

Test Platform for the Performance Evaluation of OPC-UA Servers for Fast Data

Transfer Between Intelligent Equipment

Flavio González Vázquez

Ultraclean Technology and Micromanufacturing

Fraunhofer Institute for Manufacturing Engineering and Automation (IPA)

Stuttgart, Germany

e-mail: Flavio.Gonzalez@ipa.fraunhofer.de

Abstract— The ubiquity and widespread support of the Object

Linking and Embedding for Process Control (OPC) Unified

Architecture protocol in the automation industry and also

outside it enable millions of intelligent manufacturing devices

to effectively communicate and exchange information between

each other in a secure and standardized manner. On the other

hand, the ever growing need for large data transfers for

predictive maintenance, process visualization and Internet of

Things, among others, requires a precise knowledge of the

protocol and system limitations in order to plan migrations or

new installations. In this paper, a flexible test platform for the

performance evaluation of OPC-UA systems is presented,

along with preliminary findings and comparative performance

measures of three different categories of PC-based OPC-UA

systems.

Keywords— Object Linking and Embedding for Process

Control Unified Architecture (OPC-UA); performance

evaluation; intelligent manufacturing systems; test platform;

industrial automation.

I. INTRODUCTION

The requirements of quick and cost-effective integration
and data visualization of heterogeneous intelligent
automation systems has rapidly popularized the usage of
OPC Unified Architecture (OPC-UA) as communication
protocol in the automation industry. In comparison with the
classic Object Linking and Embedding for Process Control
(OPC) protocol that has been in use since 1996 for
Windows-based systems, OPC-UA achieves platform
independence, better scalability and a more secure approach
based on newer standards, among other benefits. However,
with now the majority of PLC and equipment manufacturers
supporting the OPC-UA protocol, and given the fact that the
protocol is based on the Transmission Control Protocol
(TCP) that does not have real-time requirements, questions
about the performance of the protocol and specially of
different OPC-UA server implementations arise when
planning new installations or considering upgrading existing
ones. Different applications like inter-equipment data
transfer for processing, process visualization (Supervisory
Control And Data Acquisition, or SCADA), data transfer for
archival, predictive maintenance or Internet of Things (IoT)
networks have different requirements, but a common one is
the need for transferring large amounts of information. A
decisive factor during the planning and realization phase is

the knowledge of the protocol and system limitations and
performance numbers when a large data volume is involved.
Although tools or mechanisms [1] already exist to provide
some information, and performance tests have been made
([2] Chapter 13 “Performance”, or [3]), in order to
systematically test a possible OPC-UA system and its
performance measures and to provide decisive information to
support an OPC-UA system choice based on custom and
mixed criteria, a test platform for the benchmarking of OPC-
UA systems has been developed.

This paper contains five additional sections. The first
one, Section II, presents the requirements of the developed
test platform. Section III describes the parameters under
consideration for the study, while the test procedure itself
and the details about the considered use-cases and
information of interest are discussed in Section IV. Section V
describes the setup for the tests and in Section VI some
preliminary results are presented, as well as an outlook for
future work on this matter.

II. TEST PLATFORM

In order to gather data in a consistent and reproducible
manner, a test program was developed to permit the
execution of test procedures in a flexible way. The technical
goals set for the implementation were:

a) The test procedure should not be hardcoded in the
program, in order to allow quick modifications of the test
procedures for fast parameter fine-tuning.

b) Test variations should be easy to describe, so that
experiments based on previous tests are easier to create and
execute.

c) It should be possible to store, reproduce and
execute different test procedures.

TEST
test: Concurrent requests
name: concurrent_requests
cycles: 100

concurrency: 1
resource: ns=4;s=MAIN.valueDesc
measure

cycles: 25

count: 1
concurrency: 40
measure

count: 40
measure

Figure 1. Sample test description document.

179Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

d) Test execution times should be stored in a machine-
readable format in order to allow further data processing like
statistic generation.

In order to enable the execution of tests in a flexible way,

a test description document was created. One or multiple
tests can be described in a single file, and measurements can
be issued with a simple command. A sample test described
on this format is shown in Figure 1. The commands used will
be described on the coming sections.

III. PARAMETERS UNDER TEST

For the results discussed in this paper, the following
parameters were considered, and thus are available in the test
description document for adjustment:

a) Node. The OPC-UA node under test can be
specified with this parameter, effectively selecting the
amount of data that will transferred per node.

b) Number of cycles. For the purpose of calculating
average execution times, the total number of execution
cycles can be defined per measurement, and the
measurements can be averaged per cycle (combinable with
concurrency and number of nodes per request).

c) Concurrency. This parameter defines the number of
requests that are sent at the same time to the server,
combinable with number of cycles and number of nodes per
request. A pool of threads is initialized, and all request
workers are instantiated to fetch the defined node at the same
time. The test execution waits for all threads to be
completed; therefore, the measurements derived from using
the concurrency parameter include the amount of time taken
by the longest request thread.

d) Number of nodes per request. As described in [2],
p. 125, OPC-UA requests can contain a list of nodes to read
or write in order to reduce overhead. As such, this parameter
determines the number of nodes fetched per read/write
request. If this parameter is set to any value greater than 1,
the same node is requested multiple times. The number of
nodes per request is combinable with the number of cycles
and concurrency parameters.

e) Security. Determines the preference for a secured,
encrypted endpoint when connecting to an OPC-UA server.
OPC-UA endpoints are sorted in descending order of
security, and when security is set to on, the first endpoint
from the available list is chosen, otherwise the last one when
set to off.

IV. TEST PROCEDURE AND DESCRIPTION OF GATHERED

DATA

In order to draw representative conclusions with the
different tests, four variables were made available on all PLC
programs with varying sizes:

1) Real variable with a total memory usage of 32 bits
(REAL), representing a typical single numerical
variable.

2) Array of 512 integer numbers of 16 bit each totaling
1 kilobyte of payload (PAGE), representing an

average visualization page containing multiple
variables.

3) Byte array of 20.000 elements (SDD), representing
a sample self-description document in text format.

4) Byte array of 65.535 elements (IMAGE),
representing a small image in binary format.

With the aforementioned resources at the disposal on the

PLCs, the following tests were conducted:
a) Data volume. The amount of time required to fetch

nodes containing variables or different data sizes
was tested. Each of the 4 variables was requested in
blocks of 1 or 40, one thousand times (one thousand
requests of one node/40 nodes each).

b) Grouped requests. The benefit and reduction of
overhead by fetching multiple nodes in one request
was tested. The 4 variables were fetched in grouped
requests of 40 and 400 variables per request and run
100 and 50 cycles respectively, and the times were,
after calculating the average time per variable
fetched, compared with single variable requests.

c) Concurrent requests. The channel and server
efficiency responding to multiple concurrent
requests were tested by sending multiple requests at
the same time for fetching individual nodes.

d) Security. The impact of the transport encryption
was the main purpose of this test. The four variables
under test were fetched thousand times in a single
variable per request basis, once through a secure
endpoint, once through an unsecured endpoint.

The test description document is interpreted by the test

platform program line by line, creating new test instances as
required and configuring the test instance appropriately.
Upon reading a measure command, the current test instance
is executed and the execution times and other data are
gathered in a file. The following data is contained in the
produced file as the result for the test, in addition to the test
name and timestamp:

a) Number of resources 𝑛𝑟 fetched in total during the
test, calculated as 𝑛𝑟 = 𝑛𝑐 · 𝑛𝑡 where 𝑛𝑐 is the
number of nodes per request, and 𝑛𝑡 is the number
of threads spawned at the same time.

b) Total duration 𝑡 taken for the complete test instance
to execute.

c) Average time per cycle 𝑡�̅� calculated as 𝑡�̅� = 𝑡/𝑐
where 𝑐 is the number of execution cycles as
defined in the test description document (or 1 by
default).

d) Average time per resource 𝑡�̅� calculated as 𝑡�̅� =
𝑡�̅�/𝑛𝑟.

e) Standard deviation 𝜎 calculated as 𝜎 =
(∑ (𝑡𝑐 − 𝑡�̅�)

2𝑛𝑐
𝑐=0)/𝑛𝑐.

f) Coefficient of variation 𝑐𝑣 calculated as 𝑐𝑣 = 𝜎/𝑡�̅�.

V. EQUIPMENT UNDER TEST AND SETUP

The aforementioned test procedure was executed against
three PC-based PLCs running compatible OPC-UA

180Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

interfaces: a high-end Microsoft Windows 7-based PLC (PC)
running on a dual core processor and using traditional hard
disk drives for storage, a lower-end Microsoft Windows
Embedded-based PLC (EPC) running on a single core
processor and using a flash-based memory storage device,

and a development board running an embedded OPC-UA
implementation. The client test platform was executed in a
standard PC computer, running Microsoft Windows 7 and a
.NET OPC-UA stack implementation, and connected directly

a) Data volume test. Total execution times for the four different variables by fetching 1 and 40 nodes per request, respectively.

b) Grouped requests test. Total execution times for the REAL and SDD variables by fetching 1, 40 and 400 nodes per request, respectively.

c) Concurrent requests test. Total execution times for the SDD variable by spawning 1, 40 and 400 parallel threads, with 1 and 40 nodes per request

(𝑛𝑡/𝑛𝑐).

d) Security test. Total execution times for the Real, Page and SDD variables through an unsecured and an encripted channel, respectively.

Figure 2. Comparison of execution times of the different tests cases.

REAL
REAL

(40)
PAGE

PAGE

(40)
SDD

SDD

(40)
IMAGE

IMAGE

(40)

PC 3,11 3,39 5,16 9,52 4,05 13,85 109,03

EPC 1,97 1,47 1,94 2,93 1,91 4,92 24,25

DB 1,47 1,43 1,65 1,66 2,36 3,06 3,04 2,85

1

10

100

1000

T
o

ta
l

e
x
ec

u
ti

o
n

 t
im

e

p
er

 c
y

cl
e

(m
s)

PC

EPC

DB

REAL (1) SDD (1) REAL (40) SDD (40) REAL (400) SDD (400)

PC 3,14 5,20 4,13 109,05 10,13

EPC 1,42 1,77 1,73 23,27 4,55

DB 1,40 1,40 2,39 2,93 11,22 10,81

1

10

100

1000

T
o

ta
l

e
x
ec

u
ti

o
n

 t
im

e

p
er

 c
y

cl
e

(m
s)

PC

EPC

DB

SDD (1/1) SDD (40/1) SDD (40/40) SDD (400/1) SDD (400/40)

PC 5,27 245,17 4407,93 2477,47 44291,74

EPC 1,80 82,72 963,72 910,72 9652,98

DB 1,40 62,24 102,71 622,38 1035,25

1
10

100
1.000

10.000
100.000

T
o

ta
l

e
x
ec

u
ti

o
n

 t
im

e

p
er

 c
y

cl
e

(m
s)

PC

EPC

DB

REAL (OFF) REAL (ON) PAGE (OFF) PAGE (ON) SDD (OFF) SDD (ON)

PC 4,08 4,37 12,87 16,78 109,03 135,48

EPC 1,93 2,09 5,46 8,25 24,78 41,60

1
10

100
1000

T
o

ta
l

e
x
ec

u
ti

o
n

ti
m

e
p

er
 c

y
cl

e

(m
s) PC

EPC

181Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

and separately for each test with every equipment under test
with a Cat 6 network cable working in a 100 Mbit/s
operation mode. Since in most of the cases the OPC-UA
server implementation is not an interchangeable component
in the PLC, the complete system was tested, measuring the
total time taken by a request to be serialized and processed
by the OPC-UA client (𝑡0), the request to travel to the OPC-
UA server (𝑡1), the request to be deserialized and processed
by the OPC-UA server (𝑡2), the variable to be fetched
internally on the PLC (𝑡3), the variable to be processed
internally on the PLC (𝑡4), the variable to be returned to the
OPC-UA server (𝑡5), the response to be processed and
serialized by the OPC-UA server (𝑡6), the response to travel
back to the OPC-UA client (𝑡7) and the response to be
deserialized and processed by the OPC-UA client (𝑡8), as
depicted in Figure 3. The test cases described in Section IV
were executed on the three PLCs, yielding the execution
times depicted in Figure 2.

Figure 3. System under test and different processing and travel times.

Figure 4. Comparison of average execution times (of 1000 execution

cycles) per node when fetching the REAL, PAGE and SDD variables in

single requests versus 40 nodes per request.

VI. CONCLUSION AND FUTURE WORK

From the gathered preliminary results, some conclusions
can be drawn:

a) As expected, requests with single nodes take much
overhead, and grouping many variables into a
request saves time on all tested implementations, as
shown in Figure 4.

b) Given the low RAM available on the EPC and the
comparatively slower flash storage used for the
virtual memory, larger variables take a considerable
time impact, when memory swapping is required
and slows down the entire system.

c) Sending multiple requests in parallel is generally a
good idea if a large amount of nodes need to be
requested at a given time, as all implementations
showed drastic time savings by fetching multiple
variables separated into requests sent at the same
time. Combining multiple threads with multiple
nodes per request further improve time savings.

d) As expected, choosing a secure and encrypted
endpoint has a speed penalty, although it might not
be a deciding factor if security is a requirement. In
the tests, a Basic128Rsa15 security policy and a
security mode of Sign & Encrypt was used as
required by two of the three OPC-UA
implementations that implemented secured
endpoints.

e) Since the platform tested the whole system, the
development board outperformed the other two
higher-end systems as the internal communication
allowed for faster data retrieval.

In this paper, an OPC-UA benchmarking tool has been

presented, in addition to some preliminary results. The
testing platform enables the capture of performance
information in a flexible and reproducible way, and makes it
possible to describe tests using any combination of
parameters permitting the compilation of exactly the required
data to make decisions about the amount of information that
it is possible to transfer in a given application, or the speed
limitations when planning a facility. The results presented
here are preliminary, and more statistics and parameters are
foreseen to be included in the testing application,
configurations to better simulate the conditions that a facility
will face, as well as a more detailed test scenario including
specific PLCs with varied configurations and optimizations.
Comparisons between software- and hardware-based PLCs,
as well as with variations in the network equipment (like
cable length, class and age) and bus couplers are planned to
be the subject of further evaluation.

ACKNOWLEDGMENT

F.G.V. would like to thank Pablo Mayer and Fabian
Böttinger for their help building and configuring the
equipment under test described on this paper, as well as for
their invaluable advice on this project.

REFERENCES

[1] "Resource Efficiency Testing, Step by Step Instructions

(whitepaper)," 16 May 2014. [Online]. Available:

https://opcfoundation.org/wp-

content/uploads/2014/05/Certification_Resource_Efficiency_T

esting.pdf. [Accessed 22 May 2015].

[2] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified

Architecture, Springer-Verlag Berlin Heidelberg, 2009.

[3] C. Salvatore and G. Cutuli, "Performance evaluation of OPC

UA," in 2010 IEEE Conference on Emerging Technologies

and Factory Automation (ETFA), Bilbao, 2010, pp. 1-8.

[4] J. Lange and F. Iwanitz, OPC, From Data Access to Unified

Architecture, VDE Verlag, 2010.

REAL

(1)

REAL

(40)
PAGE

PAGE

(40)
SDD

SDD

(40)

PC 1,9731 0,0477 1,4718 0,123 1,9378 0,6063

EPC 3,109 0,1012 3,3902 0,3462 5,1575 2,7257

DB 1,4679 0,0591 1,4349 0,0765 1,6544 0,076

0

2

4

6

A
v

er
a

g
e

ex
ec

u
ti

o
n

ti
m

e
p

er
 n

o
d

e
a

n
d

p
er

 c
y

cl
e

(m
s)

O
P

C
-U

A
 c

li
en

t

O
P

C
-U

A
 s

er
v

er

P
L

C

PC-based automation system

𝑡0 𝑡1

𝑡7 𝑡6 𝑡5

𝑡2 𝑡3

𝑡8

𝑡4

182Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

	I. Introduction
	II. Test platform
	III. Parameters under test
	IV. Test procedure and description of gathered data
	V. Equipment under test and setup
	VI. conclusion and future work
	Acknowledgment
	References

