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Abstract—This paper presents work in progress towards 
building CASALITE, which is a Java programming framework 
to create lightweight, communicational, hybrid multiagent 
systems. Our goal is to create a framework that runs on small 
and large devices with a minimal footprint (lightweight), that 
relies in message communications as the basic mechanism of 
interaction (communicational), and that allows building a mix 
of agents ranging from purely software-based to robotic-based 
(hybrid). To validate our work we plan test cases for single 
robot control and multiple robot collaboration. CASALITE will 
adopt a robot simulator for offline testing of robot programs. 
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I.  INTRODUCTION 
When considering the advancement of technology, it is 

important not only to consider the importance of solving new 
problems but also finding ways to improve upon existing 
solutions.  Perhaps no field of study in computer science has 
contributed more to the automation and efficiency of 
optimizing problem solving than artificial intelligence.  The 
traditional view in this discipline holds that with a more 
complex problem we must construct a more complex 
solution, mostly through more sophisticated abilities for an 
individual problem-solver component. An alternative 
approach is to use not one complex (and usually expensive) 
component but several low-cost units to handle separate parts 
of the problem. However, it has been observed that having 
large team sizes and a greater variety of components raises 
the complexity of the system [1]. 

On an orthogonal dimension to multiagency we find the 
means of implementation, where systems are not limited to 
purely software or purely hardware components: it is 
increasingly common to find hybrids (such as in robotics), 
where versatile software programs are imbedded in the 
control of complex hardware devices. The focus of our 
research lies in this area, where groups of multiple separate 
components (named agents) work together on a task (either 
cooperatively or additively) and together comprise what is 
referred to as a multi-agent system (MAS). 

Agents can have varying degrees of cooperation and 
communication between them as well as a range of decision-
making independence. Agents can either have the same 
nature and abilities (homogenous) favoring tasks that are 
scalable via agent addition, or have different specializations 
(heterogeneous), favoring applications that benefit from a 

division of labor.  The greatest strength of a multiagent 
approach is the low coupling afforded by the modularity of 
its components. General multi-agent frameworks can then be 
tailored to an application’s requirements, leading to a world 
of possible implementations [2]. 

Multi-agent systems, while providing a useful abstraction 
are not fully adopted yet for general use. This can be 
attributed to a lack of awareness of the potential of agents 
working in tandem, small publicity of successfully 
implementations, over-expectations of early adopters of 
agent technologies, aversion to taking risks on a relatively 
young and unproven technology, and the lack of 
developmental and design tools for creating agent systems 
has led to trepidation of investing time and money into 
widespread multi-agent applications [3].  

Although MAS is an appealing abstraction to organize 
complex systems, we are concerned with the lack of 
appropriate tools to implement such systems and, in 
particular, hybrid communicative MAS. A hybrid framework 
would allow the implementation of potentially mixed 
populations of software-controlled hardware agents (e.g., 
sensors, robots) and purely software agents (e.g., centralized 
coordinators, decision-makers) that communicate through 
explicit messaging to organize and coordinate their actions. 
In our experience, several frameworks could be used to 
implement such systems; among them are Player/Stage, MS 
Robotics Developer Studio, JADE and CASA. Given the 
objectives defined by their creators, the features in these 
frameworks cannot squarely be compared vis-à-vis. 
However, these features to a varying degree make them 
amenable to hybrid MAS implementations. 

In this paper, we present as our contribution our early 
efforts implementing CASALITE, a small-footprint framework 
to build hybrid communicational multiagent systems. Our 
framework is planned to be lightweight for deployment in a 
range of devices, from small and embedded devices (such as 
SUN/Oracle SPOT [4]) to hand-held devices (such as phones 
and tablets), and computers with larger capacities. We chose 
Java as the implementation language to maximize the array 
of devices in which we could deploy our framework and for 
its suitability as a familiar language for undergraduate 
students. As a test case, we’ll deploy a CASALITE agent on an 
Android tablet that both interfaces with an iRobot Create and 
is able to exchange messages and video feedback to a remote 
CASALITE agent running in a laptop. To validate the 
appropriateness of CASALITE as a multiplatform framework, 
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we’ll also implement a CASALITE agent for the NAO 
humanoid robot [5]. To validate CASALITE as a collaborative 
framework we will implement multi-robot collaboration to 
solve a maze. Lastly, CASALITE supports inter-agent 
communication through socket-based streams transmitting 
text messages with LISP-like syntax compliant with KQML 
(Knowledge Query Manipulation Language) [6] and FIPA 
(Foundation for Intelligent Physical Agents) [7]. 

The remainder of the paper is organized as follows. 
Section 2 discusses MAS taxonomy and frameworks 
considered as existing alternatives to implement hybrid 
communicational MAS. Section 3 briefly describes an 
overview of the design of CASALITE, and Section 4 presents 
our planned experiments and conclusions. 

II. MAS TAXONOMY & FRAMEWORKS 
In one dimension, agents are organized by their degree of 

sophistication, from simple reactive components to 
components of massive decision-making complexity. In 
another dimension, agents are organized by their degree of 
collaboration, from isolated components to components that 
can function in teams and organizations [8]. In one other 
dimension, agents are organized by their behaviors; for 
example, grazing – where a robot traverses an area [9]. 
Naturally, this task is enhanced with a multi-agent approach, 
since several robots can coordinate their actions to cover an 
area faster. In such cases, the coordination mechanism must 
survive the worst-case scenario of unit loss, which should not 
be handled on a unit-to-unit basis but rather as a collective 
[10] enabling the team to continue working even in cases of 
unit loss [11]. We assume that message communication is a 
coordinating mechanism that complements or even subsumes 
other coordination mechanisms afforded by the environment. 
For example, a robot waiting for a block to be moved by 
another agent could perceive that the block has been moved 
(thus making the block the coordinating device) or could 
wait until the agent pursuing the task notifies that the block 
has been moved (thus making the message the coordinating 
device). In the former case, it is assumed that agents have the 
awareness and comprehension to know when a block has 
been fully moved (c.f., acting when the block is in an 
intermediate and not final moving state) whereas the latter 
waits until the agent responsible for the moving action has 
cleared its completion. Our approach is to assume that 
messages are the intrinsic coordination device and that 
agents use communication to coordinate their actions. 

Our initial approach towards finding a suitable hybrid 
MAS platform was to survey existing frameworks to identify 
candidates. Our ideal framework would be hybrid and 
multiplatform (able to implement robot interfaces and 
software agents), provide a simulator (in cases where 
hardware is not readily available) and communicative (it 
must support autonomous communication to enable explicit 
collaboration between agents). An additional requirement is 
that its communications comply to some degree to standards 
such as KQML and FIPA. The first framework identified 
was JADE (Java Agent Development Framework). Being 
written in a familiar language made JADE an attractive 
option as well as its inclusion of several Java packages that 

could be used as-is or modified for the specific platform.  
However, JADE lack of a robotic simulator yielded a less 
attractive option than other frameworks [12]. JADE has been 
used to implement MAS for human-robotic interaction [13], 
for coordinating a citywide taxi ordering service [14], and an 
intelligent hotel booking system [15] (further examples can 
be found in [16]). 

We also explored Player [17], which is a robotic device 
server bundled with a robot simulator named Stage. Stage is 
relatively lightweight, and is able to simulate hundreds of 
robots on a standard desktop PC. Communications in Player 
are achieved through socket streams (which is in line with 
our goals), making it compatible with programs written in 
languages supporting sockets.  In addition to the Stage 
simulator, the biggest draw to Player is its simplicity, since 
the server core has been simplified and reworked to the point 
where all the functionality is in a single thread of execution.  
Player’s lightweight approach has been explored in large 
distributed systems, such as the DARPA SDR program, 
which implemented a 100-robot experiment [18].  On the 
other hand, there have been reports of compatibility issues 
between Player drivers and certain robot models, with some 
problems being operating system specific [19].  

Robotics Developer Studio (MSRDS) [20][21] is 
Microsoft’s development environment for designing robot 
applications across a variety of programming languages.  
MSRDS has support for iRobot Create and LEGO Mind 
storm platforms.  MSRDS features a robust simulator that 
can be adjusted through user-made scripts to define 
simulation parameters.  The simulator was the most enticing 
aspect of MSRDS, supporting simple user-defined polygons 
to represent the robot and obstacles in the environment.  In 
our view it is the easiest to use framework investigated, 
although scripting was tedious and it does not lend itself well 
to modification. 

The Collaborative Agent Systems Architecture (CASA) 
[22][23] is an elaborated framework for agent interaction 
written in Java. CASA has a robust message and 
conversational structure based on social commitments, and 
implements a basic robot simulator for iRobot Create. Its 
computational footprint, however, makes CASA an unlikely 
choice to implement agents for small devices. 

After reviewing these frameworks, we weighted their 
communicational abilities, robotic simulation potential and 
programming fitness for undergraduate students and decided 
to explore redesigning the core functionality in CASA to 
support hybrid MAS systems. 

III. CASALITE 
CASALITE is a small-footprint framework to build hybrid 

communicational multiagent systems. It distances itself from 
existing frameworks with its adaptability and simplicity 
while incorporating features from other implementations. 

Figure 1 shows the core design of our framework. 
AbstractAgent is the super-class of all CASALITE agents. It 
has an event hub (to queue and process events) and a 
message hub (to queue incoming and handle outgoing 
messages). Events (not shown) can be synchronous (agents 
wait for its completion) or asynchronous (executing 
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independently of an agent’s thread), and can be recurrent 
(executing more than one time); if so, they can be timed to 
occur at intervals. Message hubs implement socket streams 
for receiving and sending text messages. Messages are text-
base strings whose syntax is KQML/FIPA-compliant. An 
example message can be “( request :content ( curve :speed 
200 :radius -3000 :bump any ) :language iRobot )”. In the 
context of our iRobotCreate implementation, this message 
requests the robot to drive forward at a certain speed and 
radius (i.e., drive in a curve) and stop when the bump sensors 
detect an obstacle. Events can have an event handler reacting 
to the event’s transitions, e.g., enqueue, dequeue, updates. 
Event handlers are useful to coordinate responses to message 
requests when the events created by these requests are 
resolved. AndroidAgent and NAOAgent (the latter not yet 
implemented) are agents that implement bare-bone 
scaffolding programs for their corresponding architecture 
(namely Android OS and NAO’s OS, respectively). 
AndroidiRobotAgent is an agent interfacing with the core 
implementation of an iRobotCreate controller, which has its 
own event hub to queue Create specific commands. This 
abstract class is extended by either the hardware-aware class 
of a concrete Create instance (iRobotActual) or by the 
simulation compatible class (iRobotSimulated) that runs 
within a 2-dimensional simulator ported from CASA. As will 
be described in the next section we implement an Android 
agent as the robot controller running in a tablet sitting atop 
an iRobot Create robot. Communication between the tablet 
and the Create are supported through a Bluetooth connection. 
For practical purposes both the tablet and the Create are 
treated as one autonomous component. 

IV. PLANNED EXPERIMENTS & CONCLUSIONS 
We plan several test cases to assert the adequacy of our 

framework, first for robot control and then for collaboration.  
Our first experiment will focus mostly on robot control, 

with minimal communicational interaction and decision-
making. In particular, we will implement a CASALITE agent 
in an Android tablet directly interfacing with an iRobot 
Create through a Bluetooth connection. As mentioned 
earlier, both the tablet and robot are considered a sole agent. 

This agent will receive messages with commands to control 
the robot from another agent located in a remote laptop. 
Likewise, the laptop agent will receive notifications from the 
Android agent informing of the success or failure of 
submitted commands plus notifications about the state of the 
robot. We are designing these notifications under a 
subscription model, in which the laptop agent subscribes to 
state changes on the robot monitored by the Android agent, 
including changes to bumper, wall, floor and cliff sensors. In 
addition, we will program the Android agent to stream video 
to the remote laptop agent and to display text messages sent 
from the laptop agent. At the end, the iRobot/Android agent 
should be able to drive (guided by a human operator on the 
laptop agent) through our building and to a different floor by 
taking an elevator (by using its text interface to request the 
help of human bystanders to push elevator buttons) and 
return to the place where we deployed it. 

Our second experiment will consist of multiple robots 
searching for an exit in a rectangular maze. Robots are 
deployed randomly without a priori knowledge of the 
environment although they will be aware of other robots 
through their communications. Initially robots are only aware 
of their immediate surroundings as afforded by their local 
sensors, and begin by traversing the maze in single-decision 
making mode, acquiring knowledge of the maze as they 
advance and using a simple search algorithm to identify 
paths to traverse. A different mindset takes over once agents 
come in contact with each other. At that point, agents 
communicate their individual maze mappings and combine 
them (taking as reference their point of contact) into 
common ground to start division of labor. Any new search 
paths are negotiated between these agents and any new map 
space discoveries are shared through their communications, 
with the potential to add other agents (either isolated or part 
of other clusters) as they come in contact with each other. 
Agents will continue exploring the maze until one of the 
robots finds an exit and communicates its location to all 
agents in its cluster. To facilitate traversal of the maze, 
robots will need an ultrasound sensor not currently provided 
on the Create. This feature will also need to be implemented 
in the robot simulator. 

To conclude, in this paper we present our earlier efforts 
to build CASALITE, a Java-based framework for 
implementing lightweight, communicational, hybrid 
multiagent systems. Agents are programmed with basic 
communicational abilities to transmit KQML/FIPA-syntax 
compliant text messages through network streams as a way 
to enable collaboration. Currently, we have implemented the 
basic functionality of an abstract agent and the interface to 
the iRobot Create. Shortly we will begin implementing the 
Android agent to be deployed in our initial single robot test 
case scenario. After this test case we will integrate to 
CASALITE the robot simulator from the CASA framework 
and use it to program the collaborative test case in which 
several robots communicate to find a maze exit. 

 
Figure 1. Overview of the main class hierarchy in CASALITE. 
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