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Abstract—Six regression type binary classifiers based on linear
and logistic models have been evaluated using a complex simu-
lation experiment. The classifiers were compared with respect to
the robustness to unexpected changes of the models that describe
data in training and test sets. The simple logistic regression has
appeared to be the best one in these circumstances.
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I. INTRODUCTION

Classification algorithms are probably the most frequently
used tools of data mining. The methods of their construction
in the Artificial Intelligence (AI) community is known under
the name of supervised learning. There are thousands of
books and papers devoted to their theory and applications.
Thomson Reuter’s scientific database Web of Science displays
information (as on 2015 April 22th) on over 96,000 papers
with a topic related to the query “classification algorithms”.
The information about theoretical foundations of classification
algorithms can be found, e.g., in books by Duda et al. [1]
and Hastie et al. [2]. Comprehensive description of application
aspects of classification algorithms can be found in the book
by Witten et al. [3].

The main problem with the evaluation of each, from
among hundreds of already proposed, classifier is estimation
of its quality characteristics. Japkowicz and Shah in their
excellent book [4] write about two general approaches to this
problem: de facto approach based on computing of many
different quality characteristics, and statistical approach in
which unavoidable randomness of classification results is taken
into account. The de facto approach can be used for any
type of testing procedure, and is predominately used by the
AI community. The applicability of the statistical approach
is somewhat restricted, as the analyzed data should fulfill
some requirements precisely described in terms of the theory
of probability. These requirements are easily verified if we
use for testing purposes artificially generated data. However,
the usage of such data is not appreciated by the AI commu-
nity, who prefers to use real-life benchmarks for evaluation
purposes. When we use benchmark data for evaluation, the
data used for the construction of an algorithm and the data
used for its evaluation come from the same set of real-life
values. In order to assure validity of comparisons different
schemes of randomization, e.g., cross-validation techniques,
are used. This approach is commonly accepted, and valid
for the great majority of potential applications. It is, usually
rightly, assumed that a classifier (in fact, the method of its
construction) is of good quality if it performs well on many

different benchmarks. However, in nearly every case (see, e.g.,
Hand [5]) it is assumed that the classifier is constructed and
further used on the same population of classified objects. In
some cases, however, this assumption may be questioned.

Robustness is well defined in statistics. According to
Wikipedia, robust statistics “is a statistical technique that
performs well even if its assumptions are somewhat violated
by the true model from which the data were generated”.
This definition of robustness can be directly applied to these
methods of classification which are based on well established
statistical methodology, such as, e.g., regression. In general,
however, many classification methods, such as, e.g., neural
networks or decision trees, are not based (at least, directly)
on statistical models. Therefore, in the machine learning com-
munity robustness is often understood somewhat differently,
as the ability to perform well for many different sets of real
data. David Hand, one of the most renowned researchers in the
area of machine learning, in his overview paper [5] discusses
consequences of breaking the assumption that the data in
the design (training) set are randomly drawn from the same
distribution as the points to be classified in the future. He gives
references to some works related to this problem, and presents
examples of problems encountered in the area of the credit
scoring and banking industries. It has to be noted, however,
that the number of papers devoted to the problem of robustness,
understood as in [5], is rather small, For example, Japkowicz
and Shah [4], while discussing this type of the robustness of
classifiers, cite only the paper by Hand [5].

Hryniewicz [6] [7] considers the case when binary clas-
sifiers are used for quality evaluation of items in produc-
tion processes. In many cases of such processes, quality
characteristics cannot be directly evaluated during production
time. Sometimes it is impossible, when a testing procedure
is destructive or impractical, or when a testing procedure is
costly or lasts too long. In such cases, an appropriate classifier
which labels monitored items as “good” or “bad” is constructed
using the data coming from specially designed (and usually
costly) experiments, and then used in production practice. The
situation does not rise any objections if the process from
which items used in the construction phase of a classification
algorithm are taken is the same as a process in which obtained
classifiers are used. Hryniewicz [6], [7] has demonstrated that
deterioration of such process may have detrimental effects
on the quality of classification. Similar problems may be
also encountered in other fields of applications. Consider, for
example, a classifier which is used for the prediction of cancer
recurrence who may change its quality characteristics when
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future patient will undergo a treatment which was not used at
the moment when this classifier was built.

The problems described in the previous paragraph may
suggest that in the evaluation of classifiers we should add
another dimension, namely the robustness to the change of
population understood as the change of probability distribu-
tions that describe input variables in the classification process.
At the moment this can be achieved using artificially generated
data, as appropriate, and widely known, benchmarks seem not
to exist. In the research described in this paper, we have used
software designed for the generation of complex nonlinear
processes with statistically dependent data described in Section
II. We have evaluated binary classifiers whose construction is
based on generalized linear models and regression techniques.
In particular, we analyzed classifiers based on

• Simple linear regression,
• Linear regression with interactions,
• Simple logistic regression,
• Logistic regression with interactions,
• Linear Discrimination Analysis with a symmetric de-

cision criterion,
• Linear Discrimination Analysis with an asymmetric

decision criterion.

We have assumed that the dependence between variables in
our simulation model may be described by different copulas,
characterized by different strength of dependence. The main
goal of the research was twofold. First, we have tried to
evaluate the robustness of the considered classifiers to shifts of
the expected values of input variables (attributes). Second, we
have tried to find if such robustness depends upon the type of
dependence and its strength. Because of limited volume of this
paper only few results will be presented in details. In contrast
to the results published by other authors, we present the results
of experiments performed in a strictly controlled environment
that simulates conditions which are significantly different from
those usually assumed for the considered classification models.

The paper is organized as follows. In Section II we shortly
describe the simulation software and considered classifiers.
Then, in Section III we describe some methods of evaluation.
The most important results of experiments will be illustrated
with examples in Section IV. Finally, in Section V we will
conclude the experiments taking also into account the results
that have not been presented in details in this paper.

II. DESCRIPTION OF SIMULATION EXPERIMENTS

A. Simulation software
Realization of the task formulated in Section I requires an

implementation of complex mathematical model in a form of
simulation software. On the most general level, let us assume
that a general mathematical model that describes dependence
of input variables (predictors) with an output binary variable is
a simple one. Let Z1, . . . , Zp be p output characteristics whose
values are not directly observed in an experiment. Assume
now that these values should be predicted using observations
X1, . . . , Xk of k predictors. This problem is easy to solve
if we assume that we know the joint probability distribution
of input and output variables, i.e., the probability distribution
of a combined vector (Z1, . . . , Zp, X1, . . . , Xk). According to
the famous Sklar’s theorem this distribution is unequivocally

described by a (p + k)-dimensional copula, and marginal
probability distributions of Z1, . . . , Zp and X1, . . . , Xk. Such
a general model is hardly applicable in practice. Therefore,
our simulation software should be based on a model which
is simpler and more easy for practical interpretation. In this
research we have used a hierarchical 3-level model, originally
proposed in [6]. On the top level of this model there is an
auxiliary one-dimensional real-valued variable T . This value
is transformed to a binary one (in which we are interested in)
by means of the following transformation

Zt =

{
0 , T ≥ t
1 , T < t

(1)

The instances with the value Zt = 1 we will call “positive
cases” or “positives”, and the instances with the value Zt = 0
we will call “negative cases” or “negatives”. This model has
a direct interpretation in the case considered by Hryniewicz
[6] who modeled a monitoring of a production process with
indirectly observable quality characteristic. The first level of
our model describes the predictors X1, . . . , Xk. In order to
simplify simulations we assume that consecutive k − 1 pairs
of predictors (Xi, Xi+1), i = 1, . . . , k − 1 are described by
k−1 copulas Ci(Fi(Xi), Fi+1(Xi+1)), i = 1, . . . , k−1, where
F1(X1), . . . , Fk(Xk) are the cumulative probability functions
of the marginal distribution of the predictors. In order to
simulate the input variables we have to assume the type of
the proposed copulas, and the strength of dependence between
the pairs of random variables whose joint two-dimensional
probability distributions are described by these copulas. In the
AI community Pearson’s coefficient of correlation r is often
used as the measure of dependence. Unfortunately, its applica-
bility is limited to the case of the classical multivariate normal
distribution, or - in certain circumstances - to the case of
the multivariate elliptic distributions (for more information see
[8]). When dependent random variables cannot be described
by such a model, and it is not an unusual case in practice, we
propose to use Kendall’s coefficient of association τ defined,
in its population version in terms of copulas, as (see [9])

τ(X,Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1. (2)

Numerical comparisons of the values of Pearson’s r,
Kendall’s τ , and - another popular nonparametric measure of
dependence - Spearman’s ρ are presented in [10], and show
that the usage of Pearson’s r in the analysis of data that cannot
be described by the normal distribution may lead to wrong
conclusions, especially in the case of negative dependence.
Therefore, Kendall’s τ is, in such cases, a much better measure
of dependence.

In order to have a more realistic model for simulation
purposes, it was proposed in [6] to use an in-between sec-
ond level of latent (hidden) variables HX1, . . . ,HXk. Each
hidden variable HXi is associated with the predictor variable
Xi, and its fictitious realizations are measured on the same
scale as the predicted continuous random variable T . The
dependence between HXi and Xi is described by a copula
CHi(FHi(HXi), Fi(Xi)). Moreover, in our model we assume
that there exists a certain linear relationship between the
expected value of HXi and the expected value of Xi. This
assumption is needed if we want to model the effects of the
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shifts in the expected values of the predictors on the expected
value of the predicted auxiliary variable T which is related to
the hidden variables by a certain, possibly nonlinear, function

T = f(HX1, . . . ,HXk). (3)

In real circumstances, such as those described in [6],
the probability distribution of T , and hence the probability
distribution of Zt, can be observed only in specially designed
experiments. The results of such experiments can be viewed
upon as data sets coming from supervised learning experi-
ments. In our research we simulate similar experiments, and
we use actual (i.e., generated by our software) and predicted
(i.e., the results generated by classifiers) binary outputs for
constructing and testing, several, say s, classifiers, K1, . . . ,Ks,
each of the form

Z ′
t = K(X1, . . . , Xk). (4)

The mathematical model described above was implemented in
a software system written in FORTRAN. The reason for using
this old programming language was twofold. First, because of
a great amount of needed computations the usage of popular
among statisticians interpreted languages like R is completely
inefficient. Second, because of the long history of the usage
of this programming language in statistics many numerically
effective procedures are widely available.

B. Description of the experiment
In this paper, we describe the results for only four input

variables. This restriction was due to limited time of com-
putations. One has to note that even in this restricted model
one run of Monte Carlo simulations may last several days of
continuous work of a fast PC computer. The simulation process
described in this paper consists of three parts. First, a stream of
data points, i.e., the values of predictors, the values of hidden
variables, the value of the unobserved auxiliary output variable,
and the observed output binary variable are generated. Next,
these simulated data serve as training data sets for building
several classifiers. Finally, test data sets are generated, and
used for the evaluation of considered classification (prediction)
algorithms.

In our simulation experiment the probability distributions
of predictors defined by a user on the first level of the model
can be chosen from a set of five distributions: uniform, normal,
exponential, Weibull, and log-normal. For the second level of
the model a user can choose the probability distributions of the
hidden variables from a set of distributions which are defined
on the positive part of the real line: exponential, Weibull, and
log-normal. The dependence between the pairs of predictors,
and between predictors and associated hidden variables, can
be described by the following copulas: independent, normal,
Clayton, Gumbel (only positive dependencies), Frank, and
FGM (only weak dependencies). The detailed description of
these copulas can be found, e.g., in [9]. The strength of this
dependence is defined by the value of Kendall’s coefficient of
association τ . The expected values of the distributions of the
hidden variables in this simulation model depend in a linear
way on the values of its related predictors. At the next stage
of simulation, hidden random variables are transformed to the
auxiliary output random variable T . The relation between the

hidden variables and T is strongly non-linear, and is described
by operators of a “min-max” type. Finally, the auxiliary output
random variable T is transformed to the binary output variable
which is used for classification purposes. The proposed model
allows to generate data with great variety of properties (non-
linear dependence of a different strength, different probability
distributions, etc.) that are significantly different from those
usually assummed for linear regresion models.

The scheme of the simulation of a data point, for an
exemplary set of input parameters (probability distributions,
copulas, and values of Kendall’s τ ), is presented in Figure
1. The values of four input attributes are generated, respec-
tively, from the normal, exponential, logarithmic normal, and
Weibull distributions. The generated values are statistically
dependent, and the dependencies are described, respectively,
by the following copulas: Clayton (with τ = 0.8), Normal
(with τ = −0.8), and Frank (with τ = 0.8). Then, for
each input attribute the system generates an unobserved (hid-
den) value. These hidden values are generated, respectively,
from the logarithmic normal, exponential, exponential, and
Weibull distributions. The parameters of these distributions
depend in a linear way upon the values of the respective
input attributes (this dependence is not depicted in Figure
1). Moreover, they are also statistically dependent upon the
values of the generated input attributes, and these dependencies
are described, respectively, by the following copulas: Normal
(with τ = −0.8), Frank (with τ = 0.9), Gumbel (with
τ = −0.9), and Normal (with τ = −0.8), and Clayton (with
τ = −0.8). Finally, the real-valued output is calculated using
the formula depicted in Figure 1, and this value is transformed,
by using (1), to the binary output variable. The generated 5-
tuple (4 input attributes, and a binary output value) describes
one point in the training data set. The points of the test
set are generated similarly, with the same or different (when
robustness is evaluated) parameters of the model. The number
of input variables (four) has been chosen in accordance with
the opinion presented in [5] that in real situations the number
of attributes which really influence quality characteristics of a
classifier is usually small.

Figure 1. An exemplary scheme of the simulation of a data point

Several types of classifiers have been implemented in our
simulation program. The classifiers are built using samples
of size nt of training data consisted of the vectors of the
values of predictors (x1, x2, x3, x4), and the actual value of
the assigned class. In this paper, we consider only six of
them which represent three different general approaches to the
classification problem.
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Binary linear regression. The first considered classifier is a
simple (of the first order) binary linear regression (LINREG4).
We label the considered classes by 0 and 1, respectively, and
consider these labels as real numbers, treating them as obser-
vations of a real dependent variable in the linear regression
model of the following form:

R4 = w0 + w1 ∗X1 + w2 ∗X2 + w3 ∗X3 + w4 ∗X4, (5)

where R is the predicted class of an item described by
explanatory variables X1, X2, X3, X4, and w1, w2, w3, w4, w0

are respective coefficients of the regression equation estimated
from a training set of nt elements. The value of R estimated
from (5) is a real number, so an additional requirement is
needed for the final classification (e.g., if R < 0, 5 an item
is classified as belonging to the class 0, and to the class 1
otherwise). The second considered classifier is also a linear
one, but with additional variables describing interactions of
the second order between the input variables (LINREG14).
The regression function (of the second order) in this case is
the following

R14 = w0 + w1 ∗X1 + · · ·+ w5 ∗X2
1 + · · ·+

w9 ∗X1 ∗X2 + · · ·+ w14 ∗X3 ∗X4.
(6)

The main advantage of these two classifiers is their simplicity.
Moreover, the classical linear regression is implemented in all
spreadsheets, such as, e.g., MS Excel. For this reason we have
chosen these classifiers as the easiest to implement in practice
without any specialized software.

Logistic regression. The next two classifiers are built using
a generalized linear regression model, namely the logistic
regression. The logistic regression is recommended by many
authors (see, e.g., [2]) as the best regression tool for the
analysis of discrete data. In this model the dependence of the
output RL upon the input variables is modeled by the logistic
function

RL =
1

1 + exp(−f(X1, . . . , X4))
, (7)

where the function f(X1, . . . , X4) is described either by the
right side of (5) of the LOGREG4 model, or by the right
side of (6) of the LOGREG14 model. Unfortunately, the
implementation of the logistic regression is not as simple as
in the case of the linear regression. The estimation of its
parameters requires the usage of numerical procedures that
are implemented in specialized software (available, e.g., in the
WEKA package).

Linear Discriminant Analysis (LDA). The last two classi-
fiers implement the LDA introduced by Fisher, and described
in many textbooks on multivariate statistical analysis and data
mining (see, e.g., [2]). This method is historically the first
classification method used in practice, and according to [5] its
efficiency has been proved empirically by many authors. In
the LDA statistical data are projected on a certain hyperplane
estimated from the training data. New data points, projected
on this hyperplane, which are closer to the mean value of
the projected on this hyperplane training data representing the
class 0 than to the mean value of training data representing the
remaining class 1 are classified to the class 0. Otherwise, they
are classified to the class 1. The equation of the hyperplane is
given by the following formula:

L = y1 ∗X1 + y2 ∗X2 + y3 ∗X3 + y4 ∗X4 + y0, (8)

where L is the value of the transformed data point calculated
using the values of the explanatory variables X1, X2, X3, X4,
and y1, y2, y3, y4, y0 are respective coefficients of the LDA
equation estimated from a training set. If ZL denote the
decision point, a new item is classified to the class 0 if
L ≤ ZL, and to the class 1 otherwise. The LDA may not
perform well in the case of unbalanced data. Therefore, in our
simulation we implemented two methods of the calculation of
ZL. First, the classical one (LDA-SYM), when this point is
just the average of the mean values of the transformed data
points from the training set that belonged to the class 0 and
the class 1, respectively. Second, an asymmetric one (LDA-
ASYM), recommended for the analysis of unbalanced data
sets, where ZL is located asymmetrically between the two
mean values mentioned above, depending upon the number of
items belonging to each class in the test set. The calculation
of the LDA equation (8) is not so simple. However, it can be
done using basic versions of many statistical packages such
as SPSS, STATISTICA, etc. Moreover, the LDA problem can
be reformulated in terms of a simple linear regression, so the
statistical tools available in spreadsheets may also be used for
computations.

III. EVALUATION OF BINARY CLASSIFIERS

Proper evaluation of binary classifiers is not as simple as it
looks like. If we do not consider any costs of misclassification
the whole information about the quality of classifiers is con-
tained in the so called confusion matrix, presented in Table I
[4].

TABLE I. CONFUSION MATRIX

Pred Negative Pred Positive
Act Negative True negative (TN) False positive (FP) N=TN+FP
Act Positive False negative (FN) True positive (TP) P=FN+TP

All measures of the quality of classifiers are built using
the information contained in this matrix. A comprehensive
overview of these measures can be found in many sources
such as, e.g., Chapter 3 of the book by Japkowicz and
Shakh [4]. The most frequently used measure is Accuracy
(= (TN + TP )/(N + P )). It estimates the probability
of correct classification. However, in certain circumstances
(e.g., when classes are unbalanced) this measure does not
let to discriminate the quality of different classifiers. This
happens to be the case in experiments described in this paper.
Other popular and important measures, such as Precision (=
TP/(TP +FP )), Sensitivity or Recall (= TP/(TP +FN)),
and Specificity (= TN/(FP + TN)), describe only certain
features of binary classifiers. For example, high values of Pre-
cision in statistical terms are equivalent to low values of type
I classification error when “Positives” are considered as the
relevant class. Similarly, high values Sensitivity in statistical
terms are equivalent to low values of type II classification
error. When quality of the classification of “Negatives” is
also worth of consideration, one has to take into account the
value of Specificity. In the performed experiment we used all
these measures for the evaluation purposes. However, in this
paper, due to its limited volume, we present the analysis of
an aggregate measure named the F1 score (or F1 measure),
defined as the harmonic average of Precision and Sensitivity.
Low values of this measure indicate that a classifier has a large
value of at least one of type I or type II errors.
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IV. RESULTS OF EXPERIMENTS

The simulation system described in Section II was used
in many experiments with the aim to evaluate different binary
classifiers. In this paper, we describe only one of them. In each
instance of this particular experiment we simulated 50 runs,
each consisted of one training set of 100 elements and 100
test sets of 1000 elements each. This small size of a training
set was chosen in order to compare the results of simulations
with those described in [6], [7], where it had a particular
practical meaning. In each instance of the experiment, we used
the same type of a copula for the description of all depen-
dent random variables (in other experiments, not described
in this paper, we used different copulas in one considered
model). The strength of dependence was categorized into 6
categories: strong positive (Sp), medium positive (Mp), weak
positive (Wp), weak negative (Wn), medium negative (Mn),
and strong negative (Sn). For the Sp category the value
of Kendall’s τ was randomly chosen for each training set
from the interval [0.7, 0.9]. The respective intervals for the
remaining categories were the following: [0.4, 0.6] for Mp,
[0., 0.2] for Wp, [−0.2, 0.] for Wn, [−0.6,−0.4] for Mn, and
[−0.9,−0.7] for Sn. For each of the simulated 50 training
sets the expected values of input variables (predictors) varied
randomly in certain intervals. The simulated training sets were
used for the construction of six classifiers described in Section
II. For all test sets in one simulation run the description of
the dependence between considered random variables (i.e., the
copula, and the set of the values of Kendall’s τ ) was the
same as in the respective training set. However, in choosing
the expected values of the input variables (predictors) we
considered two cases. In the first case, these expected values
were the same as in the training set. Thus, the test sets were
simulated using the same model as the respective training set.
In other words, the considered classifiers were evaluated, in
this case, on data generated by the same model as it had been
used for their construction. In the second case, the expected
values of the input variables used in the generation of test sets
were different than the values used in the generation of the
respective training sets. Those different values were chosen
randomly around the values used for the generation of the
training sets (by maximum ±30%).

The presentation of the obtained results let us start with the
analysis of the influence of the type of a copula describing the
type of dependence on the Accuracy of considered classifiers.
In Table II we present the obtained average values of Accu-
racy for 4 different copulas, and the strength of dependence
belonging to the category Mp. We can see that the quality of
the considered classifiers for a given copula is similar. Only
the asymmetric LDA classifier is visibly worse. However, this
quality is different for different types of copulas. This seems
to be a very important finding, as the type of dependence is
rarely (if ever) considered in the evaluation of classifiers. In the
case described in Table II the observed (marginal) probability
distributions are the same, and the estimates of the strength of
dependence are also the same. Nevertheless, the accuracy of
classification is visibly different, depending upon the type of
dependence defined by the respective copula.

The situation becomes different when we use the F1 score
for the evaluation of considered classifiers. The results of such
evaluation (averaged for the same data!) are presented in Table
III. First of all, we can see unacceptably low values of the F1

TABLE II. AVERAGE ACCURACY. THE SAME MODEL FOR TRAINING AND
TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.769 0.835 0.741 0.752
LINREG14 0.769 0.833 0.735 0.751
LOGREG4 0.789 0.849 0.757 0.773
LOGREG14 0.765 0.833 0.739 0.747
LDA-SYM 0.741 0.765 0.729 0.729
LDA-ASYM 0.697 0.732 0.683 0.685

TABLE III. AVERAGE F1 SCORE. THE SAME MODEL FOR TRAINING AND
TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.358 0.561 0.266 0.324
LINREG14 0.490 0.623 0.419 0.472
LOGREG4 0.537 0.662 0.464 0.509
LOGREG14 0.368 0.577 0.281 0.336
LDA-SYM 0.101 0.061 0.072 0.089
LDA-ASYM 0.549 0.598 0.484 0.562

score for the symmetric LDA classifier. Despite its quite good
accuracy (see Table II) classification errors of this classifier are
completely imbalanced. As the matter of fact, the precision of
this classifier was good, but its sensitivity was really very low.
The variability of the F1 score observed in Table III is much
greater than the variability of the Accuracy. It means that for
different copulas the quality of considered classifiers measured
by the F1 score may be significantly different. Moreover, if
we look simultaneously on Tables II– III, we can see that the
simple logistic regression classifier seems to be quite visibly
the best when it classifies data generated by the same model
as it had been used for the generation of the training set.

Let us now consider an interesting case when the model
of data in test sets is different from that of training data. In
reality, it means that a classifier is used on data described by
a different probability distribution than the data used during
its construction. In Tables IV– V we present average values
of Accuracy and F1 score when the expected values of the
input variables in the test sets have been randomly shifted
around the values used for the generation of the training sets
(by maximum ±30%).

TABLE IV. AVERAGE ACCURACY. DIFFERENT MODELS FOR TRAINING
AND TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.730 0.773 0.705 0.728
LINREG14 0.678 0.741 0.670 0.687
LOGREG4 0.759 0.809 0.725 0.749
LOGREG14 0.700 0.747 0.687 0.697
LDA-SYM 0.745 0.775 0.730 0.731
LDA-ASYM 0.643 0.672 0.631 0.646

TABLE V. AVERAGE F1 SCORE. DIFFERENT MODELS FOR TRAINING AND
TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.317 0.440 0.259 0.300
LINREG14 0.443 0.519 0.356 0.420
LOGREG4 0.482 0.577 0.406 0.451
LOGREG14 0.379 0.492 0.282 0.338
LDA-SYM 0.138 0.126 0.101 0.124
LDA-ASYM 0.470 0.524 0.411 0.484

As we can expect, the values of quality indices in this case
are lower in comparison to the case when training and test
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data are described by the same probability distributions. The
relative changes of their values are presented in Tables VI–
VII for Accuracy and F1 score, respectively.

TABLE VI. RELATIVE CHANGE OF ACCURACY DUE TO DIFFERENT
MODELS FOR TRAINING AND TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.950 0.925 0.950 0.968
LINREG14 0.883 0.889 0.911 0.914
LOGREG4 0.962 0.953 0.957 0.969
LOGREG14 0.915 0.896 0.930 0.933
LDA-SYM 1.004 1.012 1.001 1.003
LDA-ASYM 0.923 0.918 0.924 0.943

TABLE VII. RELATIVE CHANGE OF F1 SCORE DUE TO DIFFERENT
MODELS FOR TRAINING AND TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.887 0.785 0.974 0.925
LINREG14 0.904 0.834 0.850 0.890
LOGREG4 0.897 0.872 0.875 0.886
LOGREG14 1.028 0.852 1.003 1.005
LDA-SYM 1.369 2.057 1.396 1.396
LDA-ASYM 0.855 0.876 0.848 0.862

The analysis of the robustness of the considered classifiers
to an unexpected change of the underlying model of observed
data is not simple and unequivocal. The simple logistic regres-
sion classifier (LOGREG4) still seems to be the best, but its
loss of efficiency is not the best one.

Finally, let us consider the problem how the strength of
dependence influences the robustness of classifiers to an unex-
pected change of the underlying model of observed data. We
will illustrate this problem on the example of the LOGREG4
classifier which seems to be the best from among all classifiers
considered in this paper. It seems to be quite obvious that there
exists a general rule that “the stronger dependence (positive or
negative) the better classification”. However, the relationship
between the strength and type of dependence and the quality
of classification may be not so simple. In Table VIII, we show
how the values of the F1 score are changing for different
copulas and different strengths of dependence.

TABLE VIII. AVERAGE F1 SCORE FOR LOGREG4 CLASSIFIER. THE
SAME MODEL FOR TRAINING AND TEST SETS. DIFFERENT LEVELS OF THE

STRENGTH OF DEPENDENCE

Dependence Normal Clayton Gumbel Frank FGM
Sp 0.799 0.866 0.813 0.813 X
Mp 0.537 0.662 0.463 0.509 X
Wp 0.041 0.062 0.044 0.052 0.052
Wn 0.088 0.060 X 0.056 0.056
Mn 0.424 0.333 X 0.379 X
Sn 0.763 0.647 X 0.730 X

The results displayed in Table VIII reflect the complexity
of the stated problem. First of all, the quality of classification
strongly depends upon the type of dependence described by a
respective copula. Only in the case of the normal (Gaussian)
copula (the classical multivariate normal distribution is a par-
ticular case of a distribution described by this copula) the re-
lationship between the strength of dependence and the quality
of classification (measured by the F1 score) is symmetric. For
the remaining copulas this relationship is visibly asymmetric
(negative dependence leads to worse classification), and the

values of the F1 score may be quite different despite the same
strength of dependence.

When the data in the test sets are generated by different
models than in the training sets the values of the F1 score are
changing. This is illustrated in Table IX for the case of the
LOGREG4 classifier.

TABLE IX. AVERAGE F1 SCORE FOR LOGREG4 CLASSIFIER. DIFFERENT
MODELS FOR TRAINING AND TEST SETS.DIFFERENT LEVELS OF THE

STRENGTH OF DEPENDENCE

Dependence Normal Clayton Gumbel Frank FGM
Sp 0.642 0.618 0.633 0.625 X
Mp 0.482 0.577 0.406 0.451 X
Wp 0.069 0.089 0.064 0.077 0.076
Wn 0.110 0.082 X 0.074 0.075
Mn 0.399 0.320 X 0.358 X
Sn 0.648 0.558 X 0.633 X

For strong and medium positive dependencies the strongest
worsening of quality of classification has been observed when
data are described by the Clayton copula. However, when de-
pendencies are negative, the case of the Normal copula seems
to be the worse. It is also surprising that for weak dependencies
the values of the F1 score have even improved. It shows that
in such cases this quality index is rather inappropriate as the
results of classification to great extend seem to be random, as
it is the case when dependencies are weak.

V. CONCLUSIONS

In the paper we have evaluated six binary regression type
classifiers. For the comparison we used two measures of qual-
ity: the Accuracy (i.e., the probability of correct classification),
and the F1 score which is the harmonic average of Precision
(equal one minus the probability of type I error) and Sensitivity
(equal one minus the probability of type II error). The eval-
uation was performed using a complex simulation software
that allowed to model strongly nonlinear dependencies of
different types (described by different copulas) and different
strength (measured by Kendall’s τ ). The distinctive feature of
this research is taking into consideration a practical problem
when objects classified by a certain classifier are described by
a different probability distribution than the objects used for
building (training) this classifier.

The performed experiments revealed that the quality of
classification is strongly related to the type of dependence
(type of the respective copula). This relationship may have
different impact on the performance of different classifiers.
For example, a simple linear regression classifier is quite
robust to the change of the data model when the data are
described by the Gumbel copula, but not robust when the
data are described by the Clayton copula, even if the strength
of dependence is in both cases are the same. The performed
experiments do not reveal unquestionable superiority of anyone
of the considered classifiers. However, classifiers based on
linear and logistic regressions are better than those based on
Fisher’s linear discrimination. If we take into account both
the quality of classification and the robustness to the change
of the underlying model, the classifier based on a simple
(without interactions) logistic regression is the best one. This
could serve as the general recommendation for practitioners.
However, when some additional information is available, other
classifiers could be preferred. For example, if we know that
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input attributes are dependent, and their dependence is de-
scribed by the Frank copula, then the LDA classifier with an
asymmetric decision criterion would be preferred. In practice,
however, obtaining such specific information seems to be
rather unlikely, so our general recommendation seems to be
valid for the great majority of practical cases.
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