
Intelligent Assertions Placement Scheme for String Search Algorithms

Ali M. Alakeel

College of Computers and Information Technology

University of Tabuk

Tabuk, Saudi Arabia

alakeel@ut.edu.sa

Abstract— String search algorithms are found within the

internal structure of most Information Retrieval Systems in

military applications, aircraft software, medical applications,

and commercial applications. Like any software, different

errors may occur during the implementation of string search

algorithms. Because of the wide range of applications that use

string search algorithms, the consequences of these

programming errors may be disastrous or fatal. This paper

presents an intelligent assertions placement scheme for string

search algorithms with the objective to enhance the testability

of these algorithms during their testing phase. Instead of

placing assertions randomly or after each statement of the

program, our proposed method inserts assertions intelligently

in a set of selected locations of the string search algorithm that

are considered to be error prone or essential to the correctness

of the program. The results of a small case study show that

applying the proposed method may significantly increases the

chances of detaching programming errors associated with

string search algorithms that may go undetected using only

traditional black-box and white-box testing methods.

Keywords-assertions placement; string search algorithms;

assertion-based software testing; software testing

I. INTRODUCTION

String search algorithms are found within the internal
structure of most Information Retrieval Systems in military
applications, aircraft software, medical applications, and
commercial applications. The main function of a string
search algorithm is to identify all instances of a give pattern
p with size m characters that may exist in a text t with size n
characters, such that m<<n [1]. Like any software, different
errors may occur during the implementation of string search
algorithms. Because of the wide range of applications that
use string search algorithms, the consequences of these
programming errors may be disastrous or fatal. For example,
if a medical information retrieval system fails to return the
exact prescribed medicine, this action may jeopardize the
patient's life. Also, if a military missile control system fails
to retrieve the target’s exact coordinates, the results could be
disastrous [2]. Therefore, the correctness of the
implementation of any string search algorithm is crucial.

Software correctness may be improved by applying
thorough and rigorous software testing methods [16].
Program assertions are recognized as a supporting aid in
detecting faults during software testing, debugging and

maintenance [17-22]. Also, assertions have been shown to
increase software testability [23-25]. Therefore, assertions
may be inserted into software code in those positions that are
considered to be error prone or have the potential to lead to
software crash or failure.

Most string search algorithms, e.g., [3-15], share a
common programming internal structure which may make
them susceptible to the same type of errors during their
implementations. For example, most string search algorithms
are composed of two main parts: checking and skipping.
These two major parts are considered the heart of any string
matching algorithm where they involve the dealings and
manipulations of certain elements. Some of these elements
are the starting point of checking, the direction of checking,
the skipping strategy, the number of static or dynamic
reference characters, and different shift distances. For
example, a common programming error that may occur
during the implementation of a sting search algorithm it that
the shift distance might become zero. Also, it is possible that
the number of occurrences of the pattern p in text t found by
the algorithm might be less than or greater than the actual
occurrences of p in t. Therefore, the placement of
programming assertions in the proper locations within string
search algorithms may enhance the testability of these
programs and leads to the detection of programming faults
during the testing stage. It should be noted that the use of
assertions for testing purpose should only be used as a
complementary and an extra step after traditional testing
methods such as black-box and white-box testing methods
[3] have been applied to the software.

This paper presents an intelligent assertions placement
scheme for string search algorithms with the objective to
enhance the testability of these algorithms during their
testing phase. Instead of placing assertions randomly or after
each statement of the program, our proposed method inserts
assertions intelligently in a set of selected locations of the
string search algorithm that are considered to be error prone
or essential to the correctness of the program. The results of
a small case study show that applying the proposed method
may increases the chances of detaching programming errors
associated with string search algorithms that may go
undetected using only traditional black-box and white-box
testing methods.

The rest of this paper is organized as follows. Sections II
and III provide a brief introduction to assertions-based

122Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

software testing and string search algorithms, respectively.
Our proposed method for assertions placement in string
search algorithms is presented in Section IV. In Section V, a
case study is presented. Conclusions are presented in Section
VI.

II. ASSERTION-BASED SOFTWARE TESTING

Software testing is a very labor intensive task and cannot
by any means guarantees the correctness of any software or
that the software is error-free. However, rigorous software
testing may increase the confidence in the software under
test. There are two main approaches to software testing:
Black-box and White-box [3]. Test data generation is the
process of finding program input data that satisfies a given
criteria, e.g., [30, 31]. Test generators that support black-box
testing create test cases by using a set of rules and
procedures; the most popular methods include equivalence
class partitioning, boundary value analysis, cause-effect
graphing. White-box testing is supported by coverage
analyzers that assess the coverage of test cases with respect
to executed statements, branches, paths, etc. Programmers
usually start by testing their software using black-box
methods against a given specification. By their nature black-
box testing methods might not lead to the execution of all
parts of the code. Therefore, this method may not uncover all
faults in the program. To increase the possibility of
uncovering program faults, white-box testing is then used to
ensure that an acceptable coverage has been reached, e.g.,
branch coverage.

Program assertions are recognized as a supporting aid in
revealing faults during software testing, debugging and
maintenance [17-22]. Also, assertions have been shown to
increase software testability [23-25] An Assertion specifies a
constraint that applies to some state of computation. The
state of an assertion is represented by two possible values:
true or false. For example, assert(0<index<=100), is an
assertion that constraints the values of some variable “index”
to be in the range of 1 and 100 inclusive. As long as the
values of “index” is within the allowed range the state of this
assertion is true. Any other values beyond this range,
however, will cause the state of this assertion to become
false which indicates the violation of this assertion. Many
programming languages support assertions by default, e.g.,
Java and Perl. For languages without built-in support,
assertions can be added in the form of annotated statements.
For example, [18] presents assertions as commented
statements that are pre-processed and converted into Pascal
code before compilation. Many types of assertions can easily
be generated automatically such as boundary checks,
division by zero, null pointers, variable overflow/underflow,
etc. Beyond simple assertions that can easily be generated
automatically, a method to generate more complex assertions
for Pascal programs is presented in [18]. For this reason and
to enhance their confidence in their software, programmers
may be encouraged to write more programs with assertions.
It should be noted, however, that writing the proper type of
assertions and choosing the proper locations to inject them
into the software is very important to the effectiveness of this
methodology. Inserting assertions after every statement of

the program is an extreme case scenario which can makes
the whole process of assertions processing very costly and
prohibitive [28]. Therefore is its imperative to devise a
scheme for assertion’s placement within the software under
test such that assertions are only inserted in selected location
within the program’s code. Assertion-Based software testing
[18, 19, 21], has been shown to be effective in detecting
program faults as compared to traditional black-box and
white-box software testing methods. Given an assertion A,
the goal of Assertion-Based testing is to identify program
input for which A will be violated. The main aim of
Assertion-Based Testing is to increase the developer
confidence in the software under test. Assertion-Based
Testing is intended to be used as an extra and complimentary
step after all traditional testing methods have been performed
to the software. Assertion-Based Testing gives the tester the
chance to think deeply about the software under test and to
locate positions in the software that are very important with
regard to the functionality of the software. After locating
those important locations, assertions are added to guard
against possible errors with regard to the functionality
performed in these locations.

The process of writhing program assertions may depend
heavily on the tester’s experience and knowledge of the
program under test. To aid in this process a simple tool may
be used to automatically generate assertions in certain
locations of the program, which guard against errors, such as
division by zero, array boundary violations, uninitialized
variables, stack overflow, null pointer assignment, pointer
out of range, out of memory (heap overflow), and integer /
float underflow and overflow [18]. However, there are
application-specific locations in the program itself that may
need to be guarded by assertions depending on the
importance of these locations to the correctness of the
application. For example, in string search algorithms,
computing the location of the pattern in the input string and
index manipulation during the checking and skipping process
are very important to the correctness of these algorithms.

III. STRING SEARCH ALGORITHMS

The problem of string searching may be stated as
follows. Given a text string t of size n and a pattern string p
of size m (where n >> m), find all occurrences of p in t [1].
During our investigation of string matching algorithms, we
noticed that most of the proposed algorithms are usually
compared against classical exact string searching algorithm
such as Naïve (brute force) algorithm and Boyer-Moore-
Horsepool (BMH) algorithm [5]. Some of these algorithms
preprocess both the text and the pattern, e.g., [3], while
others need only to preprocess the pattern, e.g., [4, 5]. In all
cases, the exact string searching problem consists of two
major steps: checking and skipping. The checking step itself
consists of two main stages. In the first stage main objective
is to search along the text for a reasonable candidate string,
while the second stage goal is to perform a detailed
comparison of the candidate string, found in the first stage,
against the pattern to verify the potential match. Some
characters of the candidate string must be selected carefully
in order to avoid the problem of repeated examination of

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

each character of text when patterns are partially matched.
Intuitively, the fewer the number of character comparisons in
the checking step the better the algorithm is.

Different string search algorithms may differ in the way
they implement the checking process, e.g., [4, 5]. After the
checking step, the skipping step shifts the pattern to the right
to determine the next position in the text where the substring
text can possibly match with the pattern. The reference
character is a character in the text chosen as the basis for the
shift according to the shift table. Some string search
algorithms may use one or two reference characters and the
references might be static or dynamic [18, 19]. Additionally,
some algorithms focus on the performance of the checking
operation while others focus on the performance of the
skipping operation [10]. The shift distance used may differ
from one string search algorithm to another; it ranges from
only one position in the Naïve algorithm, up to m positions
in Boyer-Moore-Horspool algorithm [5], m+1 positions in
Raita's algorithm [4], and up to 3m+1 positions in CSA
algorithm [11]. The following text provides a detailed
description of the CSA sting search algorithm as reported in
[11].

A. Checking and Skipping Algorithm (CSA)

A string search algorithm is a succession of checking and
skipping, where the aim of a good algorithm is to minimize
the work done during each checking and to maximize the
length distance during the skipping. Most of the string
matching algorithms preprocess the pattern before the search
phase to help the algorithm to maximize the length of the
skips, the preprocessing phase in the CSA algorithm helps in
both increases, the performance of the checking step by
converting some of the character-comparison into character-
access and maximizes the length of the skips. At each
attempt during the checking steps the CSA compares the
character at last_mismatch (the character that causes the
mismatch in the previous checking step) with the
corresponding character in Text. If they match, the
comparison goes from right to left, including the compared
character at last_mismatch. The idea here is that the
mismatched character must be given a high priority in the
next checking operation. After a number of checking steps,
this leads to start the comparison at the least frequent
character without counting the frequency of each character in
the text.

For the skipping step, CSA has five reference characters,
including three static references and two dynamic references.
The Text pointer TextIx always points to the character, which
is next to the character corresponding to the last character in
Pat and the reference character ref always points to the
character that corresponds to the last character in Pat i.e. ref
= TextIx – 1. Now let ref1 = TextIx, then the reference
character ref2 can be calculated from ref or ref1, where ref2
can be found as “ref2 = TextIx + m - 1” or “ref2 = TextIx +
m” depending on the existence of ref or ref1 in Pat, where
ref2 = TextIx + m - 1 during the checking step if the
character at ref doesn’t exist in Pat, or ref2 = TextIx + m after
the checking step if the character at ref1 doesn’t exist in Pat.
In addition to that, CSA pre-processes the pattern to produce

two different arrays, namely skip and pos. Each array has a
length equals to the alphabet size. The skip array is used
when the reference character ref1 exists in Pat, it expresses
how much the pattern is to be shifted forward after the
checking step. While the pos array defines where each one of
the different reference characters ref1, ref2, ref_ref1, or
ref_ref2 is located in Pat, if any one of them exists in Pat,
where the two dynamic pointers ref_ref1 and ref_ref2 can be
calculated from two static pointers ref1 and ref2,
respectively. The CSA algorithm is designed to scan the
characters of both the text and the pattern from right to left.

1,2, 3 #include <iostream>; #include <iomanip>; #include <cstring>

4,5, 6 using std::cout; using std::cin; #define ASIZE 256

7 void PreProcessPat(char *, int , int *, int *);
8 void CSA(char *, int , char *, int , int *, int *);

9 int main(){

10 char Text[] = "test This is a test for string test";
11,12, 13 char Pat[] = "test"; int PatLength = 4; int TextLength = 35;

14,15, 16 int pos[1000]; int skip[1000]; cout<<Text;

17,18, 19 getchar(); cout<<Pat; getchar();
20 PreProcessPat(Pat, PatLength, pos, skip);

21 CSA(Pat, PatLength, Text, TextLength, pos, skip);

22, 23, 24 cout<<Text; getchar(); return 0; }
25 void PreProcessPat(char *Pat, int PatLength, int *pos, int *skip){

26 char c;

27 for(int j = 0; j<ASIZE; j++) {
28, 29 pos[j]=0; skip[j] = 2*PatLength; }

30 for(int j=0; j<PatLength; j++) {

31, 32, 33 c = Pat[j]; pos[c]= j +1; skip[c] = 2 * PatLength - j -1; }}
34 void CSA(char *Pat, int PatLength, char *Text, int TextLength, int

*pos, int *skip){

35 int TextIx, PatIx, last_mismatch, z;
36 int pt, pt1, ref, ref1, ref_ref1, ref2, ref_ref2;

37 int infix[ASIZE] = {0};

38, 39, 40 infix[Pat[0]] = 1; last_mismatch =0; TextIx = PatLength;
41 while(TextIx<=TextLength+1) {

42 if(Text[TextIx - PatLength + last_mismatch] == Pat[last_mismatch])

43 if(infix[Text[TextIx - PatLength]]) {
44 for(z = 0, PatIx = PatLength - 1; PatIx; PatIx--)

45 if(Text[TextIx - ++z] != Pat[PatIx]){

46 last_mismatch = PatIx;
47 goto next; }

48 cout<<"\nAn occurrence at location "<<TextIx-PatLength <<" to

"<<TextIx - 1<<"\n"; }
49 next:

50, 51 ref = TextIx - 1; ref1 = TextIx;

52 if (!pos[Text[ref]]){
53, 54, 55 ref2 = ref + PatLength; pt1 = pos[Text[ref2]]; ref_ref2 = ref2

+ PatLength - pt1;

56 TextIx += 3 * PatLength - pt1 - pos[Text[ref_ref2]];
} else {

57 pt = pos[Text[ref1]];

58 if(!pt){
59, 60, 61 ref2 = TextIx + PatLength; pt1 = pos[Text[ref2]]; ref_ref2 =

ref2 + PatLength - pt1;
62 TextIx += 3 * PatLength + 1 - pt1 - pos[Text[ref_ref2]]; } else {

63 ref_ref1 = ref1 + PatLength - pt;

64 TextIx += skip[Text[ref_ref1]] - pt + 1;
} }

}

65 return;
}

Figure 1. C++ implementation of CSA algorithm.

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

At each attempt, it first compares the character at
last_mismatch with the corresponding character in Text; if
they match, it compares the first character of Pat with the
corresponding characters in Text, and if they match CSA
compares the other characters from right to left including the
character at last_mismatch and excluding the first character
of Pat. Whether there is an occurrence of Pat in Text or not,
the existence of the character at ref in Pat will be checked
first, so there are two cases:

1) The character at ref exists in Pat: In this case, the
existence of Pat in Text will be checked. After the checking
step, the existence of ref1 in Pat will be examined. Hence,
there are two cases:

1.1) the character at ref1 doesn’t exist in Pat. Then ref2
and ref_ref2 will be calculated. Next, the pointer TextIx will
be moved forward to align with the character at ref_ref2.

1.2) the character at ref1 exists in Pat. Then ref_ref1 will
be calculated. Afterwards, the pointer TextIx will be moved
forward to align with the character at ref_ref1.

2) The character at ref doesn’t exist in Pat: In this case,
ref2 and ref_ref2 will be calculated according to the pointer
ref, then the pointer TextIx will be moved forward to align
with the character at ref_ref2. Fig. 1 shows a C++
implementation of the CSA algorithm.

IV. INTELLIGENT ASSERTIONS PLACEMENT SCHEME FOR

STRING SEARCH ALGORITHMS

In this section, we will describe in more details our
proposed approach for intelligent assertions placement in
string search algorithms.

A. Related Work

Assertions placement methods reported previously in the
literature, e.g., [24, 26, 27], are mostly dependent on the
intervention of the programmer and involves the analysis of
all of the programs’ code. In [24], a software tool is
developed which assist the programmer in inserting
assertions in a previously selected locations of C programs.
There is no real placement strategy proposed by [24] other
than what is proposed manually by the programmer. The
usefulness of this tool is in converting assertions specified in
pseudo-code into real programming code. Also, an assertion
placement scheme designed specifically for embedded
systems is proposed in [27]. Given a program P with a set of
statements S, a heuristic presented in [26] that is based on
propagation analysis [28] of each statement sk ∈ S found in
the program, estimates the probability that a program fault at
any statement, sk ∈ S, will propagate to affect negatively the
output of the program P. Based on this probability, this
scheme selects those statements of the program that should
be guarded by assertions. Although this heuristic is simple it
is impractical for large commercial programs because most
of its steps require human intervention. Additionally, this
heuristic may ends with placing assertions after every
statement of the program which makes it very expensive in
terms of additional execution time. Our proposed method
presented in this paper, only places assertions to guard those
parts of the program that are considered to be vital to its

functionality, therefore, minimizing the overhead that may
be introduced by assertions processing.

B. Motivation

During our investigation of a set of string matching
algorithms reported in the literature, e.g., [3-15], we found
out that most of these algorithms share a common
programming structure which makes them are susceptible to
the same types of programming errors that may occur during
their implementations. For example, it can be noticed that
there are different factors and elements of string matching
algorithms that may lead to program errors during the
implementations of these algorithms into real program’s
code. Some of these elements are the starting point of
checking, the direction of checking, the skipping strategy,
the number of static or dynamic reference characters, and
different shift distances. Therefore, like any software, it is
possible that program errors may occur during the
implementation of any string matching algorithm. For
instance, the shift distance might become zero or the number
of occurrences of the pattern p in text t found by the
algorithm might be less than or greater than the actual
occurrences of p in t. Moreover, it has been notice during
this study that these types of errors are not easily detected by
traditional black-box and white box software testing methods
[16].

Based on the properties of the internal structure of string
search algorithms, this paper proposes an assertions
placement strategy that intelligently guides the programmer
to the locations in which assertions should be placed. As will
be described shortly, our proposed method employs data
dependency analysis [29] on those parts of the program that
are vital to its functionality. Through our investigation of
string matching algorithms, the checking and skipping
components are the most important parts. Data dependency
analysis is described as follows. Given a program P with as
set of statements, S= {s1, s2, s3, …, sn} and a set of variables,
V= {v1, v2, v3, …, vm}, form which any statement, sk ∈ S,
may be composed, data dependency analysis defines the
relationships between the elements of the set of program
statements S with respect to the usage and modifications of
the set of variables V. Formally, there exists a data
dependency between two statements si and sj such that j > i
in their order of appearance in the program, with respect to a
variable, vt ∈ V, if the following three conditions holds. (1)
The statement si assigns a value to v, and (2) the variable vt is
used at the statement sj, and (3) there exists a program
control path between si and sj, in which the variable vt is not
modified. For example, in the program of Fig. 1, there exists
a data dependency between nodes 57 and 63 because the
variable “pt” is assigned a value at node 57, node 63 uses
variable “pt”, and there exists a program control path, from
node 57 to node 63, in which “pt” is not modified. This
program control path is: (57, 58, 63). The data dependencies
in the program may be represented by data dependency
graph [31], such that the nodes of the graph represent
program statements and the directed arcs represent data
dependencies.

125Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

1,2, 3 #include <iostream>; #include <iomanip>; #include <cstring>

4,5, 6 using std::cout; using std::cin; #define ASIZE 256
7 void PreProcessPat(char *, int , int *, int *);

8 void CSA(char *, int , char *, int , int *, int *);

9 int main(){
10 char Text[] = "test This is a test for string test";

11 char Pat[] = "test";

12,13, 14 int PatLength = 4; int TextLength = 35; int pos[1000];
15 int skip[1000];

16,17,18, 19 cout<<Text; getchar(); cout<<Pat; getchar();

20 PreProcessPat(Pat, PatLength, pos, skip);
21 CSA(Pat, PatLength, Text, TextLength, pos, skip);

22, 23 cout<<Text; getchar();

24 return 0; }
25 void PreProcessPat(char *Pat, int PatLength, int *pos, int *skip){

26 char c;

27 for(int j = 0; j<ASIZE; j++) {
/* A1: (j>=0)and(j<ASIZE) */ // Assertion No. 1

28, 29 pos[j]=0; skip[j] = 2*PatLength; }

30 for(int j=0; j<PatLength; j++) {
/* A2: (j>=0)and(j<PatLength) */ // Assertion No. 2

31, 32, 33 c = Pat[j]; pos[c]= j +1; skip[c] = 2 * PatLength - j -1; }}
34 void CSA(char *Pat, int PatLength, char *Text, int TextLength, int

*pos, int *skip){

35 int TextIx, PatIx, last_mismatch, z;
36 int pt, pt1, ref, ref1, ref_ref1, ref2, ref_ref2;

37 int infix[ASIZE] = {0};
/* A3: (Pat[0]>=0)and(Pat[0]<ASIZE)*/ // Assertion No. 3

38, 39, 40 infix[Pat[0]] = 1; last_mismatch =0; TextIx = PatLength;
41 while(TextIx<=TextLength+1) {
/* A4: ((TextIx - PatLength + last_mismatch)>=0)and((TextIx - PatLength +

last_mismatch)<TextLength) * // Assertion No. 4

42 if(Text[TextIx - PatLength + last_mismatch] ==

Pat[last_mismatch])
/* A5: ((Text[TextIx - PatLength])>=0)and((Text[TextIx - PatLength])<ASIZE)

*/ // Assertion No. 5

43 if(infix[Text[TextIx - PatLength]]) {
// Check the occurrence of Pat in Text from right to left excluding first

character

44 for(z = 0, PatIx = PatLength - 1; PatIx; PatIx--)
/* A6: ((TextIx - ++z)>=0)and((Text[TextIx - tLength])<TextLength)*/ //

Assertion No. 6

45 if(Text[TextIx - ++z] != Pat[PatIx]){

46. 47 last_mismatch = PatIx; goto next; }

48 cout<<"\nAn occurrence at location "<<TextIx-PatLength <<"
to "<<TextIx - 1<<"\n"; }

 49 next:

50, 51 ref = TextIx - 1; ref1 = TextIx;
/* A7: ((Text[ref])>=0)and((Text[ref])<1000)*/ // Assertion No. 7

52 if (!pos[Text[ref]]){
/* A8: ((Text[ref2])>=0)and((Text[ref2])<1000)*/ // Assertion No. 8

53,54 ref2 = ref + PatLength; pt1 = pos[Text[ref2]];

55 ref_ref2 = ref2 + PatLength - pt1;
/* A9: ((Text[ref_ref2])>=0)and((Text[ref_ref2])<1000) */ // Assertion No. 9

56 TextIx += 3 * PatLength - pt1 - pos[Text[ref_ref2]];
} else {
/* A10: ((Text[ref1])>=0 and ((Text[ref1])<1000) */ // Assertion No. 10

57, 58 pt = pos[Text[ref1]]; if(!pt){

/* A11: ((Text[ref2])>=0) and ((Text[ref2])<1000) */ // Assertion No. 11

59, 60 ref2 = TextIx + PatLength; pt1 = pos[Text[ref2]];

61 ref_ref2 = ref2 + PatLength - pt1;
/* A12: ((Text[ref_ref2])>=0) and ((Text[ref_ref2])<1000) */ //Assertion No. 12

62 TextIx += 3 * PatLength + 1 - pt1 - pos[Text[ref_ref2]]; }
else {

63 ref_ref1 = ref1 + PatLength - pt;
/* A13: ((Text[ref_ref1])>=0) and ((Text[ref_ref1])<1000) */ // Assertion No. 13

64 TextIx += skip[Text[ref_ref1]] - pt + 1; }
} }

65 return; }

Figure 2. CSA string search algorithm with assertions.

C. Proposed Intelligent Assertions Placement Scheme

Given a program P that represents an implementation of a
string matching algorithm, our proposed method for
intelligent assertions placement in string matching
algorithms, proceeds in three main stages as follows. In the
first stage, the checking and skipping components are
identified. Also, the boundaries statements of each part are
marked. Note that this step is performed manually. Giving
these marked points, the second stage performs,
automatically, a data dependency analysis of every statement
within the marked boundaries of the checking and skipping
components. The outcome of the first stage is a set of data
dependency sub-graphs of every statement in the checking
and skipping parts of the program P. For every statement sk,
that lies within the marked boundaries of the checking and
skipping boundaries, each data dependency sub-graphs will
be composed of the program statements and data
dependencies of the program’s data dependence graph for
which there exists a path that leads to the statement, sk.
Finally, data dependency sub-graphs are then used, in the
third stage, to produce a road map that will guide the process
of our assertions placement strategy. For example, after
applying the proposed method on the CSA program shown
previously in Fig. 1, thirteen assertions were placed in
selected locations. Fig. 2 shows a new version of the CSA
algorithm after assertions have been placed within its code
according to the proposed method in this research.

V. A CASE STUDY

The goal of this small case study is to show that applying
the proposed method for assertions placement may
significantly enhances the testability of string search
algorithms, therefore, increasing the chances of detecting
programs errors that may exist in these programs. In this case
study, the CSA string search algorithm [11], is implemented
by three different programmers with 3-5 years of experience.
This stage produced three different versions of the CSA
algorithm. Each of these versions is subjected to traditional
black-box and white-box software testing methods.
Specifically, the following software testing methods were
used: black-box testing as represented by boundary value
analysis and equivalence class partitioning while white-box
testing is represented by branch coverage. Errors detected
during these tests were fixed and this process is repeated
until these methods fail to uncover to detect any faults.

In order to increase our confidence in these programs,
our proposed scheme for assertions placement, described
previously in Section IV, is applied to the three versions of
the CSA string search algorithm. For each version, the
outcome of this stage is a modified copy with assertions
placed at selected location recommend by the proposed
method to be error prone or crucial to the correctness of the
CSA algorithm. For example, in the version of the CSA
algorithms shown in Fig. 1, thirteen assertions were inserted
in this version as shown in Fig. 2.

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

TABLE I. RESULTS OF CASE STUDY

Program Name #Assertions Inserted #Violations

CSA version#1 13 1

CSA version#2 15 2

CSA version#3 10 0

Note that some assertions are inserted automatically

without the intervention of the programmer, while more
complex assertions are developed manually by the
programmer and inserted in the recommended locations as
proposed method. Assertions that are generated
automatically are array boundary checks, division by zero,
null pointers and variable overflow/underflow. In the final
stage of this case study, Assertion-Based software testing
[18] is performed on each version of the CSA with
assertions. Assertion-Based software testing main objective
is to generate program’s input data for which a given
assertion is violated. If this assertion is violated, then a
program fault has been uncovered [18]. As stated in [18],
Assertion-Based software testing is intended to be used as an
extra and complimentary step after all traditional testing
methods, such as black-box and white-box [16], have been
performed on each original copy of each program used in
this case study. The result of this case study is shown in
Table I. It should be noted that the result of this experiment
may be different for different programs with different types
of assertions.

As reported in Table I, using our proposed method for
assertions placement together with Assertion-Based software
testing, we were able to uncover program faults in two out of
the three versions of the CSA string search algorithm used in
this case study. This is encouraging results considering that
all of these faults were not detected by traditional black-box
and white-box software testing methods during the first stage
of this study. Also, notice that each assertion’s violation
means that at least one fault has been uncovered.

VI. CONCLUTIONS AND FUTURE WORK

This research proposed a new method for intelligent
assertions placement in string search algorithms. The
proposed method main objective is to increase the testability
of string search algorithms and to enhance the delectability
of program faults during their testing phase. The proposed
method is intended to be used as a pre-step before Assertion-
Based software testing is performed on string search
algorithms. The result of a case study, conducted to evaluate
the proposed method, shows that using this method may
significantly enhances the chances of detecting program
faults associated with string search algorithms that may go
undetected by applying only traditional software testing
methods. Our future research concentrates on conducting an
experimental study to evaluate the proposed method in wider
range of string search algorithms and to investigate the
applicability of this method in other applications software.

REFERENCES

[1] G. Stephen, "String Searching Algorithms", World Scientific,
Singapore, 1994.

[2] [http://www.pcworld.com/article/110035/software_bug_may_cause_
missile_errors.html]. Retrieved: March 6, 2013.

[3] P. Fenwick, "Fast string matching for multiple searches", Software–
Practice and Experience, Vol. 31, No. 9, pp. 815–833, 2001.

[4] T. Raita, "Tuning the Boyer-Moore-Horspool String Searching
Algorithm", Software Practice and Experience, Vol. 22, No. 10, pp.
879-844, 1992.

[5] R.S. Boyer and J.S. Moore, "A fast string searching algorithm",
Communications of the ACM, Vol. 20, No. 10, pp. 762–772, 1977.

[6] M. S. Ager, O. Danvy, and H. K. Rohde, "Fast partial evaluation of
pattern matching in strings", ACM/SIGPLAN Workshop Partial
Evaluation and Semantic-Based Program Manipulation, San Diego,
California, USA, pp. 3 – 9, 2003.

[7] K. Fredriksson and S. Grabowski, “Practical and Optimal String
Matching”, Proceedings of SPIRE'2005, Lecture Notes in Computer
Science 3772, pp. 374-385, Springer Verlag, 2005.

[8] P. Smith, "On Tuning the Boyer-Moore-Horspool String Searching
Algorithm", Short Communication, Software Practice and
Experience, Vol. 24, No. 4, pp. 435-436, 1994.

[9] M. Mhashi, "The Effect of Multiple Reference Characters on
Detecting Matches in String Searching Algorithms," Software
Practice and Experience, Vol. 35, No. 13, pp. 1299 -1315, 2005.

[10] Mhashi, M., "The Performance of the Character-Access On the
Checking Phase in String Searching Algorithms", Transactions on
Informatica, Systems Sciences and Engineering, Vol. 9, pp. 38 –43,
2005.

[11] M. Mhashi and M. Alwakeel, “New Enhanced Exact String Searching
Algorithm” IJCSNS International Journal of Computer Science and
Network Security, Vol. 10, No. 4, pp. 13 – 20, 2010.

[12] R. N. Horspool, “Practical fast searching in strings,” Software -
Practice & Experience, Vol. 10, No. 6, pp. 501-506, 1980.

[13] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms, “IBM J. Res. Dev., Vol. 31, No. 2, pp. 249-260, 1987.

[14] A. Apostolico and M. Crochemore, “Optimal canonization of all
substrings of a string,” Information and Computation, Vol. 95, No. 1,
pp. 76-95, 1991.

[15] L. Colussi, “Correctness and efficiency of the pattern matching
algorithms,” Information and Computation, Vol. 95, No. 2, pp. 225-
251, 1991.

[16] G. Myers, “The Art of Software Testing,” John Wiley & Sons, New
York, 1979.

[17] D. Rosenblum, "A Practical Approach to Programming With
Assertions," IEEE Trans. on Sofware Eng., Vol. 21, No. 1, pp. 19-31,
January, 1995.

[18] B. Korel and A. Al-Yami, “Assertion-Oriented Automated Test Data
Generation,” Proc. 18th Intern. Conference on Software Eng., Berlin,
Germany, pp. 71-80, 1996.

[19] A. Alakeel, “An Algorithm for Efficient Assertions-Based test Data
Generation,” Journal of Software, vol. 5, No. 6, pp. 644-653, 2010.

[20] K. Shrestha and M. Rutherfor, "An Empirical Evaluation of
Assertions as Oracles," Proceedings of IEEE Inter. Conference on
Software Testing, Verification and Validation, pp. 110-119, 2011.

[21] A. Alakeel, “A Framework for Concurrent Assertion-Based
Automated Test Data Generation,” European Journal of Scientific
Research, Vol. 46, No. 3, pp. 352-362, 2010.

[22] S. Khalid, J. Zimmermann, D. Corney, and C. Fidge, "Automatic
Generation of Assertiosn to Detect Potential Security Vulnerabilities
in C Program That Use Union and Pointer Types," Proceedings of
Fourth Inter. Conference on Network and System Security, pp. 351-
356, 2010.

[23] J. Voas, “How Assertions Can Increase Test Effectiveness,” IEEE
Software, , pp. 118-122, March 1997.

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

[24] H. Yin and J.M. Bieman, " Improving Software Testabiaity with
Assertion Insertion," Proceedings of Inernational Test Conference,
pp. 831-839 October 1994.

[25] T. Tsai, C. Huang C., and J. Chang, "A Study of Applying Extended
PIE Technique to Sofware Testability Analysis," Proceedings of
IEEE Inter. Computer Software and Application Conf., pp. 89-98,
2009.

[26] J. Voas, "Software Testability Measurment for Intelligent Assertion
Placement," Software Quality Journal (6), pp. 327-335, 1997.

[27] V. Izosimov, et. al., "Optimization of Assertion Placment in Time-
Constarined Embedded Systems," Proceedings of The Sixteenth IEEE
European Test Symposium, pp. 171-176, 2011.

[28] J. Voas, "PIE: A Dynamic Failure-Based Technique," IEEE Trans. on
Software Eng., Vol. 18, No. 8, pp. 717-727, August, 1992.

[29] B. Korel, et. al., “Data Dependence Based Testability Transformation
in Automated Test Generation,” Proceedings of The 16th IEEE Inter.
Symposium on Software Reliability Engineering, pp. 245-254, 2005.

[30] P. McMinn, “Search-Based Software Test Data Generation: A
Survey,” Software Testing, Verification and Reliability, Vol. 14, pp.
105-156, 2004.

[31] M. Harman and P. McMinn, "A theoretical and empirical study of
search based testing: Local, global and hybrid search," IEEE
Transactions on Software Engineering, Vol. 36, No. 2, pp. 226-247,
2010.

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

