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Abstract—In this paper, we experimentally investigate the
problem of black virus decontamination. The black virus de-
contamination is a recently investigated network security prob-
lem occurring in networked systems supporting mobile agents.
The existing research work on the topic has been focusing
on theoretical investigations and analyses. Among the existing
simulators for reactive distributed algorithms in network appli-
cations, we use Distributed Algorithm Simulation Java, which
combines many advantages and overcomes many shortcomings
of existing simulators. We consider the basic solution protocol
for decontaminating an arbitrary network. We investigate its
behaviour, properties and performance through an extensive
number of computer simulation runs. The simulation results not
only confirm the existing theoretical results, but also disclose
many interesting behaviour/properties of the solution protocol.
In particular, they show that the examined protocol outperforms
random search. The influence of graph connectivity density and
size on complexities (move, time, and agent size) is clearly
depicted.

Keywords—Black Virus; Mobile Agent; Graph Exploration
and Decontamination; Simulation.

I. INTRODUCTION

Recently, many investigations have been performed on var-
ious distributed security issues caused by introducing mobile
agents into computer networks [1]. For example, a malicious
agent can cause computer nodes to malfunction or crash, while
a contaminated computer node can in turn destroy mobile
agents for various malicious purposes. The former situation is
categorized as harmful agent, and the latter as harmful host.

In the harmful agent problem, a dangerous mobile agent
moves through the network infecting the visited sites; the task
is to decontaminate the network using a team of system agents
avoiding recontamination. The problem is referred as intruder
capture (IC), graph decontamination, or connected graph
search. The mobile intruder is harmful to network sites, but
not to the system agents. This problem has been investigated in
different settings and topologies by Barrière et al. [2], [3], Blin,
Fraignaud, Nisse, and Vial [4], Dereniowski [5], Flocchini et
al. [6], [7], [8], Fomin, Thilikos, and Todineau [9], Imani,
Sarbazi-Azad, Zomaya, and Moinzadeh [10], Luccio et al.
[11], [12], [13], Nisse [14], Shareghi, Sarbazi-Azad, and Imani
[15], Yanga, Dyerb, and Alspach [16], among others.

For harmful host, the theoretical focus has been on the
black hole search (BHS) problem, in which a network node
is infected by a process which destroys any arriving agent

without any detectable trace. The problem has been extensively
investigated in different settings and topologies by Chalopin,
Das, Labourel, and Markou [17], [18], Cooper, Klasing, and
Radzik [19], Czyzowicz et al. [20], [21], Dobrev et al. [24],
[22], [25], [26], [23], Glaus [27], Klasing, Markou, Radzik,
and Sarracco [28], and Shi [29]. A black hole is static, that is,
it does not propagate in the network and so it is not harmful
to other sites.

A. Black Virus Decontamination

The Black Virus (BV) was introduced in [30], [31] to
combine factors missed by BHS and IC to create a new model,
in which a harmful process is mobile (like an intruder) and
harmful to the system agents (like a black hole). Therefore,
the Black Virus Decontamination (BVD) problem is to model
a novel security issues caused by mobile agents. The authors
studied in detail the BVD problem for three large classes of
common network topologies: multi-dimensional grids, tori and
hypercubes. Recently, a deterministic exploration protocol for
BVD in arbitrary network was developed [32]. It has been
proven that monotonicity (that is, once a node is explored or
decontaminated, it is never recontaminated again) is a neces-
sary condition for a solution protocol to be damage optimal.
Theoretical complexity analyses on BV spreads, number of
agents, moves, and simulation time are performed for all the
solutions. All protocols are optimal both in terms of spread
(the number of casualties) and size (the number of agents).

B. Simulation Work on Mobile Agents

1) Mobile Agents in Network Applications and Their Sim-
ulation: Mobile agents are used in some practical network
applications, for example, distributed data mining [33], net-
work management [34], routing [36], consensus problems,
network mapping, multiagent coordination for connection, and
etc. Amin and Mikler attempted to use mobile agents to design
and implement agent based Distance Vector Routing (ADVR)
to reduce the overhead and overcome the robustness issues
associated with conventional routing protocol [36]. However,
except mentioning the fact that Object-Oriented paradigm is
adopted, no details on the simulations were provided. Rubin-
stein and Duarte investigated a mobile agent based network
management solution to address scalability and efficiency
issues [35]. Network Simulator (NS) is used in the simulation
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work. Olfati-Saber and Murray studied consensus problems
for networks of dynamic agents with fixed and switching
topologies in [37], [38]. Experimental results are provided
to demonstrate the effectiveness of the theoretical results.
Again the details of the simulation were not presented. Minar,
Kramer, and Maes investigated the cooperation of mobile
agents for mapping networks to overcome the shortcomings
of a centralized solution in [39]. The mobile-agents approach
is chosen to obtain routing maps in a distributed and decentral-
ized strategy. Ji and Egerstedt address the connectedness issue
in multiagent coordination, i.e., the problem of ensuring that a
group of mobile agents stays connected while achieving some
performance objective in [44]. In particular, they study the
rendezvous and the formation control problems over dynamic
interaction graphs.

2) Simulation Platforms for Distributed Algorithms in Net-
work Applications: In this subsection, we briefly describe ex-
isting simulators for reactive distributed algorithms in network
applications with the purpose of: comparing simulation and
platforms in network systems; and having reference terms for
Distributed Algorithm Simulation in Java (DisJ), a simulation
tool we introduce later in this paper.

Distributed Algorithms in Java (DAJ) [45], Toolkit for
Distributed Algorithms in Java (T-DAJ) [40], Distributed
Algorithms Platform (DAP) [41], Simulation of Network
Algorithm (SinAlgo) [42], Distributed Algorithm Simulation
Terrain (DisASTer) [43] are all platforms for designing, im-
plementing, testing, simulating, and visualizing distributed
algorithms. DAP and SinAlgo are mainly suited for wireless
network. The above simulators provide various good features
although they usually do not have all of them: Object-Oriented
Design and implemented by popular languages, i.e., C++ and
Java; user friendly GUI; synchronous and/or asynchronous
settings; fix or mobile networks; and various level debug
capabilities. However, they have some common limitations
or disadvantages: only supporting message passing model;
only supporting bi-directional link; requiring some level of
configuration or coding to create network topology; tightly
coupled algorithm implementation and topology creation; lack
of statistics calculation and/or display; no support on adversary
events; limited interactive information display during simula-
tion.

DisJ, used in this investigation, overcomes almost all the
above shortcomings. In addition to its rich functionalities,
one of the main advantages is it decouples users’ protocol
developing activity from defining network topology and exe-
cuting the protocol. This means intended protocol and network
topology are developed, defined, and built separately from
each other and from simulation engine. However, one of the
main inconveniences is lack of automation to run large number
of simulations to generate statistics results.

C. Main Contributions

The problem of exploring and decontaminating a Black
Virus in arbitrary graph by multiple mobile agents has been

studied by simulation using DisJ. The model, objective,
constraints, and a deterministic solution are reviewed and
presented. Large number of simulations on different sizes of
graphs with many connectivity densities are carried out.

The algorithm beats random exploration for all graphs
at each connectivity level. The simulation disclosed many
interesting behaviours of the solution protocol. Simulation
demonstrates the worst case complexity analysis in [32], e.g.,
agents may move in one direction to explore one node, then
move to an opposite direction to explore next node at the other
end of a graph. In addition, agents may pass some nodes
multiple times. In addition to proving the analytical results,
simulation provides deep understanding on influence of graph
connectivity density and size on complexities (move, time,
and agent size). The move, time, and agent size increase with
connectivity, but move and time start decreasing after reaching
maximum at 40%-60% connectivity levels. The move, and
time and agent size seem to increase quadratically and linearly
respectively with the graph size.

With regard to statistics of simulation results, it is observed
that the standard deviations for moves, agents, and times are
all very small compared with average estimations. Particularly
the larger graphs and the higher the connectivity levels, the
better statistical results are.

The rest of the paper is organized as follows. Section 2
introduces the framework and model, and basic strategy and
algorithm. Section 3 introduces the DisJ platform, describes
sample graphs, and presents simulation results and analyses.
Section 4 presents our conclusion.

II. FRAMEWORK AND ALGORITHM

In this section, we first introduce the framework and model,
then present general strategy and algorithm, finally discuss
synchronous and asynchronous settings.

A. Framework and Model

The agents operate in a network whose topology is modeled
as a simple undirected connected graph G = (V,E). We
denote by E(v) ⊆ E the set of edges incident on v ∈ V,
by d(v) = |E(v)| its degree, and by 4 the maximum degree
of G. Every node has a distinct id, visible to the agents visiting
it. The links incident to a node are labeled with distinct port
numbers.

Agents are modeled as entities with computing power. They
can move from a node to one of its neighbour. Communication
among agents occurs when they meet at the same node. Each
agent has a unique id. In G there is a node infected by a
BV whose location is unknown, and any agent arriving at the
BV is destroyed. When that occurs, the BV clones itself and
spreads from the current node to all the neighbouring nodes.
Arriving at a node, a clone BV infects the node and stays
inactive (until further triggering by agents) if there is no agent
on the node; otherwise, the clone BV is destroyed. Thus, the
only way to eliminate a BV from the system is to surround it
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completely and let an agent deactivate the BV by moving to
the BV node. In this case, the node where the BV resides is
cleaned and all the generated clones of that BV are destroyed.

The BVD problem is to permanently remove any presence of
the BVs from the network using a team of agents. A protocol
defining the actions of the agents solves the BVD problem if,
within finite time, at least one agent survives and the network
is free of BVs. The main constraint of a solution protocol is
to minimize the number of nodes infected by BVs (i.e., agent
casualties). It has been proven that monotonicity (i.e., once
a node is explored or cleaned, it is never recontaminated) is
a necessary condition for a protocol to be infection-optimal
[30]. The BVD model is shown in Figure 1.
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BV

BV
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Figure 1. BVD Model.

Agents run the same protocol, but they can play different
roles. There is an unique system agent called Leader Explo-
ration Agent (LEA). During different stages, LEA can generate
Exploration Agent (EA) and Shadowing Agents (SA). At any
time, there is only one LEA and EA. When the EA is killed
by exploring or cleaning a BV, LEA will create a new EA.

B. General Strategy and Algorithm

Agents locate the unknown BV by exploring the network
with a constraint of minimizing infections, so at any stage
of the exploration, agents always choose the next target with
minimum chance of contaminations from unexplored portion
of the network, Gux. The degree of a node minus the number
of explored neighbours of the node (defined as residual degree,
dr(v)) is equal to the number of new BV contaminations if a
BV resides on this node. Calculating dr(v) of an unexplored
node is possible because agents know the graph map, and the
explored portion of the graph, Gex. The solution strategy con-
sists of three separate phases, computing exploration sequence,
shadow exploration, and surrounding and elimination. Let us
describe each phase in more detail.

a) Computing exploration sequence: LEA at Home Base
(HB) calculates the Search Sequence (SS, the order of nodes)
before exploring any other nodes. The algorithm is similar to
Prim’s algorithm to build MST. Here our algorithm builds a

Minimum Residual Degree Spanning Tree (MRDST ). HB is
the first node added to the processed part of the graph. The
algorithm chooses next the node with minimum dr among
all the unprocessed neighbours which directly connect to the
processed part of the graph. If there are multiple candidates
with the same minimum dr, the one with the shortest distance
from the last chosen node is selected as the new target. We
call this algorithm, Minimum Residual Degree Exploration
(MRDE).

b) Shadowed exploration: Let v (i.e., target) represent a
node to be explored , N(v) be the neighbours of v, and Nex(v)
(resp. Nux(v)) denote the set of explored (resp. unexplored)
neighbours of node v. Let current denote a just explored node
from which agents explore the next target, v. Exploring a
target takes three sub-steps:

Deploying shadow agents: To insure monotonicity, our
strategy employs some SAs to guard the previously visited
neighbours of the target. Before exploring a new target, LEA
computes Nex(v) and calculates the shortest distance paths in
Gex from the current node to them. A SA is sent along the
shorted path to each one of Nex(v). The remaining agents also
move to one of Nex(v), designated as u.

Exploring the target: LEA makes sure all SA’s are in
their positions before exploring the target. To minimize agent
casualty, a safe-exploration technique is used: only EA moves
from u to v to check if v contains a BV. If EA survives, it
moves back to u and all agents at u move to v by using the
same link which EA just explored; otherwise, LEA at u knows
EA met a BV node.

Assembling SAs: If the target is not a BV node, LEA and
other agents move to v, and LEA sends agents to the shadowed
neighbours to bring SAs back to v. LEA updates v as new
current node and fetch a new target node from SS. The above
steps are iterated until a BV node is found.

c) Surrounding and elimination: Once the BV node is
detected, all Nux(v) are contaminated. The new BVs are sur-
rounded and eliminated sequentially. LEA assembles SAs and
instructs them to surround the newly created BVs. Surrounding
a node w ∈ Nux(v) means deploying an agent along the
shortest paths to each one of w’s neighbours unoccupied by
a BV (N(w) \ Nux(v)). Once a BV is surrounded, an extra
agent (a cleaning agent) is instructed to move to it in order to
clean it; such an agent dies.

C. Synchronous setting vs Asynchronous setting

In synchronous networks, it takes one unit of time for
an agent to move from a node to another, while computing
and communication times are assumed negligible compared
with moving time. In asynchronous networks, the time of
each activity (processing, communication, moving) is finite
but otherwise, unpredictable.

Let us analyze where synchronization is needed in the
general strategy discussed above. When EA is sent to explore
a target, synchronization is not needed because, whether the
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target contains a BV or not, EA or a BV eventually returns to
”current” node, so LEA knows what happens. Synchronization
is concerned only in one task, i.e., sending SAs to Nex(v)
during shadow exploration. LEA instructs EA to explore the
target only after all Nex(v) are protected by SAs. In syn-
chronous setting, LEA calculates all Nex(v) and the shortest
paths to them. Let distmax be the maximum of all shortest
paths. LEA uses distmax to make sure that all SAs arrive at
their destination nodes for protection before it instructs EA to
explore the target. In asynchronous setting, LEA has to visit all
shadow destinations one by one to be sure that all of them are
properly shadowed by SAs before it instructs EA to explore
the target. Both synchronous and asynchronous protocols have
been implemented, and simulations are executed for both.
Asynchronous complexities (agent move and simulation time)
are larger than synchronous complexities, but within the same
order, so in the following, the simulation discussions and
results are focus on the synchronous protocol.

III. SIMULATION OF BVD

In this section, we first introduce the DisJ platform, then
describe sample graphs, and finally present simulation results
and analyses.

A. Simulation Platform, DisJ

The simulation software used in this work is called DisJ,
implemented in Eclipse environment as a plug-in [46]. The
simulation engine per se is an event based simulation engine,
which is driven by events put on an event heap. One of the
main characteristics is that DisJ decouples the users’ protocol
developing activity from defining user network topology. DisJ
can be used to assist teaching or develop distributed protocols
by researchers. It provides basic utilities (nodes, links, events,
timers, and etc.) and other extensive features, e.g., random de-
lays, different faults with probability, communication (unicast,
multi-cast, and broadcast), and etc.

The original simulation engine supports only the message-
passing model. To support mobile agents, more functions have
been added: injecting agents on nodes; allowing an agent
to move from one node to a neighbouring node; supporting
different communication mechanisms among agents on the
same node via whiteboard, token, or message; and finally
supporting agents to create new agents.

DisJ provides rich features for developing protocols, de-
signing network topologies, and debugging. It provides nice
GUI interface to allow the users to define their network
topologies by automatically generating, drawing, or inputting
network topology from network matrix files. In addition to
basic debugging features, it also provides advanced features,
watching variables and states, restarting, logging execution
and replaying, adjusting speed, and etc. It calculates basic
statistics pertaining to distributed algorithms, e.g., the number
of messages, agent moves, simulation time, and etc. The
APIs for programming a protocol is small and simple. DisJ
also has been designed with extensibility in mind. Some of

the new features which can be imaged now are: network
capability where 2 or more engines can link up in a network,
dynamic addition of nodes, and more. DisJ has very good
documentation, which includes a detailed user manual and a
cookbook. They show step-by-step instructions for installing
DisJ plug-in into Eclipse, defining a topology, writing protocol,
and executing a protocol in defined topology. Figure 2 shows
a sample DisJ Interface.

B. Simulation Sample Graphs

In order to obtain reliable data, we prepared 2255 graphs
with different sizes and network connectivity densities. The
sizes of the sample graphs are 20 (graph20), 40 (graph40),
60 (graph60), and 80 (graph80), and 100 (graph100) re-
spectively. We define the network connectivity density/level
as a ratio of the number of links of a graph to the one of a
complete graph with the same size, i.e., 2m

n(n−1) . For each size
of graphs, we consider 10 connectivity levels, i.e., 10%, 20%
to 100%. We implemented a computer program to randomly
generate 50 graphs for each connectivity level of each size.
Each graph is represented as graph#1 #2 #3 (#1: graph
size; #2: connectivity; #3: graph instance). Two graphs are
generated manually, i.e., graph20 18 and graph40 11, with
special arrangement of degrees for certain nodes for easy
visualization of the behaviour of different solution protocols.
Following Figure 3 shows the sample graph20 18.

HB
0

16

15

14

13

12

11

10

9

8

7

6

4

5

3

2

1

19

18

17

Figure 3. A sample graph20 18.

C. Simulation Results

1) Comparison between MRDE (Minimum Residual Degree
Exploration) and Random Exploration (RANE) : Given two
different exploration protocols, P1 and P2, how do we de-
termine which one is better? Recall that the objective of the
BVD is to remove all BVs with minimum contamination to
the graph. Because we do not know the location of the BV
a priori, the dr of a node when the node is being explored
represents the extent of possible contamination.

When a node i is explored, its residual degree, dri, is
recorded. After exploring all nodes of the graph, they are
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Figure 2. DisJ Interface.

sorted into an array according to their residual degrees in
descending order. If the same dri in the array appears multiple
times, we use a coefficient, i.e., ci, to record this. The resultant
array is called Array of Residual Degree (ARD). Comparing
two exploration strategies becomes equivalent to comparing
two ARDs. The arrays are compared lexicographically. If
P1’s largest dr1(P1) is smaller than P2’s largest dr1(P2), P1

is better than P2. If dr1(P1) = dr1(P2), we compare their
coefficients. Whichever protocol has a smaller c1 is better.
If two protocol’s c1’s are the same, we continue to compare
the second largest dr2’s of P1 and P2, and this comparison
continues until a better protocol is determined.

In RANE, the next target node is randomly chosen among
the unexplored direct neighbours of Gex. We compared MRDE
and RANE for the graphs with sizes of 20, 40, and 80
nodes. For each size category, we created 10 connectivity
levels, so there are 30 comparisons in total. Simulation results
demonstrate MRDE is never worse than RANE for all test
scenarios. As shown in Figure 4, there are two curves, one for
drs of each SS. The figures clearly show MRDE is better

than RANE. In RANE, dr changes dramatically, while in
MRDE, dr changes smoothly. It also demonstrated that, when
the connectivity increases, the difference between MRDE and
RANE decreases. When connectivity approaches 100%, i.e.,
the complete graph, MRDE and RANE are the same.

2) Exploration Behavior and Properties: Running the sim-
ulation on sample graph20 18 shown in Figure 3, we observed
the following behaviours of the algorithm:

• Gex is continuous. BV and unexplored nodes never cut
Gex into isolated pieces. This behaviour matches the
monotonous property of the algorithm.

• Changing HB has effect on local SS, but has no impacts
on SS in far areas. The behaviour is obvious when
watching the searching process starting from nodes 0 to
8. This is a good property because it provides a little
flexibility for users to choose where to start to explore
the graph.

• SSs are influenced by the graph structures. It is observed
that the initial SS starting from nodes 13, 16, 17, or 18 are
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Figure 4. MRD vs RAN G40 20.

dramatically different from those starting from node 0 to
8. This is because initially the exploration is confined by
nodes 9 and 15, which have high degrees and are the exits
for agents to explore other areas. After breaking through
a barrier at node 9 or 15, all SSs follow the same/similar
paths in the rest of the graph.

• Starting from the nodes with high degrees could reduce
the Size(G) and exploring cost.

• The exploration sequence demonstrates the worst case
complexity analyses in [32]. Agents may move to one
direction to explore one node, then move opposite to
explore another node at far end of a graph. In addition,
agents may pass some nodes multiple times. When agents
start from node 0, the exploration first moves in one
direction along nodes 1 and 2, follows an opposite
direction alone nodes 2, 1, 3, 4, and etc., and repeats
this changing direction behaviour for several times.

3) Statistics of Simulation Results: As mentioned before, at
each connectivity level of a given graph size, 50 graphs were
generated, simulation is run for each graph, and complexities
(agents, moves, and time) are recorded. Then we calculate
averages and standard deviations of the complexities for each
connectivity level of a given graph size. The ratio of standard
deviation over average for complexities are plotted. Figure 5
shows the result for move complexity.

It is observed that, in all cases simulated, the standard
deviations for moves, agents, and times are all very small
compared with average estimations. With regard to the graph
sizes, graph20 has the largest ratio of standard deviation
over average for complexities. Large graphs produce small
ratio, i.e., better statistical results. This is obviously true
because small size graphs do not generate as good statistical
results as compared with large size graphs. With regard to
the connectivity levels, 10% connectivity generates the largest
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Figure 5. Moves SD Ratio vs Connectivity.

ratio of standard deviation over average for complexities. This
is true because at connectivity level 10%, the number of links
of the graphs is very small (close to the connectivity of ring
or tree of the same size). The higher the connectivity levels,
the smaller the ratio of standard deviation over average. At
100% connectivity, the ratio reaches zero. In this case, all the
nodes are the same, so no mater where agents start and which
path to take to explore the graph, the simulation results are
the same.

4) Influence of connectivity density on complexity: Refer to
the simulation results in Figures 6, 7, and 8, for move, agents,
and time in graph20’s, graph40’s, graph60’s, graph80’s, and
graph100’s.
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Figure 6. Moves vs Connectivity.

For given size of a graph, with the increase of connectivity
level, we have the following results and observations:

a. Move cost gradually increases to maximum at 40%-60%
connectivity levels, then it gradually decreases. It is interesting
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to note that move costs are close for different graph sizes at
100% connectivity level. This demonstrates that dense graph
optimization does improve move cost.
b. Time cost gradually increase to maximum at middle
connectivity levels, then gradually decreases. It is noted
that time costs are close for different graph sizes at 100%
connectivity level. This demonstrates that dense graph
optimization does improve time cost.
c. Team size continuously increases with the increase of
connectivity. It reaches the maximum, i.e., graph size, at
100% connectivity level. It is obvious that high connectivity
means high degrees, thus more shadow agents are needed to
shadow exploration.
d. Regardless of the graph size, the behaviour of MRDE
and RANE differentiates in low connectivity levels, but
gradually becomes close at high connectivity. At 100%
connectivity, the behaviours are the same. Complete graphs
are completely symmetrical, i.e., choosing any one node as

next target to explore gives exactly the same simulation results.
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5) Influence of graph size on complexity: For given con-
nectivity levels, with the increase of graph sizes, the move,
agent, and time are shown in Figures 9, 10, and 11:
a. From Figure 9, it is observed that the move costs seem
to increase quadratically with the graph sizes. The move
costs for 10% and 90%, 20% and 80%, 30% and 70%, 40%,
50% and 60% are very close respectively. Among all the
connectivity levels, the complete graph has the lowest move
costs, while 40%, 50% and 60% connectivity levels have the
highest move costs. These behaviours demonstrate well that
move costs increase with connectivity levels. It saturates at
around 50% connectivity, then decreases to minimum when
connectivity is 100%.
b. From Figure 10, it is observed that the execution time
seems to increase linearly with the graph sizes. The execution
times for 20% - 80% are relatively close to each other. Among
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all the connectivity levels, th complete graph has the lowest
time costs, while other connectivity levels have relatively
high time costs. Generally speaking, the time costs are lower
than move costs for same graph size and connectivity level
because many activities happen in parallel.
c. Team size all increase when graph size increases. From
Figure 11, it is observed that the Team size increases (linearly)
with the graph size. As mentioned before, the connectivity
also impacts the needed agents linearly.

IV. CONCLUSION

We have investigated the BVD problem in arbitrary graphs
by mobile agents, a newly introduced network security prob-
lem. All the existing work has been focusing on theoret-
ical investigation and analyses. In this paper, we instead
focused on the experimental investigation of BVD. Among
the existing simulators for reactive distributed algorithms in
network applications, we used DisJ, which combines many
advantages and overcomes many shortcomings of existing
simulators. In addition to basic features, it offers mobile-agent
support, flexible network element settings, simple APIs, user-
friendly GUI, strong debugging capabilities. We considered
the basic solution protocol for decontaminating an arbitrary
network, MRDE; we investigated its behaviour, properties
and performance through an extensive number of computer
simulation runs; in the investigation we used as a term of
comparison the natural ”randomized” strategy, RANE.

The simulation results have disclosed many interesting
behaviour and properties of the solution protocol. In particular,
a. With regard to the influence of connectivity density on
complexity, we demonstrate that:

• Move cost gradually increases to maximum at 40%-60%
connectivity levels, then gradually decreases.

• Time cost gradually increase to maximum at middle
connectivity levels, then gradually decreases.

• Team size continuously increases with the increase of
connectivity. It reaches the maximum, i.e., graph size, at
100% connectivity level.

• MRDE and RANE differentiate in low connectivity lev-
els, but gradually get close at high connectivity. At 100%
connectivity, the behaviours are exactly the same.

b. With regard to the influence of graph size on complexity,
we demonstrate that:

• The move costs seem to increase quadratically with the
graph sizes.

• The execution time seems to increase linearly with the
graph sizes.

• Team size all increases when graph size increases.

These results constitute the first experimental investigation
of solution protocols for the Black Virus decontamination
problem. Indeed, simulation is a valuable tool to gain an
insight into the nature of the problem. Future work could be: 1)
some improvements on DisJ to automatically process a batch
of graphs and collect results; 2) some simulation work on
systems with multiple black virus.
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