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Abstract—Intelligent machines are supposed to automatically set
process parameters when faced with a task to be processed.
The intelligence is often realized by databases which link the
task with process parameters. This paper reviews a flexible and
portable (to various processes) system to find (optimized) process
parameters which force the process outcome to pre-defined
quality under given variable conditions. In addition, extensions to
the original system are presented and the whole concept is applied
to laser seam welding (LSW). Experimental results based on
real process executions demonstrate the applicability in industrial
environments.
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I. INTRODUCTION
Intelligent production machines have to flexibly respond

to varying tasks by setting their process parameters in such a
way that given task goals are reached under given conditions.
For this purpose, the machine needs to represent and use
knowledge about the relation between process parameters and
process goals under given (but varying) process conditions.

This paper reviews a general concept and an implemen-
tation of the automatic extraction and application of such
process knowledge represented in experimental outcome data.
[1] A process goal is represented by quality measure values
to be achieved by the process. In experiments, a process is
executed with defined process parameters and under known
or controlled conditions. The achieved quality is measured
after the experimental process execution. The data (process
parameter, condition and quality values) may be sampled from
real physical, or simulated numerical experiments. The data
form the basis for the estimation of a so-called goal function
with the process parameters and the condition quantities as
independent variables. The goal function defines quantities
which describe the desired end state of the process and
represents the process knowledge. Once derived from the
data, it is used to find the process parameters which yield
a desired result. Finding the appropriate process parameter
settings (“process methods”) yielding a given goal is then
equivalent to finding those parameter values, where the goal
function takes on the desired, given goal values. More than one
solution exists, the set of all solutions is called ”level set”. To
select the best suitable method, it is further proposed to use
the level set as a basis to optimise a given cost function which
associates cost with the process parameters.

The goal function is constructed by applying non-linear
kernel regression to the experimental data. Experiments fre-
quently also deliver process boundaries, beyond which the
process will not execute or no result is reached at all. This
feasibility boundary is modelled in our approach via a two-
class support vector machine. Furthermore, it has to be taken

into account that the goal function can only be applied in
areas which are supported by experimental data. This so-
called confidence domain is modelled by hulls enclosing the
experimental data.

The paper is organized as follows: Section II gives a review
of the originally developed Task-to-Method Transformation
(T2MT). This section is divided into subsections giving an
overview over the general concept, followed by details about
the process modelling by goal functions and a classifier to
constrain the predictions to regions supported by data. The
last subsection of Section II presents the procedure how to
find process parameters from given tasks and process models.
The next part, in Section III, applies the methods to LSW and
describes various extensions to the original system. A short
introduction to LSW is given in Section III-A. Section III-B
extends the process model by multi-valued goals. Acceptable
goal ranges are introduced in Section III-C. The calibration of
models to new situations (Section III-D) and using a process
model to apply small parameter adjustments (Section III-E) are
further enhancements. All these extensions convert the original
T2MT into an industrial applicable system. An experimental
verification using real process data is given in Section III-F.

II. SUMMARY OF T2MT
This chapter gives a summary of the T2MT, which was

introduced in [1]. It was developed as a general applicable
system to find process parameters from process models de-
rived from experimental data. T2MT was originally verified
by numerical simulations for the process of resistance spot
welding.

A. General Concept
Process parameters describe the variable control quantities,

which can be set by the process machine in a vector ~p. The
process conditions represent all fixed quantities in a vector ~c,
which otherwise govern the process and cannot be set by the
machine. They are fixed externally and independently from
process execution. The goals are quantities characterising the
desired end state of the process in a vector ~g. For example,
in car seat manufacturing metal sheets are joined by welding
seams. The process parameters are in the simplest case laser
power, laser focus point and welding speed. Possibly varying
conditions are the materials and thicknesses of the two sheets.
The goal is the double valued extend of the welding seam,
seam width and seam depth, which have to be obtained.

The task is then given by the combination of the goals and
the conditions ~t = [~g,~c]. An intelligent machine has to find at
least one method (consisting of process parameters ~p) fulfilling
a given task ~t, or it has to state that the task is not feasible.
In other words, the machine has to perform a mapping from ~t
to ~p. We call this the T2MT.
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In experimental process investigations, a variety of process
conditions is explored. For each specific condition, a set of
methods ~p is applied and the resulting goal values ~g are
measured. Each single experiment gives a vector triple [~g, ~p,~c]
and the available experimental series give a set of such triples.
We propose to build an abstraction of the experimental data
by the formation of a goal function ~g(~p,~c). It represents the
knowledge contained in the experimental data.

Furthermore, the goal function should only be applied in
areas supported by experimental data. This so-called confi-
dence domain is modelled by hulls enclosing the experimental
data. A support function s(~p,~c) > 1 can be defined inside the
hulls, s(~p,~c) = 1 on the hulls and dropping continuously to
s(~p,~c) = 0 within some distance outside. This support function
defines some space around the experimental data, which may
be accepted as a region for inter- and extrapolations of new
(yet unseen) tasks ~t and methods ~p.

The goal function ~g(~p,~c) and the support function s(~p,~c)
finally form the process knowledge model, extracted from the
experimental data.

The goal function is then used to perform the T2MT. The
condition vector ~c~t is a constant, when a specific task ~t is
given. In this case, the goal function is only a function over
the corresponding subspace of ~p. The level set of parameter
vectors ~p defined by ~g(~p,~c) = ~g~t represents the set of methods
fulfilling the task. Finding the level set of the goal function is
thus the core component of the T2MT. Afterwards, the other
model function s(~p,~c) is applied to the level set to exclude
unsupported method solutions.

The resulting restricted solution set forms the search space
for the minimisation of a cost function. Based on external
knowledge, the cost function assigns cost to the process
parameters and process goals.

The solution for the vector-valued goal function ~g(~p,~c) =
~g~t with ~g,~g~t ∈ RM can be broken down into the solution for
M single-valued goal functions gi(~p,~c) = g~t,i, i = 1, . . . ,M .
Each of them has a level set {~p}i as a solution. The level
set satisfying all equations is given by the intersection of all
single sets {~p}1 ∩ {~p}2 ∩ · · · ∩ {~p}M . It is therefore sufficient
to construct a method for single-valued goal functions.

B. Goal Function Approximation
A central part, when looking for a method ~p solving a given

task ~t = [~g,~c] under constraints ~c, is a model description of the
physical process. The process is modelled by construction of
a goal function ~g(~p,~c) which comprises the whole necessary
knowledge about the process. In any experiment, the conditions
~c and the method parameters ~p are set. The process is then
executed and the outcome is measured. The outcome quantities
are identical with the goal describing quantities ~g, which
describe the desired final properties of the process result.
Experiments are conducted under many different ~ci and ~pi and
corresponding ~gi are measured. This gives an experimental
sample of triples {~pi,~ci, ~gi}Ni=1, which is used to create an
abstraction in the form of a goal function. Subsequently, this
goal function can be inverted to find appropriate parameters for
given goals and conditions. For a given task ~t the conditions ~c
are fixed and the goal function ~g(~p) depends only on process
parameters ~p. In most cases there is no explicit prior model
available to form this function. Therefore, the goal function
has to be extracted from experimental (real or simulated) data.

To represent the goal function, basically any regression

method can be used. All methods build up the regression
function by a weighted superposition of base functions, which
itself may need parametrisation. A fitting algorithm is applied
to determine the weights and parameters of the base functions
so that the superposition approximates the observed data as
accurately as possible. For most methods, the number of base
functions must be specified in advance (and by association, the
complexity of the representable function).

Real production processes may show very complicated
non-linear dependencies on process parameters. But piecewise,
in the small surrounding of an assumed operating point,
the process model function behaves quite smooth. Support
Vector Regression (SVR) is an universal method to find the
smoothest regression function representing observed data. [2]
The regression function is build up by a superposition of more
or less localized non-linear functions (depending on kernel
choice) pinned at (measured or simulated) data vectors. It is
beneficial that SVR picks out only the relevant subset of the
whole data set to describe the smooth goal function. These
data vectors, which determine the function to represent this
experimental knowledge in a generalized way by the goal
function ~g(~p,~c), are called Support Vectors.

The goal function by SVR representation takes the form

g(~x, ~α) =

l∑
i=1

αiK(~x, ~xi)− ρ, ~α = (α1, . . . , αl), (1)

where the parameters αi and ρ are determined by an quadratic
optimization algorithm from the data. [2]

Two kernels, used in calculation for the present paper, were

Polynomial K(~p, ~q) = (γ〈~p, ~q〉+ c)
d and (2)

Gaussian RBF K(~p, ~q) = exp(−γ‖~p− ~q‖2). (3)

The free parameters (γ, d) in these kernels are found and fixed
by exploring the (γ, d)-space for values of minimum residual
fitting error by cross validation. [3]

When doing the numerics, especially with polynomial
kernels, one will face numerical issues when using the raw
values of the process quantities. They are more significant
if some quantities have very small values, others very high
values, and if the dynamic ranges are very different. These
issues can be circumvented by normalizing the training data
to range [0, 1] and de-normalizing the results accordingly.

Processes usually have sharp boundaries in the space of
parameters and conditions, beyond which the process collapses
or exhibits unacceptable behavior. This region of unfeasible
processes could be represented by a special goal value. But
this would result in a discontinuity of the goal function (1)
and consequently in fitting problems. We propose to represent
the feasibility region within the boundary by a separate step
function, changing value at the boundary. The feasibility region
is then represented by a two-class (feasible / unfeasible)
classifier. The model of the feasibility region is formed by
the training of a Support Vector Machine [2], which requires
training data covering both classes.

C. Data Support Region
Experimental data will usually explore some finite areas

in the (~p,~c)-space, while the goal function covers the whole
space. In order to get a reliable functional approximation of
the goal function, it is necessary to restrict the goal function
to areas supported by experimental data.
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Figure 1. Local (a) and global (b) SVRM boundaries.

The region in input space, defined by the hull enclosing
the training data {~pi,~ci, ~gi}Ni=1, will be described by the
support function s(~p,~c). The generalization (interpolation and
extrapolation) of the experimental data by the goal function is
only valid inside this hull and in a small region around it. We
call this whole trusted region the data supported region.

In T2MT, this region is modelled by a one-class support
vector machine [4] with parameters calculated from the train-
ing data set, inspired by the work [5].

According to [4], the problem to describe the supported
region may be solved by a mapping of the training data to
a feature space where they are linearily separated from the
origin. The separating hyperplane with maximum distance
from the origin determines the boundary.

The region of known data (corresponding to the set of
known tasks) can be formulated as [1]

1

ρ

SN∑
i

ciK(~x, ~xi) ≥ 1, (4)

where
K(~x, ~y) = exp

(
−γ |~x− ~y|2

)
(5)

and

ρ =

SN∑
j

αjK(~xi, ~xj), (6)

with SN = number of support vectors.
In order to accept a new task some distance away from

the already known task (which means to accept the value of
our goal function in an extrapolated region), we soften the
boundary definition:

1

ρ

SN∑
i

ciK(~x, ~xi) ≥ p (7)

p ≈ 0.9 (0 < p ≤ 1) (8)

The setting of parameter p determines the range of how
far extrapolations of the goal function are accepted. The value
of p depends on the sample density of the training data and
on pecularities of the process under consideration. It has to be
found by experiments. In Figure 1, the boundary of the light
grey region is defined by p = 1. In this area data is available
and the goal function interpolates in between. In the dark
grey region, defined by p < 1, the goal function extrapolates
to regions not supported by training data. In this region, the
results of the goal function are assumed to be uncertain but
the result shall be accepted. Outside the dark region results of
the goal function are rejected as untrustable.

A still open question is how to choose the width γ of the
Gaussian Kernel function (5). If these functions are highly

localized, the boundary around the training data will be very
sharp with poor generalization performance and a large number
of support vectors. If the kernel functions on the other hand
are too broad, the resulting boundary may be too smooth (only
a small part of the training vectors are considered as support
vectors) and occlude essential structures. It is therefore crucial
to find a value γ producing a good description of the training
data.

Cross-validation cannot be used, because there is no false-
class in our training set. We follow the procedure presented in
[5], which is summarized shortly.

In a first step all training vectors which might lie on
the data domain boundary are identified (Figure 1a) by local
one-class Support Vector Machine Classifiers (in [5], [6] this
is called SVRM - Support Vector Representation Machine).
Every training vector is considered with its surrounding vectors
inside a sphere of a given radius. It can be assumed that this
restricted sub-sample follows a simple distribution, therefore
it is justified to choose a local γi = di. If the training vector
~xi lies on the boundary (or very near the bounday) of the
sphere, this vector is stored in a list of ’local’ boundary vector
candidates of the total sample.

The second step is to train several global SVRMs using
all training data, each with different γ. For every cycle, the
training vectors lying on or very close to the boundary of
the global SVRM are selected and stored in lists of ’global’
boundary vector candidates.

In a last step (Figure 1b) the global γ is chosen, for which
the best match is found between the set of ’global’ boundary
vector candidates and the set of potential (local) boundary
vector candidates. Further details about the algorithm can be
found in [1].

D. Parameter Extraction (Level Set)
The goal function ~g(~p,~c) (1), defined in Section II-B,

represents a surface embedded into a high-dimensional space
spanned by the process parameters ~p and process conditions
~c. A specific task is then given by the demand to reach a task
goal ~g~t = ~g(~p,~c~t). This can be viewed as the ~p-dependent
intersection of a hyperplane ~g~t = const with the curved surface
~g(~p,~c~t). The level set is the set of solutions

level set: { ~p |~g~t = ~g(~p,~c~t) } . (9)

In the present case, the level set can be found by meshing
the high-dimensional feature space. The mesh is refined by
incrementally subdividing cells, which are intersected by ~g~t,
until the desired accuracy is reached. The level set is afterwards
given by a discrete set of solutions. It may contain solutions
outside the region supported by data (Section II-C). Therefore,
the level set has to be confined to this region to form the final
set of feasible methods.

The final level set is then a list of process parameter
vectors. Each of them will produce the result ~g~t as requested
by the task:

{ ~pk |~g~t = ~g(~pk,~c~t) } , k = 1, 2, . . . (10)

In the special case of a quadratic polynomial kernel

K(~p, ~q) = (γ〈~p, ~q〉+ c)
2
, (11)

the solution can be found analytically by direct calculation

gt = g(~x, ~α), (12)
xk = f (gt, ~α, (x1, x2, xk−1, xk+1, . . . , xn)) . (13)
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Every solution in the found level set is associated with
some cost such as energy, wear of tools, production cycle time
and so on. To select the most efficient process method from
the level set, one should be able to define a cost function
depending on process parameters ~p and process conditions ~c.

If the resulting level set is given as a discrete set of only
a few hundred or thousand points, and if the computational
effort to calculate the cost function is low, it is sufficient to do
a complete search.

III. APPLICATION TO LSW
The main goal of this work is to demonstrate the applicabil-

ity of T2MT to real industrial processes. LSW was chosen as
a sample process because the setup of a specific laser welding
machine or welding task is a very time consuming procedure.

A software library incorporating all the methods of Sec-
tion II was developed. To fulfil additional functional require-
ments which emerged during application and testing, exten-
sions to this original system were developed and implemented.
In the following part of the paper, these extensions and the
results of the verification procedure are presented.

A. Introduction to LSW
In order to weld work pieces by laser, the work pieces

have to be held in fixed positions. For that purpose, a laser
welding cell is equipped with complex jigs composed of
many pneumatic cylinders, limit switches, proximity switches,
mechanical stops and grippers. Such jigs are usually mounted
on a turn table which moves the fixed work pieces into a
completely enclosed welding cabin. Inside this cabin, one or
more robots are equipped with laser welding heads. These are
optical devices with fixed or adjustable focal length. An optical
fibre guides the laser light from the laser device to the welding
head.

To make a seam, the laser light has to be focused on the
work piece. The focus point has to be moved along the target
line, it can be exactly on the surface of the work piece, some
millimetres above, or inside or below the work piece. The
corresponding parameter, called defocus, can be used to control
the ratio between welding seam width and the penetration
depth. Laser power is in the range of up to 6000 W. One of
the most important advantages of LSW is the distance of the
welding head to the work piece. In the presented examples, this
distance (approximately equal to the focal length) is about 60
cm. Another benefit is the huge processing speed, the welding
progress can be more than 200 mm/s.

The result of the welding process can be described by
weld width and penetration depth (Figure 2). The customer
usually wants to specify these values. Additionally, more
quality constraints must to be satisfied: Undercut, root cavity,
excess penetration, excess weld metal (Figure 3).

B. Two Goal Functions
Penetration depth and weld width are two quantities, which

define the goal values to be fulfilled by the process. Each
quantity is modelled separately by SVR. In order to find the
appropriate process parameters, one needs to search for the
overlap of the two level sets for each goal value. One method
to achieve this, is (1) to determine the level set from only one
goal model and then (2) restrict this level set by the evaluation
of the second goal model and force it to be equal to the second
goal value.

Figure 2. Micrograph showing the main quality quantities in LSW:
penetration depth and weld width (with permission from AWL [7]).

Figure 3. Additional quality measures: a) Undercut, b) Root concavity, c)
Excess penetration and d) Excess weld metal.

If the level set of the first goal value is determined by the
analytical method (11)-(13), the resulting process parameters
will reproduce exactly the first goal value. But there are situa-
tions in which no single parameter set out of this level set will
produce the second goal with acceptable accuracy. The user
has to specify the allowed deviations in the goal values and
the feasible resolution of the process parameters. Additionally,
to accept small deviations it showed to be advantageous to run
the determination of the level set twice, with changed roles of
the first and second goal quantities.

Determination of the level set by the subdivision algorithm
(Section II-D) does not suffer from this issue, because it is
internally already working in a discretizied parameter and goal
space.

C. Parameter Extraction Allowing Goal Ranges
In LSW, it is not always appropriate to match both goal

values of Penetration Depth and Weld Width exactly. A cus-
tomer may require the penetration depth to be equal to the
thickness of the lower sheet. Additionally, he may only set
the requirement on the weld width to be greater than a given
minimum value or to lie in a given range. For this, the goal
range is disretisized according to the specified resolution of
the goal value and a levelset is determined for each of these
descrete levels. After that, the union of all found levelsets is
build and repetitions of parameters are deleted.

D. Model Mapping and Model Calibration
A laser welding cell is typically build up at the vendors

facility, where also process parameters for good quality prod-
ucts are determined. Test sheets are welded with different
process parameter settings, cross sections are cut and polished.
Penetration depth, weld width and other parameters, which
characterise the welding seam, are measured by micrography
(Figure 2 and Figure 3). First products are produced, and if
the customer is satisfied with the quality, the welding cell will
be dismantled and rebuilt at the customers factory.
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Figure 4. Model mapping or model calibration.

When the first products are produced at the customer, it
is not unusual that the results are slightly different to the
previously results at the vendor. Something small has changed
in the whole setup, which has an influence on the results but the
cause might not be obvious. Because the physics of the process
has not changed, it is a good assumption that a process model
developed by the vendor is still correct. Then only a small
affine transformation of the combined process parameter and
goal quantity space will shift the process model, so that it now
captures the new situation with sufficient accuracy. The new
measurements at the customer are used to calibrate the process
model (Figure 4).

A new task may require to weld a material combination
which is similar to an other material combination with an
already existing process model. It can be assumed that the
physics does not behave very different and therefore, the
existing model can be used as a basis for the new welding
task. Because the qualitative behaviour is already modelled,
only a small number of additional experiments have to be
done to capture deviations. The original model can then be
transformed into a new model for the new task by the same
procedures as in the case of calibration. In this way, an existing
process model is mapped to a new process model for a new
task.

Both procedures, model calibration and model mapping,
are algorithmic equivalents.

E. Parameter Adjustment
The previous chapter dealt with the calibration of a process

model to slightly different boundary conditions. The idea was
to create an adjusted process model, which again is capable to
describe the whole process space.

But sometimes it is enough to just find better process
parameters for a given task. Again, under the assumption of
similar physical behaviour, an existing process model can be
used to calculate gradients in parameter space which yield
better goal values. The process model does not have to be
very precise in an absolute sense, but it should exhibit the
same qualitative behaviour.

F. Experimental Verification
In the I-RAMP3 project (see Section ACKNOWLEDGE-

MENT), the changed conditions (after dismantling and rebuild-
ing a laser welding cell) were simulated by the exchange of
the laser source and the optical fibre connecting the source
with the laser head mounted on the robot. Theoretically, there

Figure 5. 5-fold cross validation error histogram of process model.

should be no change in the process results, if the laser source
and the fibre are exact replacements. But it is nearly sure that
these components are a bit different, e.g., the source is build
by an other vendor and produces slightly different laser output
power.

In the following, the steps performed to demonstrate the
usability and applicability of T2MT to LSW are described in
details, please refer to Figure 4. All experiments were done by
AWL. [7]

1) Experimental Sampling of Process Space: Experiments
were done on three different material and thickness combina-
tions:
• HC260LA-0.6mm on HC420LA-1.2mm,
• HC420LA-1.2mm on HC380LA-1.5mm, and
• DC04-1.5mm on HC380LA-1.5mm.
The process parameter space was sampled on a regular grid

in following ranges:
• laser power: 3500 W to 5500 W, in steps of 500 W,
• focus: -20 mm to +20 mm, in steps of 5 mm and
• weld velocity: 80 mm/s to 220 mm/s, in steps of 10

mm/s.
In the case of DC04 and low laser power, the lower limit of
weld velocity was reduced to 30 mm/s.

All in all 1485 experiments were made. Each welding seam
was cut, sanded and measured by micrography. The measured
quantities were penetration depth, weld width, undercut, root
concavity, excessive penetration and excess weld metal (Fig-
ure 2 and Figure 3).

2) Generation of Process Models: Based on these data,
process models for penetration depth and weld width were
calculated using SVR (Sections II-B and III-B). The boundary
of the space supported by the data was modelled by SVRM
(Section II-C). All calculations regarding support vectors are
based on the library libsvm [8].

Only data which produced good quality was used to build
up the process models. The conditions to specify good quality
were set to penetration depth ≥ 0.1 mm, weld width ≥ 0.5 mm,
undercut ≤ 0.25 × ’upper sheet thickness’, and root cavity ≤
0.25 × ’lower sheet thickness’.

An example of the error distribution of such a model is
shown in Figure 5. The Figure shows the histogram for the
first material combination (HC260LA-0.6mm on HC420LA-
1.2mm). It is the overlay of 5-fold cross validation. The inlay
on the left side shows some statistical quantities, e.g., 75% of
the errors are in the range ±0.113 mm. The inlay on the right
side shows the ε-insensitive loss function used in the SVR
algorithm to weight the errors. In the case shown, ε was set
to 0.1 mm. Errors in the range of ±ε are weighted by zero,
they have no influence on the optimization algorithm used to
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determine the regression coefficients. Errors outside this range
are weighted linearly. These two facts are responsible for the
very robust behaviour of SVR with respect to outliers.

3) Parameter Prediction for Sample Tasks (Original
Model): New welding tasks were specified by selection of
a material combination, specification of demanded values of
penetration depth and weld width and in some cases also
specification of one of the process parameters laser power, laser
focus, or weld velocity. The remaining process parameters
were determined by calculation of the level set for the given
goals of penetration depth and weld width.

In order to select one parameter set out of the level set,
a cost function was defined which prefers smaller cycle time
(faster speed):

cost =
√
(d− d0)2 + (w − w0)2 + (v/100)2,

where d = penetration depth, D0 = demanded penetration
depth, w = weld width, w0 = demanded weld width and v
= weld velocity.

4) Measurements with a new Laser: Changed production
conditions were simulated by exchange of the laser by an other
laser made by an other vendor. Also, the fibre connecting the
laser source with the laser head in the robot was exchanged.

The parameters predicted in the previous step were used to
perform weld processes. Again, all produced welding seams
were cut, sanded and measured by micrography. All measured
penetration depths and weld widths were found to be smaller
than requested.

As a cross-check, some additional measurements were
made with process parameters taken from the original experi-
ments, from which the process models were created. Also in
these cases, the results were too small.

The deviations produced by the new laser with respect
to the original process models on penetration depth was -
0.16±0.16 mm, the deviation on weld width was -0.13±0.10
mm.

5) Calibration of the Process Models: The process models
were calibrated using the data of the previous step, where
all results are out of demanded ranges. Only 37 experiments
were used to calibrate the process models, whereas the original
models was created by 295 (good quality) experiments out of
about 490. It can be expected that the number of required
calibration experiments can be further reduced by application
of intelligent sampling algorithms.

6) Parameter Prediction for Sample Tasks (Calibrated
Model): Based on the calibrated model again new tasks were
specified and corresponding process parameters are determined
in the same manner as in Subsection III-F3.

7) Verification of the Predictions by new Laser: Exper-
iments with the new parameters were executed and evalu-
ated. The deviations produced by the new laser with respect
to the calibrated process models on penetration depth was
+0.05±0.11 mm, the deviation on weld width was -0.05±0.07
mm. It can be stated that these results are a good improve-
ment compared to the original model. This improvement was
reached by only few additional experiments with the new laser.
It must be kept in mind, that the evaluation of each experiment
is very time consuming because it involves cutting, sanding and
micrography.

IV. CONCLUSION
In [1], a concept (called T2MT) was presented for the auto-

matic extraction and representation of process knowledge from

experimental data. It was used to derive process parameters to
reach a given goal under given process conditions. The concept
was demonstrated in that paper by numerical simulations on
resistance spot welding.

In Section II of the current paper, a short review of T2MT
is given. Section III applies the methods to LSW and describes
additional extensions, which converted the T2MT into a system
usable in industry.

The whole concept was now demonstrated to be ready to be
applied in industrial environments by experimental verification
with real data, sampled from the LSW process. The focus
was to demonstrate the advantages by finding good process
parameters using T2MT with highly reduced time effort. This
time-saving aspect becomes more and more impressive if more
process models are available. Data should be gathered from
the setup of new machines and from processing of new tasks
and should be stored in a database. Process models derived
from this database are candidates for the calibration to slightly
different tasks, they are the starting point for the generation of
new models.

It is worthwhile here to mention the flexibility and portabil-
ity of the T2MT. The whole framework makes no assumption
about the underlying processes, it is exclusively driven by
experimental data. The T2MT can also be integrated into
machines and perform the automatic parameter finding on-line.
In this case, the user needs to describe the demanded task in
terms of goal values and process boundary conditions, e.g.,
materials and sheet thicknesses. The process parameters are
determined automatically in this task-driven operation.
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