
Smart Components for Enabling Intelligent Web of Things Applications

Felix Leif Keppmann, Maria Maleshkova
AIFB, Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: felix.leif.keppmann@kit.edu, maria.maleshkova@kit.edu

Abstract—We are currently witnessing an increased use of sensor
technologies, abundant availability of mobile devices, and growing
popularity of wearables, which enable the direct integration of
their data as part of rich client applications in a multitude
of different domains. In this context, the Internet of Things
(IoT) promises the capability of connecting billions of devices,
resources, and things together in an integrated way. However,
what we are currently witnessing is the proliferation of isolated
islands of custom IoT solutions. A first step towards enabling
some interoperability in the IoT is to connect things to the Web
and to use the Web stack, thereby conceiving the so-called Web
of Things (WoT). However, even when a homogeneous access
is reached through Web protocols, a common understanding
is still missing, specifically in terms of heterogeneous devices,
different programmable interfaces and diverse data formats and
structures. Our work focuses on two main aspects: overcoming
device and interface heterogeneity as well as enabling adaptable
and scalable (i.e., intelligent) decentralised WoT applications.
To this end, we present an approach for realising decentralised
WoT solutions based on three main building blocks: 1) smart
components as an abstraction of a unified approach towards
realising the devices’ interfaces, communication mechanisms,
semantics of the devices’ resources and capabilities, and decision
logic; 2) adaptability of devices’ interfaces and interaction at
runtime; 3) adaptability of the devices’ data structures and
semantics at runtime. We show how our approach can be
applied by introducing a reference smart component design,
provide a thorough evaluation in terms of a proof-of-concept
implementation of an example use case.

Keywords–Smart Components, decentralised applications, Web
of Things, REST, Linked Data

I. INTRODUCTION
Current developments in many domains are characterised

by the increased use of mobile devices, wearables, and sensors,
which bring the promise of higher digitalisation and rich client
applications. In this context, the vision of the Internet of Things
(IoT) aims to achieve the capability of connecting billions
of devices, resources, and things together in the Internet.
Still, what we are currently witnessing is the proliferation
of isolated islands of custom IoT solutions, which support a
restricted set of protocols and devices and cannot be easily
integrated or extended. A first step towards enabling some
interoperability in the IoT is to connect things to the Web and
to use the Web stack, thereby conceiving the so-called Web
of Things (WoT). However, even when a homogeneous access
is reached through Web protocols, a common understanding
is still missing, specifically in terms of heterogeneous devices,
different programmable interfaces, and diverse data. Semantic
technologies can be used to describe dataflows on a meta level,
capturing the meaning of devices’ inputs and outputs, and thus
abstracting away from the syntactic structure. However, having
the semantics of the data is not enough. While we can describe
the exchanged data, the resulting solutions are limited to a
specific domain, and the heterogeneous device integration is

still lacking.
In this context, our work focuses on two main challenges:

1) overcoming heterogeneity, not only in terms of data but also
in terms of devices and interfaces, and 2) enabling intelligent
WoT applications. In terms of handling the plenitude of
existing devices, we advocate an approach based on providing
a unified view on devices and describing them in terms of their
programmable interfaces, since this is how their integration
as part of applications is realised. The difficulty that we face
here is that in multi-stakeholder scenarios, where devices are
built by several manufacturers and integrated and used by other
parties, it is hardly possible to know all requirements of every
possible integration scenario at design time. As a result, we can
only provide default interfaces and interaction, thus needing
to be able to adapt the component to provide the optimal
solution for a specific use case. To this end, we also focus on
realising intelligent WoT applications, where the “intelligence”
is in terms of being able to adapt to changing requirements,
at deployment time, but more importantly at runtime.

In this context, we make the following contributions. First,
we present an approach for realising decentralised WoT solu-
tions based on three main building blocks: 1) smart compo-
nents as an abstraction of a unified approach towards realising
the devices’ interfaces, communication mechanisms, semantics
of the devices’ resources and capabilities, and decision logic;
2) adaptability of devices’ interfaces and interaction at runtime;
3) adaptability of the devices’ data structures and semantics at
runtime. Second, we show how our approach can be applied
by introducing a reference smart component design, based on
Web and Semantic Web paradigms and technologies. We back
up the design by a specific implementation. Finally, we provide
a thorough evaluation of a proof-of-concept implementation of
an example use case.

The remainder of this paper is structured as follows. In
Section II, we introduce our motivation scenario, describing the
challenges that we are focusing on. Section III describes the
requirements for building WoT systems and the preliminaries
that we build upon. Furthermore, it provides an architecture to
realise this approach, and describes our implementation. For
evaluation, in Section IV, we demonstrate the adaptability of
our system to update at runtime the devices’ interfaces and the
controlling logic. We describe related work in Section V and
conclude in Section VI.

II. MOTIVATION
In the following, we introduce a scenario that puts our work

into context and use it to introduce the specific challenges that
we are focusing on.

A. Scenario
To motivate our approach, we choose a generic body

tracking component as an example, i.e., “thing”. This com-
ponent is able to track people in front of its video sensor

115Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

by interpreting the video through algorithmic analysis of the
captured video images. The body tracking is provided in the
form of coordinates of the different joint points of the skeleton
of the tracked people. These coordinates are provided to or
send to other components, depending on the specific use case,
with the sensor (or a custom point) as the origin of the
coordinates.

As typical parts of the body tracking components, we
consider a depth video camera, an analysis middleware, and
an access layer with network connectivity. The depth video
camera provides depth images that are enriched with addi-
tional information about the distance from the camera for
every pixel. The analysis middleware encapsulates various
algorithms, which are required to interpret the stream of
depth images. By comparing and classifying the content in a
sequence of incoming images, these algorithms calculate and
extract different information, e.g., the body tracking data in
our case. The access layer provides access to the body tracking
data, via an interface to other components, or interacts with
the interfaces of other components. Furthermore, the access
layer may also enable retrieving data, e.g., modification of
configuration settings in our case. An operating system and
further common software infrastructure augments these parts,
which may be distributed across different hardware devices
or embedded in one physical system. In both cases, the body
tracking appears as one distinct component to the rest of the
network via its access layer.

We explicitly abstract from a particular use case and instead
design the “thing” as a generic body tracking component.
Thereby, we keep the focus on the specific functionality, i.e.,
body tracking, which is encapsulated and may be combined
with other “things” in a larger integration scenario. This
integration scenario may be, for example, safety monitoring
in a factory, gesture interaction with technical artefacts, or
responsive art installations. By combining and integrating the
component with other components, we build distributed appli-
cations, which exceed the sum of their parts in functionality.

Our body tracking component is just one example out of
a heterogeneous landscape of “things”. A multitude of func-
tionalities ranges from simple temperature sensors to complex
robots. Different hardware and software requirements range
from low-energy embedded systems to processing-intensive
calculations, e.g., body tracking. In this market, several stake-
holders exist, e.g., different manufacturers of “things”, tech-
nology integrators, or customers with specific integration sce-
narios. In this context, there are several challenges that we face
while realising the integration of components into a coherent
application with a value-added functionality, which is, by
design, of distributed nature.

B. Problem Focus
In the following, we focus on two main challenges: 1) the

information asymmetry between the design of a component
and its use at runtime in different integration scenarios, and
2) the inefficiency that can occur when developing a generic
component, which may have several specific use cases.

1) Requirements Asymmetry: In multi-stakeholder scenar-
ios, where components are built by several manufacturers
and are integrated and used by others, we hardly know all
requirements of every possible integration scenario at design
time. As a result, we can only provide default interfaces and
interaction but are not able to adapt the component to provide

the optimal solution for a specific use case.
2) Development Inefficiency: Even if all integration scenar-

ios would be known, we face an inefficiency issue. Designing
and developing the same component in several adapted ver-
sions for each and every use case does not only lead to a very
complex and inefficient, i.e., time-consuming, development but
in consequence may also be inefficient in terms of business
requirements, i.e., be unprofitable.

III. SMART COMPONENT
In the following, we introduce our approach by clarifying

the requirements, presenting the preliminaries, and elaborating
on our architecture and implementation.

A. Requirements
As part of the IoT vision, we see applications built upon

a number of different components that communicate data to
provide a value-added functionality without the necessity of
centralised control within the application. While central control
is still a valid – thus still to be supported – integration
pattern, we must acknowledge integration scenarios, in which
distributed control is required, e.g., caused by the scenario
itself, or by performance, redundancy, or latency requirements.
The requirements for a component’s architecture are, with
respect to the previously mentioned problems, three-fold:

1) Adaptability of Interfaces and Interaction at Runtime:
First, for communication and thus the ability to establish data
flows between components, which are required to provide
the value-added functionality of an application, components
need to interact. This interaction can be supported by a
component 1) by – passively – providing an interface for other
components, or 2) by – actively – interacting with interfaces
of other components. Components must be able to adapt their
interfaces and interaction according to the specific situation
in the integration scenarios. We derive this requirement from
the inability to foresee or consider all possible integration
scenarios during the design time of a component.

2) Adaptability of Data Structures and Semantics at Run-
time: Second, complementary to the interaction between com-
ponents, the data, which is communicated, must be handled
and processed in an appropriate manner according to both
the data structure and semantics. Components must be able to
adapt the structure and align the semantic annotation of data
to the specific situation in the integration scenarios. We derive
this requirement again from the inability to foresee all possible
integration scenarios during the design time of a component.

3) Adaptability of Controlling Logic at Runtime: Third, a
distributed application, which is composed of several different
independently developed components, must be controlled in
some way, i.e., a controlling intelligence within the application
must exist that coordinates the collaboration of components
to achieve the value-added functionality of the application.
By default, a central controlling component, custom for the
specific integration scenario, actively controls all other compo-
nents. However, to support scenarios with distributed control,
as facilitated by the IoT vision, components must be adaptable
in terms of their intelligence by being able to update the
controlling logic at runtime.

B. Preliminaries
We build our contribution upon a number of well estab-

lished paradigms for enabling large heterogeneous distributed

116Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

systems: Representational State Transfer (REST) for overcom-
ing heterogeneity at interface level and Linked Data (LD) to
ease the semantic integration of data.

While paradigm-wise being technology-agnostic, REST [1]
is usually realised by utilising the Hypertext Transfer Protocol
(HTTP). It incorporates the concept of Uniform Resource
Identifier (URI) as unique identifier for resources and provides
transport mechanisms for data transfer. HTTP – used as true
application protocol – defines a constrained set of methods,
e.g., GET, PUT, POST, and DELETE as the most known
methods, with standardised semantics, i.e., the protocol defines
how clients must interact with resources identified by URIs.
Acknowledging the heterogeneous inconsistent nature of large
distributed systems with multiple stakeholders, status codes for
handling various types of successful and failing communica-
tion are part of the protocol.

The architectural paradigm Linked Data introduces shared
semantics to data and builds – similar to REST – on URIs as
unique identifiers. Technological buildings blocks of Linked
Data, that we are taking advantage of, are the Resource
Description Framework (RDF) [2], the SPARQL Protocol
and RDF Query Language (SPARQL) [3], and the Notation3
(N3) [4] syntax for rule and assertion logic for RDF.

We introduce the notion of a “Smart Component (SC)”,
when this component is built following our architectural ap-
proach: 1) REST for realising interfaces and the communi-
cation between components; 2) Linked Data for describing
the exchanged data, interface resources, and components’
capabilities; and 3) decentralised smartness of each component,
described in terms of rules.

Figure 1. Smart Component Architecture

C. Architecture
Our approach tackles the requirements by combining and

extending Web and Semantic Web technologies. In Figure 1,
we present the internal architecture of a component that
follows our Smart Component approach. It comprises a num-
ber of resources providing semantically annotated data, rule
programs, which can be interpreted with respect to the data,
and an interpreter for interpreting the rule programs.

1) Internal Resources (IRes): Internal resources provide
access to the core functionality and data of the component, that
distinguishes it from other components. In our motivation sce-

nario, the core comprises depth video recording, image analy-
sis, body tracking, and configuration. Only relevant parts of the
core functionality and data are exposed as internal resources,
e.g., the complete body tracking data as well as selected
configuration parameters. Common to all internal resources is
the RDF-conform modelling of data and its integration with
the interpreter. The internal resources together form an internal
RDF knowledge graph. We do not explicitly prescribe how
these resources are integrated with the interpreter to not overly
restrict the development of components. Integration can range
from programmatic integration, to file-based access, and to
HTTP or other communication protocols.

2) Declared Resources (DRes): Declared resources form
the Application Programming Interface (API) of the com-
ponent exposed to the network at runtime. In our motiva-
tion scenario, we could, for example, expose the skeleton
information of each tracked person as declared resources, or
only the distance of specific joint points. These resources
conform to the Linked Data and REST paradigms; thus they
are identified by URIs, accessible via HTTP, and provide data
in RDF serialisation formats. Declared resource are defined as
SPARQL CONSTRUCT patterns, which are evaluated against
the internal RDF knowledge graph.

3) Program (P): While construct queries are evaluated
against the internal RDF knowledge graph, we enable its mod-
ification through programs. Programs are written in a declara-
tive N3-based rules language, interpreted by the interpreter,
and encode transformation between ontologies, enrichment
by reasoning, decisions, and including of data from other
components with built-in interaction functions. Optionally, the
rule language may provide further built-in functions, e.g., for
calculations, to ease the declaration of programs.

4) Interpreter (Int): We introduce the interpreter as a
central element of our approach. On the one hand, the in-
terpreter maintains the internal RDF knowledge graph that is
build up during each interpreter run by 1) adding data from
internal resources, 2) adding data of external resources of other
components, if requested by interaction rules in programs,
and 3) adding data, which is derived by deduction rules in
programs. On the other hand, the interpreter 1) evaluates con-
struct queries of declared resources against the internal RDF
knowledge graph and 2) modifies, if requested by interaction
rules in programs, external resources. In both cases, external
resources are Linked Data REST resources, which belong to
other components and are accessible via HTTP to the network.
In summary, the task of the interpreter is to negotiate between
the private API, the public API, and the interaction with
resources of other components.

5) Meta Resources (MRes): With meta resources, we in-
troduce the last type of resources for our design of a Smart
Component. These resources are provided by a component as
part of the public API, i.e., are Linked Data REST resources
accessible by HTTP. In contrast to declared resources, which
expose internal data and functionality of the component, meta
resources expose the state of the interpreter and declared
resources. In other words, they allow to create, update, modify,
and delete, rule programs and graph patterns of declared
resources. With meta resources, we enable the adaptation of
components’ behaviour at runtime.

117Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

D. Implementation
We implemented a Smart Component based on our mo-

tivating scenario to show the feasibly of our architecture
and to support our evaluation. Natural Interaction via REST
(NIREST) [5] integrates hardware support for depth video
cameras, tracking middleware with body tracking algorithms,
and, as intelligent access layer, a rule-based data integration
framework for Linked Data REST resources. We abstract in
the following from actual device manufacturers and software
providers, which may change over time.

Figure 2. Scenario Component Implementation

In Figure 2, we provide an overview of the implementation
that realises all parts of our architecture. The hardware part
of our component consists of a separate depth video camera
and a computer with appropriate processing power for video
analysis. The camera provides raw depth image data and is
connected by wire with the computer. Both hardware pieces
may be merged in one embedded device. The software part
of our component consists of three layers, that we directly
integrated in program code. For the two lowest levels, we
include third party frameworks, as this functionality is not
in the focus of our work. We utilise a low-level framework
for device connectivity on the lowest level that provides raw
images to a tracking middleware at the second level. The body
tracking data, provided by the second level, is then included in
the intelligent access layer, which we describe in the following.

To realise the interpreter, programs, and declared resources,
we utilize Linked Data-Fu (LD-Fu) [6][7][8]. LD-Fu comprises
the LD-Fu rule language based on N3 syntax, the LD-Fu
interpreter for execution, and follows a generic approach for
the integration of Linked Data REST resources. The rule
language supports the declaration of: 1) deductions rules for
inferencing new knowledge, 2) interaction rules for encoding
of HTTP interaction with built-in functions, and 3) built-in
functions to ease decisions and transformations with mathe-
matical calculations. The interpreter maintains an internal RDF
graph and is capable of evaluating deduction rules or executing
HTTP requests. Both the results of deduction rules and the
payload of answers to requests are added to the internal graph
and may be subject to further rules, until reaching a fixpoint.

We extended the LD-Fu implementation to support our
Smart Component approach by introducing a REST API
and enable time-based continuous evaluation of programs.
The LD-Fu REST API is closely integrated with the LD-Fu
interpreter and supports the creation of interpreter instances,
creation and modification of rule programs per instance, as
well as the creation and modification of declarative resources
per instance. With separate interpreter instances, we support

the participation of a component in more than one distributed
application, i.e., we may adapt the behaviour of the component
per distributed application with a distinct set of interpreter,
programs, and declared resources. In addition, we introduced
time-base continuous execution of the interpreter.

While LD-Fu supports several ways to include resources,
e.g., file-based, pipe-based, or through HTTP requests, we
utilise the libraries for direct code-based integration. Therefore,
we enable the interpreter to read the body tracking data,
annotated in RDF, directly from the tracking middleware and
add it during each run to the internally maintained RDF
graph. Subsequent, programs declared in the N3-based LD-Fu
rule language and declared resources defined as SPARQL
CONSTRUCT queries are evaluated against this internal RDF
graph.

IV. EVALUATION
We provide an implementation of our approach and a thor-

ough evaluation in terms of: 1) evaluating the deployment and
adaptability of decentralised logic within smart components,
and 2) evaluating the integration and adaptability of interfaces
and interaction.

< n i r e s t : / / user /0 >
n i r e s t : ske le ton [

n i r e s t : j o i n t P o i n t [
n i r e s t : coord ina te [

n i r e s t : x "459.8463"^^ xsd : f l o a t ;
n i r e s t : y "404.0497"^^ xsd : f l o a t ;
n i r e s t : z "2037.2391"^^ xsd : f l o a t ;
a n i r e s t : Coordinate] ;

a n i r e s t : R ightHandJoin tPo in t] ;
. . .

Figure 3. Internal Resources

In Figure 3, we provide a snippet of the RDF graph of
internal resources, which is included during every interpreter
run of our scenario component. We use the Turtle serialization
format and omit, due to space constraints, prefixes in this and
following figures. For each person in front of the sensor, the
implementation of the component provides – once a person
is tracked – an URI as well as a description of the skeleton’
joint points, including coordinates. In the figure, we show the
description of a right hand joint point, as one of the joint-
points described by each skeleton. The unit of measurement for
coordinates is millimetres and the descriptions are internally
updated with a frequency of approximately 30hz [9] by the
sensor.

Prior to the adaptation given in the following, the compo-
nent has been developed, deployed, and started. With respect
to the architecture (Figure 1) and implementation (Figure 2),
the component is already tracking bodies in front of the
sensor, providing internally access to this tracking data to
interpreter instances, and is exposing the generic meta interface
for adaptation at the network.

A. Deployment and Adaptability of Decentralised Logic
To integrate the component as part of an application, we

need to instantiate and configure the interpreter, i.e., initiate
an instance of LD-Fu. In Figure 4, we provide the command
used to create an interpreter instance by interacting with the
meta interface and to deploy a specific configuration (100ms
between interpreter runs), which is shown in the lower part.

118Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

$ c u r l −X "PUT" −H " Content−Type : t e x t / t u r t l e " \
h t t p : / / l o c a l h o s t :8888/ scenar io \
−−data−b inary @config−scenar io . t t l

−−−−
<> l d f u : delay 100 ; a l d f u : Con f i gu ra t i on .

Figure 4. Instance Configuration

$ c u r l −X "PUT" −H " Content−Type : t e x t / n3 " \
h t t p : / / l o c a l h o s t :8888/ scenar io / p / program \
−−data−b inary @program−alarm . n3

−−−−
{ ? po in t n i r e s t : coord ina te ? coord ina te .

? coord ina te n i r e s t : x ?x ; n i r e s t : y ?y ; n i r e s t : z ?z .
(? x " 2 ") math : exponen t ia t i on ?x_ex .
(? y " 2 ") math : exponen t ia t i on ?y_ex .
(? z " 2 ") math : exponen t ia t i on ?z_ex .
(? x_ex ?y_ex ?z_ex) math : sum ?sum .
?sum math : s q r t ?square_root .
?square_root math : lessThan "1000.0" . } =>

{ ? po in t scenar io : alarm " t rue " . } .

Figure 5. Program Deployment

As already described, programs are interpreted by the
interpreter and enrich the RDF of internal resources with
inferred knowledge, e.g., triggering of alarms when specific
distances become too short. Due to space constrains for figures,
we simplify our example to a pure distance-based alarm. As
soon as a part of a person’s body intrudes the space within one
meter of the tracking sensor, an alarm in triggered. In Figure 5,
we provide a program containing a single N3 rule, which
calculates the euclidean distance to the sensor for each point
provided by internal resources. For the calculation, coordinates
are matched in the body of this rule, patterns adhering to
a built-in ontology, i.e., the “math” prefix, are interpreted,
mathematically evaluated, and the calculation results are bound
to respective variables. As a consequence, if the condition
“distance less than 1000mm” is fulfilled, we enrich the RDF
sub-graph of the point with a custom “alarm” property by
deriving a respective triple in the rule head.

By deploying this rule, we adapt the component’s data
structure and semantics at runtime (second requirement; Sec-
tion III-A2), by triggering an alarm based on the given
coordinates, and at the same time, adapt the controlling logic
at runtime (third requirement; Section III-A3), by including a
distance condition.

$ c u r l −X "PUT" −H " Content−Type : a p p l i c a t i o n / sparq l−query " \
h t t p : / / l o c a l h o s t :8888/ scenar io / r / shutdown \
−−data−b inary @resource−shutdown . rq

−−−−
CONSTRUCT { ? po in t scenar io : shutdown " t rue " . }
WHERE { ? po in t scenar io : alarm " t rue " . }

Figure 6. Declared Resource

B. Integration and Adaptability of Interfaces and Interaction
We show the integration of the component with other com-

ponents of a distributed application. As stated before, we can
establish this integration either by 1) providing resources for
interaction with other components or by 2) actively interacting
with resources of other components. In Figure 6, we provide

an example for the first case. A SPARQL CONSTRUCT query
is deployed as a declared resource at the instance of our
scenario’s interpreter, by interacting with the meta interface.
It constructs a simple “shutdown” triple if an “alarm” triple
from the preceding program evaluation is found. The query
is evaluated during every interpreter run and the result is
accessible as RDF via HTTP by requesting the media type
of supported RDF serialization formats.

$ c u r l −X "PUT" −H " Content−Type : t e x t / n3 " \
h t t p : / / l o c a l h o s t :8888/ scenar io / p / shutdown \
−−data−b inary @program−shutdown . t t l

−−−−
{ ? po in t scenar io : alarm " t rue " . } =>
{ [] h t t p : mthd ht tp−m:PUT;

h t t p : requestURI < h t t p : / / l o c a l h o s t :8889 >;
h t t p : body { <> scenar io : shutdown " t rue " . } . } .

Figure 7. Interaction Program

For the second case (actively interacting with resources
of other components), we provide and example in Figure 7.
Again by interaction with the meta interface, we deploy a
second program at the scenario interpreter instance. It contains
a single N3 rule that matches to the body of “alarm” triples
generated by the first program. In the head of the rule, we use
the interaction capabilities of LD-Fu, encoded with respective
ontologies, i.e., “http” and “http-m” prefixes. If the condition
is fulfilled, i.e., an “alarm” triple was generated before, the
interpreter executes a HTTP PUT request at the specified URI,
containing our custom “shutdown” triple as payload.

By deploying the declared resource and the rule, we adapt
the component’s interface and interaction (first requirement;
Section III-A1), by passively exposing alarms through a re-
source to other components at the network and by actively
communicating alarms to other components. At the same
time, we adapt again the controlling logic at runtime (third
requirement; Section III-A3), by including the alarm triple as
a condition for the interaction.

V. RELATED WORK
We focus in our related work on three areas: 1) read-write

Linked Data (LD), 2) the Web of Things (WoT), and 3) the
Semantic Web of Things (SWoT).

Read-write Linked Data is built upon the idea of combining
the architectural paradigms of Linked Data (LD) [10] and
Representational State Transfer (REST) [1]. This combina-
tion has been used in several approaches, e.g., Linked Data
Fragments (LDF) [11], Linked APIs (LAPIS) [12], Linked
Data Services (LIDS) [13], RESTdesc [14], or Linked Open
Services (LOS) [15]. The Linked Data Platform (LDP) [16]
standardizes this combination, including RDF and non-RDF re-
sources, containers, and rules for HTTP-based interaction with
resources. Our approach aims at the adaptation of components
to specific application scenarios, while still being compatible
with arbitrary Linked Data REST interfaces.

The IoT [17] paradigm is about connecting every device,
application, object, i.e., thing, to the network, in particular
the Internet and thus to ensure connectivity. The Web of
Things (WoT) [18] builds on top of this paradigm to provide
integration not only on the network layer but also on the
application layer, i.e., the Web. The goal is to make things part
of the Web by providing their capabilities as REST services.

119Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

Therefore, common existing Web technologies are introduced,
e.g., URIs for identification and HTTP as application protocol
for transport and interaction. Integrating these technologies has
been, for example, addressed for embedded devices in [19].

The extension of IoT to WoT is primarily focused on
the interoperability between things on the application layer.
In order to foster horizontal integration and interoperability
the Semantic Web of Things (SWoT) [20] focuses a common
understanding of multiple capabilities and resources towards
a larger ecosystem by introducing Semantic Web technologies
to the IoT. Challenges related to SWoT have been, for exam-
ple, addressed by the SPITFIRE [21] project, or the Micro-
Ontology Context-Aware Protocol (MOCAP) [22], both in the
area of sensors. We build upon several synergies introduced
by a common resource-oriented viewpoint of the Linked Data
and REST paradigms. These paradigms also play a key role
in WoT and in particular SWoT to cope with heterogeneous
data models and interaction mechanisms. However, integrating
decentralised components into applications without central
control, even with a clear interaction model and semantically
powerful data model, requires to distribute the controlling
intelligence, at least to some extent, to the components. In
this context, our approach aims to enable the adaptation of
components to specific application scenarios at runtime, while
still being compatible with other approaches based on read-
write Linked Data REST interfaces.

VI. CONCLUSION
The growing use and popularity of mobile devices, wear-

ables and sensors offers new opportunities for the way that
products and services are being designed, developed and
offered. The IoT and WoT lay the foundation for integrating
devices by providing network connectivity and a stack of
communication protocols, while SWoT aims to enhance these
to address the lack of interoperability. In this context, our work
focuses on two main aspects: overcoming not only data but
also device and interface heterogeneity as well as enabling
adaptable (i.e., intelligent) decentralised WoT applications.
To this end, we introduce Smart Components as a unified
approach towards realising the devices’ interfaces, communi-
cation mechanisms, semantics of the devices’ resources and
capabilities, and controlling logic. We provide support for
the adaptability of devices’ interfaces and interaction, as well
as of devices’ data structures and semantics, at runtime. We
believe that enabling interoperability but also offering simple
mechanisms for adaptability are key for contributing towards
the evolution of the Web.

REFERENCES

[1] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, USA, 2000.

[2] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts and
Abstract Syntax,” W3C, Recommendation, 2014, http://www.w3.org/
TR/2014/REC-rdf11-concepts-20140225/. Latest version available at
http://www.w3.org/TR/rdf11-concepts/ [retrieved: 10, 2016].

[3] C. B. Aranda, O. Corby, S. Das, L. Feigenbaum, P. Gearon, B. Glimm,
S. Harris, S. Hawke, I. Herman, N. Humfrey, N. Michaelis, C. Ogbuji,
M. Perry, A. Passant, A. Polleres, E. Prud’hommeaux, A. Seaborne,
and G. T. Williams, “SPARQL 1.1 Overview,” W3C, Recommendation,
2013, http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/.
Latest version available at http://www.w3.org/TR/sparql11-overview/
[retrieved: 10, 2016].

[4] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable
RDF syntax,” W3C, Team Submission, 2011, http://www.w3.org/
TeamSubmission/2011/SUBM-n3-20110328/. Latest version available
at https://www.w3.org/TeamSubmission/n3/ [retrieved: 10, 2016].

[5] “Natural Interaction via REST (NIREST),” http://github.com/fekepp/
nirest/ [retrieved: 10, 2016].

[6] “Linked Data-Fu (LD-Fu),” http://linked-data-fu.github.io/ [retrieved:
10, 2016].

[7] S. Stadtmüller, S. Speiser, A. Harth, and R. Studer, “Data-Fu: A
Language and an Interpreter for Interaction with Read/Write Linked
Data,” in International World Wide Web Conference, 2013, pp. 1225–
1236.

[8] S. Stadtmüller, “Dynamic Interaction and Manipulation of Web Re-
sources,” Ph.D. dissertation, Karlsruhe Institute of Technology, Karl-
sruhe, Germany, 2016.

[9] F. L. Keppmann and S. Stadtmüller, “Semantic RESTful APIs for
Dynamic Data Sources,” in Workshop on Services and Applications
over Linked APIs and Data at the European Semantic Web Conference,
2014, pp. 26–33.

[10] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So
Far,” Semantic Web and Information Systems, vol. 5, pp. 1–22, 2009.

[11] R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De Vocht,
M. Vander Sande, R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de
Walle, “Querying Datasets on the Web with High Availability,” in
International Semantic Web Conference, 2014, pp. 180–196.

[12] S. Stadtmüller, S. Speiser, and A. Harth, “Future Challenges for Linked
APIs,” in Workshop on Services and Applications over Linked APIs and
Data at the European Semantic Web Conference, 2013, pp. 20–27.

[13] S. Speiser and A. Harth, “Integrating Linked Data and Services with
Linked Data Services,” in Extended Semantic Web Conference, 2011,
pp. 170–184.

[14] R. Verborgh, T. Steiner, D. van Deursen, R. van de Walle, and
J. Gabarró Vallès, “Efficient Runtime Service Discovery and Consump-
tion with Hyperlinked RESTdesc,” in International Conference on Next
Generation Web Services Practices, 2011, pp. 373–379.

[15] R. Krummenacher, B. Norton, and A. Marte, “Towards Linked Open
Services and Processes,” in Future Internet Symposium, 2010, pp. 68–
77.

[16] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Plat-
form 1.0,” W3C, Recommendation, 2015, http://www.w3.org/TR/2015/
REC-ldp-20150226/. Latest version available at http://www.w3.org/TR/
ldp/ [retrieved: 10, 2016].

[17] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, pp. 2787–2805, 2010.

[18] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the Internet of
Things to the Web of Things: Resource-oriented Architecture and Best
Practices,” in Architecting the Internet of Things. Springer, 2011, pp.
97–129.

[19] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The Web of Things:
interconnecting devices with high usability and performance,” in Inter-
national Conference on Embedded Software and Systems, 2009, pp.
323–330.

[20] A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and A. F.
Skarmeta, “Semantic Web of Things: an analysis of the application
semantics for the IoT moving towards the IoT convergence,” Web and
Grid Services, vol. 10, no. 2-3, pp. 244–272, 2014.

[21] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kröller, M. Pagel, M. Hauswirth, M. Karnstedt,
M. Leggieri, A. Passant, and R. Richardson, “SPITFIRE: Toward a
Semantic Web of Things,” Communications Magazine, vol. 49, no. 11,
pp. 40–48, 2011.

[22] K. Sahlmann and T. Schwotzer, “MOCAP: Towards the Semantic Web
of Things,” in Posters and Demos at the International Conference on
Semantic Systems, 2015, pp. 59–62.

120Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
https://www.w3.org/TeamSubmission/n3/
http://github.com/fekepp/nirest/
http://github.com/fekepp/nirest/
http://linked-data-fu.github.io/
http://www.w3.org/TR/2015/REC-ldp-20150226/
http://www.w3.org/TR/2015/REC-ldp-20150226/
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/ldp/

	Introduction
	Motivation
	Scenario
	Problem Focus
	Requirements Asymmetry
	Development Inefficiency

	Smart Component
	Requirements
	Adaptability of Interfaces and Interaction at Runtime
	Adaptability of Data Structures and Semantics at Runtime
	Adaptability of Controlling Logic at Runtime

	Preliminaries
	Architecture
	Internal Resources (IRes)
	Declared Resources (DRes)
	Program (P)
	Interpreter (Int)
	Meta Resources (MRes)

	Implementation

	Evaluation
	Deployment and Adaptability of Decentralised Logic
	Integration and Adaptability of Interfaces and Interaction

	Related Work
	Conclusion
	References

