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Abstract— String search algorithms are found within the 

internal structure of most Information Retrieval Systems in 

military applications, aircraft software, medical applications, 

and commercial applications. Like any software, different 

errors may occur during the implementation of string search 

algorithms. Because of the wide range of applications that use 

string search algorithms, the consequences of these 

programming errors may be disastrous or fatal. This paper 

presents an intelligent assertions placement scheme for string 

search algorithms with the objective to enhance the testability 

of these algorithms during their testing phase. Instead of 

placing assertions randomly or after each statement of the 

program, our proposed method inserts assertions intelligently 

in a set of selected locations of the string search algorithm that 

are considered to be error prone or essential to the correctness 

of the program. The results of a small case study show that 

applying the proposed method may significantly increases the 

chances of detaching programming errors associated with 

string search algorithms that may go undetected using only 

traditional black-box and white-box testing methods. 

Keywords-assertions placement; string search algorithms; 

assertion-based software testing; software testing 

I.  INTRODUCTION 

String search algorithms are found within the internal 
structure of most Information Retrieval Systems in military 
applications, aircraft software, medical applications, and 
commercial applications.  The main function of a string 
search algorithm is to identify all instances of a give pattern 
p with size m characters that may exist in a text t with size n 
characters, such that m<<n [1]. Like any software, different 
errors may occur during the implementation of string search 
algorithms. Because of the wide range of applications that 
use string search algorithms, the consequences of these 
programming errors may be disastrous or fatal. For example, 
if a medical information retrieval system fails to return the 
exact prescribed medicine, this action may jeopardize the 
patient's life. Also, if a military missile control system fails 
to retrieve the target’s exact coordinates, the results could be 
disastrous [2]. Therefore, the correctness of the 
implementation of any string search algorithm is crucial. 

Software correctness may be improved by applying 
thorough and rigorous software testing methods [16]. 
Program assertions are recognized as a supporting aid in 
detecting faults during software testing, debugging and 

maintenance [17-22]. Also, assertions have been shown to 
increase software testability [23-25]. Therefore, assertions 
may be inserted into software code in those positions that are 
considered to be error prone or have the potential to lead to 
software crash or failure. 

Most string search algorithms, e.g., [3-15], share a 
common programming internal structure which may make 
them susceptible to the same type of errors during their 
implementations. For example, most string search algorithms 
are composed of two main parts: checking and skipping. 
These two major parts are considered the heart of any string 
matching algorithm where they involve the dealings and 
manipulations of certain elements. Some of these elements 
are the starting point of checking, the direction of checking, 
the skipping strategy, the number of static or dynamic 
reference characters, and different shift distances. For 
example, a common programming error that may occur 
during the implementation of a sting search algorithm it that 
the shift distance might become zero. Also, it is possible that 
the number of occurrences of the pattern p in text t found by 
the algorithm might be less than or greater than the actual 
occurrences of p in t. Therefore, the placement of 
programming assertions in the proper locations within string 
search algorithms may enhance the testability of these 
programs and leads to the detection of programming faults 
during the testing stage. It should be noted that the use of 
assertions for testing purpose should only be used as a 
complementary and an extra step after traditional testing 
methods such as black-box and white-box testing methods 
[3] have been applied to the software. 

This paper presents an intelligent assertions placement 
scheme for string search algorithms with the objective to 
enhance the testability of these algorithms during their 
testing phase. Instead of placing assertions randomly or after 
each statement of the program, our proposed method inserts 
assertions intelligently in a set of selected locations of the 
string search algorithm that are considered to be error prone 
or essential to the correctness of the program. The results of 
a small case study show that applying the proposed method 
may increases the chances of detaching programming errors 
associated with string search algorithms that may go 
undetected using only traditional black-box and white-box 
testing methods. 

The rest of this paper is organized as follows. Sections II 
and III provide a brief introduction to assertions-based 
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software testing and string search algorithms, respectively. 
Our proposed method for assertions placement in string 
search algorithms is presented in Section IV. In Section V, a 
case study is presented. Conclusions are presented in Section 
VI. 

II. ASSERTION-BASED SOFTWARE TESTING 

Software testing is a very labor intensive task and cannot 
by any means guarantees the correctness of any software or 
that the software is error-free. However, rigorous software 
testing may increase the confidence in the software under 
test. There are two main approaches to software testing: 
Black-box and White-box [3]. Test data generation is the 
process of finding program input data that satisfies a given 
criteria, e.g., [30, 31]. Test generators that support black-box 
testing create test cases by using a set of rules and 
procedures; the most popular methods include equivalence 
class partitioning, boundary value analysis, cause-effect 
graphing. White-box testing is supported by coverage 
analyzers that assess the coverage of test cases with respect 
to executed statements, branches, paths, etc. Programmers 
usually start by testing their software using black-box 
methods against a given specification. By their nature black-
box testing methods might not lead to the execution of all 
parts of the code. Therefore, this method may not uncover all 
faults in the program. To increase the possibility of 
uncovering program faults, white-box testing is then used to 
ensure that an acceptable coverage has been reached, e.g., 
branch coverage. 

Program assertions are recognized as a supporting aid in 
revealing faults during software testing, debugging and 
maintenance [17-22]. Also, assertions have been shown to 
increase software testability [23-25] An Assertion specifies a 
constraint that applies to some state of computation. The 
state of an assertion is represented by two possible values: 
true or false. For example, assert(0<index<=100), is an 
assertion that constraints the values of some variable “index” 
to be in the range of 1 and 100 inclusive. As long as the 
values of “index” is within the allowed range the state of this 
assertion is true. Any other values beyond this range, 
however, will cause the state of this assertion to become 
false which indicates the violation of this assertion.  Many 
programming languages support assertions by default, e.g., 
Java and Perl. For languages without built-in support, 
assertions can be added in the form of annotated statements. 
For example, [18] presents assertions as commented 
statements that are pre-processed and converted into Pascal 
code before compilation. Many types of assertions can easily 
be generated automatically such as boundary checks, 
division by zero, null pointers, variable overflow/underflow, 
etc. Beyond simple assertions that can easily be generated 
automatically, a method to generate more complex assertions 
for Pascal programs is presented in [18]. For this reason and 
to enhance their confidence in their software, programmers 
may be encouraged to write more programs with assertions. 
It should be noted, however, that writing the proper type of 
assertions and choosing the proper locations to inject them 
into the software is very important to the effectiveness of this 
methodology. Inserting assertions after every statement of 

the program is an extreme case scenario which can makes 
the whole process of assertions processing very costly and 
prohibitive [28]. Therefore is its imperative to devise a 
scheme for assertion’s placement within the software under 
test such that assertions are only inserted in selected location 
within the program’s code. Assertion-Based software testing 
[18, 19, 21], has been shown to be effective in detecting 
program faults as compared to traditional black-box and 
white-box software testing methods. Given an assertion A, 
the goal of Assertion-Based testing is to identify program 
input for which A will be violated. The main aim of 
Assertion-Based Testing is to increase the developer 
confidence in the software under test. Assertion-Based 
Testing is intended to be used as an extra and complimentary 
step after all traditional testing methods have been performed 
to the software. Assertion-Based Testing gives the tester the 
chance to think deeply about the software under test and to 
locate positions in the software that are very important with 
regard to the functionality of the software. After locating 
those important locations, assertions are added to guard 
against possible errors with regard to the functionality 
performed in these locations. 

The process of writhing program assertions may depend 
heavily on the tester’s experience and knowledge of the 
program under test. To aid in this process a simple tool may 
be used to automatically generate assertions in certain 
locations of the program, which guard against errors, such as 
division by zero, array boundary violations, uninitialized 
variables, stack overflow, null pointer assignment, pointer 
out of range, out of memory (heap overflow), and integer / 
float underflow and overflow [18]. However, there are 
application-specific locations in the program itself that may 
need to be guarded by assertions depending on the 
importance of these locations to the correctness of the 
application. For example, in string search algorithms, 
computing the location of the pattern in the input string and 
index manipulation during the checking and skipping process 
are very important to the correctness of these algorithms. 

III. STRING SEARCH ALGORITHMS 

The problem of string searching may be stated as 
follows. Given a text string t of size n and a pattern string p 
of size m (where n >> m), find all occurrences of p in t [1]. 
During our investigation of string matching algorithms, we 
noticed that most of the proposed algorithms are usually 
compared against classical exact string searching algorithm 
such as Naïve (brute force) algorithm and Boyer-Moore-
Horsepool (BMH) algorithm [5]. Some of these algorithms 
preprocess both the text and the pattern, e.g., [3], while 
others need only to preprocess the pattern, e.g., [4, 5]. In all 
cases, the exact string searching problem consists of two 
major steps: checking and skipping.  The checking step itself 
consists of two main stages. In the first stage main objective 
is to search along the text for a reasonable candidate string, 
while the second stage goal is to perform a detailed 
comparison of the candidate string, found in the first stage, 
against the pattern to verify the potential match. Some 
characters of the candidate string must be selected carefully 
in order to avoid the problem of repeated examination of 
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each character of text when patterns are partially matched. 
Intuitively, the fewer the number of character comparisons in 
the checking step the better the algorithm is. 

Different string search algorithms may differ in the way 
they implement the checking process, e.g., [4, 5]. After the 
checking step, the skipping step shifts the pattern to the right 
to determine the next position in the text where the substring 
text can possibly match with the pattern. The reference 
character is a character in the text chosen as the basis for the 
shift according to the shift table. Some string search 
algorithms may use one or two reference characters and the 
references might be static or dynamic [18, 19]. Additionally, 
some algorithms focus on the performance of the checking 
operation while others focus on the performance of the 
skipping operation [10]. The shift distance used may differ 
from one string search algorithm to another; it ranges from 
only one position in the Naïve algorithm, up to m positions 
in Boyer-Moore-Horspool algorithm [5], m+1 positions in 
Raita's algorithm [4], and up to 3m+1 positions in CSA 
algorithm [11]. The following text provides a detailed 
description of the CSA sting search algorithm as reported in 
[11]. 

A. Checking and Skipping Algorithm (CSA) 

A string search algorithm is a succession of checking and 
skipping, where the aim of a good algorithm is to minimize 
the work done during each checking and to maximize the 
length distance during the skipping.  Most of the string 
matching algorithms preprocess the pattern before the search 
phase to help the algorithm to maximize the length of the 
skips, the preprocessing phase in the CSA algorithm helps in 
both increases, the performance of the checking step by 
converting some of the character-comparison into character-
access and maximizes the length of the skips. At each 
attempt during the checking steps the CSA compares the 
character at last_mismatch (the character that causes the 
mismatch in the previous checking step) with the 
corresponding character in Text. If they match, the 
comparison goes from right to left, including the compared 
character at last_mismatch. The idea here is that the 
mismatched character must be given a high priority in the 
next checking operation. After a number of checking steps, 
this leads to start the comparison at the least frequent 
character without counting the frequency of each character in 
the text. 

For the skipping step, CSA has five reference characters, 
including three static references and two dynamic references. 
The Text pointer TextIx always points to the character, which 
is next to the character corresponding to the last character in 
Pat and the reference character ref always points to the 
character that corresponds to the last character in Pat i.e. ref 
= TextIx – 1. Now let ref1 = TextIx, then the reference 
character ref2 can be calculated from ref or ref1, where ref2 
can be found as “ref2 = TextIx + m - 1” or “ref2 = TextIx + 
m” depending on the existence of ref or ref1 in Pat, where 
ref2 = TextIx + m - 1 during the checking step if the 
character at ref doesn’t exist in Pat, or ref2 = TextIx + m after 
the checking step if the character at ref1 doesn’t exist in Pat. 
In addition to that, CSA pre-processes the pattern to produce 

two different arrays, namely skip and pos. Each array has a 
length equals to the alphabet size. The skip array is used 
when the reference character ref1 exists in Pat, it expresses 
how much the pattern is to be shifted forward after the 
checking step. While the pos array defines where each one of 
the different reference characters ref1, ref2, ref_ref1, or 
ref_ref2 is located in Pat, if any one of them exists in Pat, 
where the two dynamic pointers ref_ref1 and ref_ref2 can be 
calculated from two static pointers ref1 and ref2, 
respectively. The CSA algorithm is designed to scan the 
characters of both the text and the pattern from right to left. 

 
 

1,2, 3 #include <iostream>; #include <iomanip>;  #include <cstring> 

4,5, 6   using std::cout; using std::cin; #define ASIZE 256 

7   void PreProcessPat(char *, int , int *, int *); 
8   void CSA(char *, int , char *, int , int *, int *);  

9   int main(){ 

10   char Text[] = "test This is a test for string test"; 
11,12, 13   char Pat[] = "test";  int PatLength = 4; int TextLength = 35; 

14,15, 16   int pos[1000]; int skip[1000]; cout<<Text;  

17,18, 19   getchar();  cout<<Pat;  getchar(); 
20   PreProcessPat(Pat, PatLength, pos, skip); 

21   CSA(Pat, PatLength, Text, TextLength, pos, skip); 

22, 23, 24 cout<<Text;  getchar();  return 0; } 
25  void PreProcessPat(char *Pat, int PatLength, int *pos, int *skip){  

26   char c;  

27   for(int j = 0; j<ASIZE; j++) {  
28, 29    pos[j]=0; skip[j] = 2*PatLength;  }  

30  for(int j=0; j<PatLength; j++) {  

31, 32, 33     c = Pat[j]; pos[c]= j +1; skip[c] = 2 * PatLength - j -1; }}  
34  void CSA(char *Pat, int PatLength, char *Text, int TextLength, int 

*pos, int *skip){  

35    int TextIx, PatIx, last_mismatch, z;  
36   int pt, pt1, ref, ref1, ref_ref1, ref2, ref_ref2;  

37   int infix[ASIZE] = {0};  

38, 39, 40   infix[Pat[0]] = 1; last_mismatch =0; TextIx = PatLength;  
41   while(TextIx<=TextLength+1) {   

42  if(Text[TextIx - PatLength + last_mismatch] ==  Pat[last_mismatch])  

43  if(infix[Text[TextIx - PatLength]]) {  
44   for( z = 0, PatIx = PatLength - 1; PatIx; PatIx-- )  

45  if(Text[TextIx - ++z] != Pat[PatIx]){  

46       last_mismatch = PatIx;  
47       goto next;  }  

48  cout<<"\nAn occurrence at location  "<<TextIx-PatLength <<" to 

"<<TextIx - 1<<"\n";      }  
49   next:  

50, 51   ref = TextIx - 1; ref1 = TextIx;   

52   if ( !pos[Text[ref]] ){  
53, 54, 55     ref2 = ref + PatLength; pt1 = pos[Text[ref2]]; ref_ref2 = ref2 

+ PatLength - pt1;  

56  TextIx += 3 * PatLength - pt1 - pos[Text[ref_ref2]];  
} else {  

57   pt = pos[Text[ref1]];  

58   if( !pt){  
59, 60, 61  ref2 = TextIx + PatLength; pt1 = pos[Text[ref2]]; ref_ref2 = 

ref2 + PatLength - pt1;  
62  TextIx += 3 * PatLength + 1 - pt1 - pos[Text[ref_ref2]]; } else {  

63   ref_ref1 = ref1 + PatLength - pt;  

64  TextIx += skip[Text[ref_ref1]] - pt + 1;  
} }  

}  

65  return;  
} 

 

Figure 1.  C++ implementation of  CSA algorithm. 
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At each attempt, it first compares the character at 
last_mismatch with the corresponding character in Text; if 
they match, it compares the first character of Pat with the 
corresponding characters in Text, and if they match CSA 
compares the other characters from right to left including the 
character at last_mismatch and excluding the first character 
of Pat. Whether there is an occurrence of Pat in Text or not, 
the existence of the character at ref in Pat will be checked 
first, so there are two cases: 

1) The character at ref exists in Pat: In this case, the 
existence of Pat in Text will be checked. After the checking 
step, the existence of ref1 in Pat will be examined.  Hence, 
there are two cases:  

1.1) the character at ref1 doesn’t exist in Pat. Then ref2 
and ref_ref2 will be calculated. Next, the pointer TextIx will 
be moved forward to align with the character at ref_ref2.  

1.2) the character at ref1 exists in Pat. Then ref_ref1 will 
be calculated. Afterwards, the pointer TextIx will be moved 
forward to align with the character at ref_ref1.  

2) The character at ref doesn’t exist in Pat: In this case, 
ref2 and ref_ref2 will be calculated according to the pointer 
ref, then the pointer TextIx will be moved forward to align 
with the character at ref_ref2. Fig. 1 shows a C++ 
implementation of the CSA algorithm. 

IV. INTELLIGENT ASSERTIONS PLACEMENT SCHEME FOR 

STRING SEARCH ALGORITHMS 

In this section, we will describe in more details our 
proposed approach for intelligent assertions placement in 
string search algorithms. 

A. Related Work 

Assertions placement methods reported previously in the 
literature, e.g., [24, 26, 27], are mostly dependent on the 
intervention of the programmer and involves the analysis of 
all of the programs’ code. In [24], a software tool is 
developed which assist the programmer in inserting 
assertions in a previously selected locations of C programs. 
There is no real placement strategy proposed by [24] other 
than what is proposed manually by the programmer. The 
usefulness of this tool is in converting assertions specified in 
pseudo-code into real programming code. Also, an assertion 
placement scheme designed specifically for embedded 
systems is proposed in [27]. Given a program P with a set of 
statements S, a heuristic presented in [26] that is based on 
propagation analysis [28] of each statement sk ∈ S found in 
the program, estimates the probability that a program fault at 
any statement, sk ∈ S, will propagate to affect negatively the 
output of the program P. Based on this probability, this 
scheme selects those statements of the program that should 
be guarded by assertions. Although this heuristic is simple it 
is impractical for large commercial programs because most 
of its steps require human intervention. Additionally, this 
heuristic may ends with placing assertions after every 
statement of the program which makes it very expensive in 
terms of additional execution time. Our proposed method 
presented in this paper, only places assertions to guard those 
parts of the program that are considered to be vital to its 

functionality, therefore, minimizing the overhead that may 
be introduced by assertions processing. 

B. Motivation 

During our investigation of a set of string matching 
algorithms reported in the literature, e.g., [3-15], we found 
out that most of these algorithms share a common 
programming structure which makes them are susceptible to 
the same types of programming errors that may occur during 
their implementations. For example, it can be noticed that 
there are different factors and elements of string matching 
algorithms that may lead to program errors during the 
implementations of these algorithms into real program’s 
code. Some of these elements are the starting point of 
checking, the direction of checking, the skipping strategy, 
the number of static or dynamic reference characters, and 
different shift distances.  Therefore, like any software, it is 
possible that program errors may occur during the 
implementation of any string matching algorithm. For 
instance, the shift distance might become zero or the number 
of occurrences of the pattern p in text t found by the 
algorithm might be less than or greater than the actual 
occurrences of p in t. Moreover, it has been notice during 
this study that these types of errors are not easily detected by 
traditional black-box and white box software testing methods 
[16]. 

Based on the properties of the internal structure of string 
search algorithms, this paper proposes an assertions 
placement strategy that intelligently guides the programmer 
to the locations in which assertions should be placed. As will 
be described shortly, our proposed method employs data 
dependency analysis [29] on those parts of the program that 
are vital to its functionality. Through our investigation of 
string matching algorithms, the checking and skipping 
components are the most important parts. Data dependency 
analysis is described as follows. Given a program P with as 
set of statements, S= {s1, s2, s3, …, sn} and a set of variables, 
V= {v1, v2, v3, …, vm}, form which any statement, sk ∈ S, 
may be composed, data dependency analysis defines  the 
relationships between the elements of the set of program 
statements S with respect to the usage and modifications of 
the set of variables V. Formally, there exists a data 
dependency between two statements si and sj such that j > i 
in their order of appearance in the program, with respect to a 
variable, vt ∈ V, if the following three conditions holds. (1) 
The statement si assigns a value to v, and (2) the variable vt is 
used at the statement sj, and (3) there exists a program 
control path between si and sj, in which the variable vt is not 
modified. For example, in the program of Fig. 1, there exists 
a data dependency between nodes 57 and 63 because the 
variable “pt” is assigned a value at node 57, node 63 uses 
variable “pt”, and there exists a program control path, from 
node 57 to node 63, in which “pt” is not modified. This 
program control path is: (57, 58, 63). The data dependencies 
in the program may be represented by data dependency 
graph [31], such that the nodes of the graph represent 
program statements and the directed arcs represent data 
dependencies. 
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1,2, 3 #include <iostream>; #include <iomanip>; #include <cstring> 

4,5, 6   using std::cout; using std::cin; #define ASIZE 256 
7   void PreProcessPat(char *, int , int *, int *); 

8   void CSA(char *, int , char *, int , int *, int *);  

9   int main(){ 
10   char Text[] = "test This is a test for string test"; 

11   char Pat[] = "test"; 

12,13, 14   int PatLength = 4; int TextLength = 35; int pos[1000]; 
15   int skip[1000]; 

16,17,18, 19  cout<<Text; getchar(); cout<<Pat;  getchar(); 

20   PreProcessPat(Pat, PatLength, pos, skip); 
21   CSA(Pat, PatLength, Text, TextLength, pos, skip); 

22, 23  cout<<Text;  getchar(); 

24   return 0; } 
25   void PreProcessPat(char *Pat, int PatLength, int *pos, int *skip){  

26   char c;  

27   for(int j = 0; j<ASIZE; j++) {  
/* A1: (j>=0)and(j<ASIZE) */          // Assertion No. 1 

28, 29    pos[j]=0; skip[j] = 2*PatLength; }  

30  for(int j=0; j<PatLength; j++) {  
/* A2: (j>=0)and(j<PatLength) */           // Assertion No. 2 

31, 32, 33     c = Pat[j]; pos[c]= j +1; skip[c] = 2 * PatLength - j -1; }}  
34  void CSA(char *Pat, int PatLength, char *Text, int TextLength, int 

*pos, int *skip){  

35    int TextIx, PatIx, last_mismatch, z;  
36   int pt, pt1, ref, ref1, ref_ref1, ref2, ref_ref2;  

37    int infix[ASIZE] = {0};  
/* A3: (Pat[0]>=0)and(Pat[0]<ASIZE)*/ // Assertion No. 3 

38, 39, 40   infix[Pat[0]] = 1; last_mismatch =0; TextIx = PatLength;  
41   while(TextIx<=TextLength+1) {   
/* A4: ((TextIx - PatLength + last_mismatch)>=0)and((TextIx - PatLength + 

last_mismatch)<TextLength) *   // Assertion No. 4 

42   if(Text[TextIx - PatLength + last_mismatch] == 

Pat[last_mismatch])  
/* A5:  ((Text[TextIx - PatLength])>=0)and((Text[TextIx - PatLength])<ASIZE) 

*/  // Assertion No. 5                                                                          

43  if(infix[Text[TextIx - PatLength]]) {  
// Check the occurrence of Pat in Text from right to left excluding first 

character  

44   for( z = 0, PatIx = PatLength - 1; PatIx; PatIx-- )  
/* A6: ((TextIx - ++z)>=0)and((Text[TextIx - tLength])<TextLength)*/ // 

Assertion No. 6 

45  if(Text[TextIx - ++z] != Pat[PatIx]){  

46. 47      last_mismatch = PatIx; goto next; }  

48   cout<<"\nAn occurrence at location  "<<TextIx-PatLength <<" 
to "<<TextIx - 1<<"\n"; }  

 49   next:  

50, 51   ref = TextIx - 1; ref1 = TextIx;   
/* A7:  ((Text[ref])>=0)and((Text[ref])<1000)*/ // Assertion No. 7 

52    if ( !pos[Text[ref]] ){  
/* A8: ((Text[ref2])>=0)and((Text[ref2])<1000)*/  // Assertion No. 8 

53,54   ref2 = ref + PatLength; pt1 = pos[Text[ref2]];  

55  ref_ref2 = ref2 + PatLength - pt1;  
/* A9: ((Text[ref_ref2])>=0)and((Text[ref_ref2])<1000) */ // Assertion No. 9 

56  TextIx += 3 * PatLength - pt1 - pos[Text[ref_ref2]];  
} else {  
/* A10: ((Text[ref1])>=0 and ((Text[ref1])<1000) */  // Assertion No. 10 

57, 58    pt = pos[Text[ref1]];  if( !pt){  

/* A11: ((Text[ref2])>=0) and ((Text[ref2])<1000) */ // Assertion No. 11 

59, 60  ref2 = TextIx + PatLength; pt1 = pos[Text[ref2]];  

61  ref_ref2 = ref2 + PatLength - pt1;  
/* A12: ((Text[ref_ref2])>=0) and ((Text[ref_ref2])<1000) */  //Assertion No. 12 

62  TextIx += 3 * PatLength + 1 - pt1 - pos[Text[ref_ref2]]; }  
else {  

63   ref_ref1 = ref1 + PatLength - pt;  
/* A13: ((Text[ref_ref1])>=0) and ((Text[ref_ref1])<1000) */  // Assertion No. 13 

64  TextIx += skip[Text[ref_ref1]] - pt + 1; }  
} }  

65  return; } 

Figure 2.  CSA string search algorithm with assertions. 

C. Proposed Intelligent Assertions Placement Scheme 

Given a program P that represents an implementation of a 
string matching algorithm, our proposed method for 
intelligent assertions placement in string matching 
algorithms, proceeds in three main stages as follows.  In the 
first stage, the checking and skipping components are 
identified. Also, the boundaries statements of each part are 
marked. Note that this step is performed manually. Giving 
these marked points, the second stage performs, 
automatically, a data dependency analysis of every statement 
within the marked boundaries of the checking and skipping 
components. The outcome of the first stage is a set of data 
dependency sub-graphs of every statement in the checking 
and skipping parts of the program P.  For every statement sk, 
that lies within the marked boundaries of the checking and 
skipping boundaries, each data dependency sub-graphs will 
be composed of the program statements and data 
dependencies of the program’s data dependence graph for 
which there exists a path that leads to the statement, sk. 
Finally, data dependency sub-graphs are then used, in the 
third stage, to produce a road map that will guide the process 
of our assertions placement strategy. For example, after 
applying the proposed method on the CSA program shown 
previously in Fig. 1, thirteen assertions were placed in 
selected locations. Fig. 2 shows a new version of the CSA 
algorithm after assertions have been placed within its code 
according to the proposed method in this research. 

V. A CASE STUDY 

The goal of this small case study is to show that applying 
the proposed method for assertions placement may 
significantly enhances the testability of string search 
algorithms, therefore, increasing the chances of detecting 
programs errors that may exist in these programs. In this case 
study, the CSA string search algorithm [11], is implemented 
by three different programmers with 3-5 years of experience. 
This stage produced three different versions of the CSA 
algorithm.  Each of these versions is subjected to traditional 
black-box and white-box software testing methods. 
Specifically, the following software testing methods were 
used: black-box testing as represented by boundary value 
analysis and equivalence class partitioning while white-box 
testing is represented by branch coverage. Errors detected 
during these tests were fixed and this process is repeated 
until these methods fail to uncover to detect any faults. 

In order to increase our confidence in these programs, 
our proposed scheme for assertions placement, described 
previously in Section IV, is applied to the three versions of 
the CSA string search algorithm. For each version, the 
outcome of this stage is a modified copy with assertions 
placed at selected location recommend by the proposed 
method to be error prone or crucial to the correctness of the 
CSA algorithm. For example, in the version of the CSA 
algorithms shown in Fig. 1, thirteen assertions were inserted 
in this version as shown in Fig. 2.  
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TABLE I.  RESULTS OF CASE STUDY 

Program Name  #Assertions Inserted  #Violations  

CSA version#1  13  1  

CSA version#2  15  2  

CSA version#3  10  0  

 
Note that some assertions are inserted automatically 

without the intervention of the programmer, while more 
complex assertions are developed manually by the 
programmer and inserted in the recommended locations as 
proposed method.  Assertions that are generated 
automatically are array boundary checks, division by zero, 
null pointers and variable overflow/underflow. In the final 
stage of this case study, Assertion-Based software testing 
[18] is performed on each version of the CSA with 
assertions. Assertion-Based software testing main objective 
is to generate program’s input data for which a given 
assertion is violated. If this assertion is violated, then a 
program fault has been uncovered [18]. As stated in [18],   
Assertion-Based software testing is intended to be used as an 
extra and complimentary step after all traditional testing 
methods, such as black-box and white-box [16], have been 
performed on each original copy of each program used in 
this case study. The result of this case study is shown in 
Table I. It should be noted that the result of this experiment 
may be different for different programs with different types 
of assertions. 

As reported in Table I, using our proposed method for 
assertions placement together with Assertion-Based software 
testing, we were able to uncover program faults in two out of 
the three versions of the CSA string search algorithm used in 
this case study. This is encouraging results considering that 
all of these faults were not detected by traditional black-box 
and white-box software testing methods during the first stage 
of this study. Also, notice that each assertion’s violation 
means that at least one fault has been uncovered. 

VI. CONCLUTIONS AND FUTURE WORK 

This research proposed a new method for intelligent 
assertions placement in string search algorithms.  The 
proposed method main objective is to increase the testability 
of string search algorithms and to enhance the delectability 
of program faults during their testing phase. The proposed 
method is intended to be used as a pre-step before Assertion-
Based software testing is performed on string search 
algorithms. The result of a case study, conducted to evaluate 
the proposed method, shows that using this method may 
significantly enhances the chances of detecting program 
faults associated with string search algorithms that may go 
undetected by applying only traditional software testing 
methods. Our future research concentrates on conducting an 
experimental study to evaluate the proposed method in wider 
range of string search algorithms and to investigate the 
applicability of this method in other applications software. 
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