-
cial leader (MOPSO-DFR-B), i.e. c3 = 0. MOPSO-DFR-B
obtained good results, but MOPSO-DFR-A outperformed it.
Therefore, it indicates that it might be useful to use both CD
and DF in the equation to update the velocity of the particles.

One can also observe that MOPSO-DFR-F achieved a
better S, but MOPSO-DFR-A achieved better results than
MOPSO-DFR-F for MS and HV . MOPSO-DFR-G achieved
a better HV , but MOPSO-DFR-A achieved better results than
MOPSO-DFR-G for S and MS.

We observed for DTLZ-2 and DTLZ-3 functions a similar
behavior when compared to DTLZ-1. Thus, we selected the
MOPSO-DFR-A configuration for further simulations. From
this point, we will call MOPSO-DFR-A as MOPSO-DFR.

C. Comparison with other Multi-objective algorithms

This subsection aims to compare MOPSO-DFR to previous
proposed multi-objective optimizers, MOPSO-CDR, SMPSO,
NSGA-II and SPEA-2. Table III, IV, V, VI, VII, VIII and
IX show the results for DTLZ-1, DTLZ-2, DTLZ-3, DTLZ-4,
DTLZ-5, DTLZ-6 and DTLZ-7, respectively, in terms of C,
S, MS and HV .

One can observe that our proposal obtained better results
in terms of C for most cases. For the DTLZ-3, the MOPSO-
CDR achieved slightly better results in terms of coverage when
compared to MOPSO-DFR, but one must observe that the
difference is small when compared to the standard deviation.
For the DTLZ-6, the MOPSO-CDR achieved the best results

TABLE II. COMPARISON OF DIFFERENT VERSIONS OF MOPSO-DFR
FOR DTLZ-1 WITH 300,000 FITNESS EVALUATIONS.

Alg. S MS HV C(DFR-A,*) C(*,DFR-A)
MOPSO 7.326 121.205 0.411 - -
DFR-A (2.860) (10.559) (0.104) - -
MOPSO 4.153 63.030 0.425 0.791 0.070
DFR-B (4.115) (45.028) (0.134) (0.104) (0.123)
MOPSO 6.314 79.263 0.512 0.811 0.092
DFR-C (5.411) (46.465) (0.149) (0.266) (0.151)
MOPSO 4.351 64.6481 0.556 0.898 0.042
DFR-D (4.406) (45.310) (0.121) (0.190) (0.091)
MOPSO 4.879 75.744 0.596 0.845 0.074
DFR-E (3.675) (45.903) (0.107) (0.250) (0.150)

MOPSO 4.147 59.542 0.514 0.897 0.045
DFR-F (5.329) (42.085) (0.124) (0.213) (0.122)

MOPSO 8.852 117.67 0.341 0.406 0.321
DFR-G (4.313) (12.874) (0.134) (0.224) (0.234)
MOPSO 8.828 119.67 0.361 0.378 0.370
DFR-H (4.959) (14.010) (0.121) (0.266) (0.247)

TABLE III. SIMULATION RESULTS FOR DTLZ-1 WITH 300.000
FITNESS FUNCTION EVALUATIONS.

Alg. S MS HV C(DFR,*) C(*,DFR)
MOPSO 7,326 121,205 0,411 - -

DFR (2,859) (10,559) (0,105) - -
MOPSO 6,962 91,745 0,458 0,753 0,090

CDR (4,717) (35,343) (0,139) (0,248) (0,151)
SMPSO 0,002 2,0 0,494 1,0 0,0

(0,001) (0,002) (9,1E-05) (0,0) (0,0)
NSGA-II 0,007 2,004 0,494 1,0 0,0

(0,001) (0,004) (3E-04) (0,0) (0,0)
SPEA-2 0,113 3,526 0,533 1,0 0,0

(0,493) (6,870) (0,119) (0,0) (0,0)

in terms of coverage when compared to MOPSO-DFR. Again
for the DTLZ-6, the NSGA-II achieved slightly better results
in terms of coverage when compared to MOPSO-DFR, but one
must observe that the difference is small when compared to
the standard deviation.

It is also important to notice that the MOPSO-DFR did
not achieve the best results for the S, but it achieved the best
results for the MS in most of the cases. This indicates that our
approach is reaching more extreme solutions and converging
for the optimum Pareto simultaneously when compared to the
other algorithms.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a novel multi-objective particle
swarm-based optimizer based on a measure of diversity of
the whole swarm. The selection of the cognitive and social
leaders is performed using a new measure called Diversity
Factor (DF ). DF is also used to update and prune the External
Archive (EA), which is used to store the non-dominated
solutions found during the search process so far.

TABLE IV. SIMULATION RESULTS FOR DTLZ-2 WITH 300.000
FITNESS FUNCTION EVALUATIONS.

Alg. S MS HV C(DFR,*) C(*,DFR)
MOPSO 0.041 1.017 0.187 - -

DFR (0.009) (0.005) (0.006) - -
MOPSO 0.001 1.0 0.211 0.961 0.0

CDR (1E-04) (4E-08) (1E-05) (0.037) (0.0)
SMPSO 0.002 1.0 0.210 0.960 0.0

(2E-04) (4E-05) (6E-05) (0.036) (0.0)
NSGA-II 0.007 1.001 0.211 0.953 0.0

(6E-04) (0.005) (0.008) (0.048) (0.0)
SPEA-2 0.003 1.001 0.212 0.953 0.0

(3E-04) (0.001) (0.002) (0.049) (0.0)
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TABLE V. SIMULATION RESULTS FOR DTLZ-3 WITH 300.000
FITNESS FUNCTION EVALUATIONS.

Alg. S MS HV C(DFR,*) C(*,DFR)
MOPSO 42.289 187.997 0.127 - -

DFR (12.110) (10.405) (0.044) - -
MOPSO 33.916 208.675 0.174 0.276 0.451

CDR (22.403) (19.646) (0.067) (0.294) (0.299)
SMPSO 3.793 18.498 0.335 1.0 0.0

(5.758) (26.729) (0.279) (0.0) (0.0)
NSGA-II 0.028 1.489 0.263 1.0 0.0

(0.043) (0.608) (0.112) (0.0) (0.0)
SPEA-2 0.069 1.473 0.298 1.0 0.0

(0.158) (0.590) (0.168) (0.0) (0.0)

TABLE VI. SIMULATION RESULTS FOR DTLZ-4 WITH 300.000
FITNESS FUNCTION EVALUATIONS.

Alg. S MS HV C(DFR,*) C(*,DFR)
MOPSO 0.116 1.020 0.131 - -

DFR (0.031) (0.007) (0.018) - -
MOPSO 0.002 1.0 0.210 0.804 0.0

CDR (3E-04) (2E-07) (2E-04) (0.140) (0.0)
SMPSO 0.0018 1.0 0.211 0.808 0.0

(4E-04) (3E-04) (5E-04) (0.136) (0.0)
NSGA-II 0.0064 0.801 0.169 0.846 0.002

(0.002) (0.40) (0.085) (0.140) (0.010)
SPEA-2 0.0032 0.733 0.170 0.833 0.0

(0.001) (0.442) (0.104) (0.155) (0.0)

TABLE VII. SIMULATION RESULTS FOR DTLZ-5 WITH 300.000
FITNESS FUNCTION EVALUATIONS.

Alg. S MS HV C(DFR,*) C(*,DFR)
MOPSO 0.034 1.026 0.186 - -

DFR (0.008) (0.005) (0.006) - -
MOPSO 0.001 1.008 0.211 0.962 0.0

CDR (2E-04) (3E-08) (2E-05) (0.051) (0.0)
SMPSO 0.002 1.008 0.210 0.961 0.0

(3E-04) (2E-05) (7E-05) (0.053) (0.0)
NSGA-II 0.007 1.009 0.211 0.953 0.0

(6E-04) (0.003) (0.004) (0.064) (0.0)
SPEA-2 0.003 1.009 0.213 0.954 0.0

(3E-04) (0.005) (0.007) (0.065) (0.0)

TABLE VIII. SIMULATION RESULTS FOR DTLZ-6 WITH 300.000
FITNESS FUNCTION EVALUATIONS.

Alg. S MS HV C(DFR,*) C(*,DFR)
MOPSO 0.029 1.012 0.191 - -

DFR (0.008) (0.009) (0.005) - -
MOPSO 0.196 1.638 0.180 0.0 0.993

CDR (0.097) (0.232) (0.056) (0.0) (0.037)
SMPSO 0.001 1.008 0.211 0.843 0.002

(2E-04) (4E-16) (3E-05) (0.064) (0.005)
NSGA-II 0.011 1.040 0.494 0.361 0.406

(0.003) (0.035) (3E-04) (0.350) (0.388)
SPEA-2 0.013 1.086 0.278 0.541 0.205

(0.019) (0.119) (0.103) (0.325) (0.260)

TABLE IX. SIMULATION RESULTS FOR DTLZ-7 WITH 300.000
FITNESS FUNCTION EVALUATIONS.

Alg. S MS HV C(DFR,*) C(*,DFR)
MOPSO 0.018 0.637 0.290 - -

DFR (0.012) (0.045) (0.054) - -
MOPSO 0.001 0.745 0.335 0.458 0.0

CDR (2E-04) (5E-04) (8E-04) (0.103) (0.0)
SMPSO 0.001 0.745 0.334 0.665 0.0

(1E-04) (4E-04) (4E-04) (0.104) (0.0)
NSGAII 0.005 0.745 0.334 0.657 0.0

(5E-04) (0.001) (0.002) (0.106) (0.0)
SPEA2 0.004 0.745 0.334 0.698 0.0

(4E-04) (4E-04) (7E-04) (0.091) (0.0)

Simulation results showed that MOPSO-DFR converged to
Pareto Fronts that dominate Pareto Fronts obtained by well
known multi-objective optimization algorithms in most of the
functions of a widely used set of benchmark functions. The re-
sults shows that our proposal can reach more extreme solutions
while converging for the optimum Pareto simultaneously.

We believe that we achieved better results because the DF
is a global density estimator that helps to properly select the
leaders and to prune the EA.

We did not achieve the best result for the DTLZ-6 function.
Our hypothesis for this case is that MOPSO-DFR converges
too fast to a local optimum and gets trapped at this local
minimum. We intend to analyze in details what happened for
the DTLZ-6 function in order to propose improvements for the
MOPSO-DFR. We believe it can help to improve the spacing
(S) of the non-dominated solutions.

ACKNOWLEDGMENT

The authors would like to thank the Polytechnic School of
the University of Pernambuco, FACEPE, CNPq and FINEP.

REFERENCES

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of IEEE Internacional Conference on Neural Networks.
IEEE, 1995, pp. 1945–1948.

[2] C. A. C. Coello and M. S. Lechuga, “MOPSO: A proposal for multiple
objective particle swarm optimization,” in Proceedings of the Congress
on Evolutionary Computation (CEC 2002), vol. 2. Honolulu, HI, EUA:
IEEE, 2002, pp. 1051–1056.

[3] R. A. Santana, M. R. Pontes, and C. J. A. Bastos-Filho, “A multiple
objective particle swarm optimization approach using crowding distance
and roulette wheel,” in ISDA ’09: Proceedings of the 2009 Ninth In-
ternational Conference on Intelligent Systems Design and Applications.
IEEE, 2009, pp. 1–5.

[4] X. Hu, R. Eberhart, and Y. Shi, “Particle swarm with extended memory
for multiobjective optimization,” in Swarm Intelligence Symposium,
2003. SIS’03. Proceedings of the 2003 IEEE, 2003, pp. 193–197.

[5] S.-Y. Chiu, T.-Y. Sun, S.-T. Hsieh, and C.-W. Lin, “Cross-searching
strategy for multi-objective particle swarm optimization.” in IEEE
Congress on Evolutionary Computation. IEEE, 2007, pp. 3135–3141.

[6] A. J. Nebro, J. J. Durillo, J. Garcı́a-Nieto, C. A. Coello Coello,
F. Luna, and E. Alba, “SMPSO: A New PSO-based Metaheuristic for
Multi-objective Optimization,” in IEEE Symposium on Computational
Intelligence in Multicriteria Decision-Making (MCDM 2009), 2009, pp.
66–73.

[7] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive
particle swarm optimization,” IEEE Transactions on Systems, Man
and Cybernetics, Part B, vol. 39, no. 6, pp. 1362–1381, Dec. 2009.
[Online]. Available: http://dx.doi.org/10.1109/TSMCB.2009.2015956

[8] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” PHD Thesis, ETH Zurich, Switzerland,
1999.

[9] J. L. Risco-Martı́n, S. Mittal, D. Atienza, J. I. Hidalgo, and J. Lanchares,
“Optimization of dynamic data types in embedded systems using
devs/soa-based modeling and simulation,” in InfoScale ’08: Proceedings
of the 3rd international conference on Scalable information systems.
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2008, pp. 1–11.

[10] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
a comparative case study and the strength Pareto approach,” IEEE
transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
1999.

[11] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002. [Online].
Available: http://dx.doi.org/10.1109/4235.985692

113Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications



[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[13] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
in Evolutionary Methods for Design Optimization and Control with
Applications to Industrial Problems. International Center for Numerical
Methods in Engineering, 2001, pp. 95–100.

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test
problems for evolutionary multiobjective optimization,” in Evolutionary
Multiobjective Optimization, ser. Advanced Information and Knowledge
Processing, A. Abraham, L. Jain, and R. Goldberg, Eds. Springer
London, 2005, pp. 105–145.

114Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications


