
Life Cycle Agent
Beyond Intelligent Manufacturing

Leo van Moergestel, Erik Puik,
Daniël Telgen, Feiko Wielsma, Geoffrey Mastenbroek,

Robbin van den Berg, Arnoud den Haring
Institute for ICT

HU Utrecht University of Applied Sciences
Utrecht, the Netherlands

Email: leo.vanmoergestel@hu.nl

John-Jules Meyer
Intelligent systems group

Utrecht University
Utrecht, the Netherlands

Alan Turing Institute Almere, The Netherlands
Email: J.J.C.Meyer@uu.nl

Abstract—In this paper, a model is proposed where a software
agent will be tied to a product during all parts of its life-cycle.
This agent will enhance the possibilities of the product itself but
will also play a role in collecting important data from the device
that can be used by the manufacturer, as well as the end user.
The software agent will be the basis for the device to participate
in the Internet of Things (IoT) concept. The motivation to use
agent technology, the architecture as well as the implementation
in two different products are presented.

Keywords–Agent technology; Internet of Things; Lifecyle agent

I. INTRODUCTION

Today, Information technology plays a major role in man-
ufacturing as well as in other aspects of our modern society.
In manufacturing the trend is towards low-cost agile manufac-
turing of small batch sizes or even one product according to
enduser requirements. This is also known as Industry 4.0 [1]
or cyber physical systems [2]. Recycling is also an important
issue that should have attention starting at the design and
manufacturing phase. In our daily life, more and more devices
are connected to the Internet thus creating the Internet of
Things (IoT). In this paper, a concept is presented where a
software entity will be responsible for a certain product in
all phases of its life cycle. This software entity starts by
manufacturing the product and will collect data during the
manufacturing phase. Next, the software entity will be tied
to or even embedded in the product, making it a part of the
IoT during all phases of its life cycle. For most products, the
usage phase has the longest duration. It turns out that this
phase can also play a role to adapt the production. When a
manufacturer has a lot of data available about the usage of
a product, the manufacturing process itself can benefit. This
paper will describe the concept of the software entity and the
architecture used to implement the concept. The focus will
be on the usage phase and two cases are elaborated where a
complex device will collect usage data as well as open the
possibility to be remotely monitored and controlled.

The rest of this paper is organised as follows. Section II is
dedicated to the related work and definitions. In Section III, the
motivation for the chosen technology and the advantages will
be discussed followed by Section IV presenting two specific
cases where the concept, architecture and implementation will
be explained. Section V about future work and a conclusion
will end the paper.

II. RELATED WORK AND DEFINITIONS

The concept of using a software entity to guide a product
through its life cycle was first published by Moergestel [3].
The software entity used was a so called software agent.
Nowadays, the concept of an agent is already widely known
in the field of information technology. Unfortunately, there are
several definitions, so we give here the definition as stated by
Wooldridge [4], that will be used in this paper:

Definition: An agent is an encapsulated computer system
that is situated in some environment and that is capable of
flexible, autonomous action in that environment in order to
meet its design objectives.

For reasons explained in the next section, we will stick to
the concept of an agent and for this paper we have a special
purpose for the software agent in mind: the life cycle agent.

Definition: a life cycle agent is a software entity that is
the representative of a product in all phases of its life cycle.

For more complex products having an environment where
such an agent can run, as the actual implementation a twin
agent system is proposed, where one agent lives in the prod-
uct itself and another one in cyberspace. These agents will
synchronise to keep the knowledge on both systems equal and
up-to-date.

Every product goes through a sequence of phases as
depicted in Figure 1. Starting with design, the product will
be manufactured and distributed to reach the actual user. This
user will use the product, perhaps hand it over to another user.
During this usage phase repair and maintenance play a role.
Finally the product will come to the end of its life and parts
of it will be recycled.

Design Manufacturing Distribution Use Recycling

Figure 1. Different phases in the life cycle

The manufacturing starts by the agent itself. It will control
the production as described in [5]. This approach is also used
by Bussmann [6]. Agent-based manufacturing is also described
by Paoluci and Sacile [7]. The difference with the solutions
for manufacturing so far is that in our concept [5], the agent
controlling the production will stay alive and embed itself in
the product, becoming the life cycle agent. If embedding is not
possible, the agent will live remote and keep contact with the

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

product to send and receive information. It should be clear that
a certain complexity of the product is assumed. The product
should have sensors for measuring things of interest and it
should be capable to communicate this to the outside world,
either continuously or on demand.

Monitoring systems that check and collect data during
the usage phase, are widely used nowadays. An Aircraft
is constantly monitored during the flight. These monitoring
systems are specially designed for the aircraft involved [8].
The information collected is used for safety, preventive main-
tenance as well as redesign. So the purpose of monitoring
is comparable to the agent-based concept presented. A term
used in the transport industry is Health and Usage Monitoring
System (HUMS) [9]. This system helps to ensure availability,
reliability and safety of vehicles. An overview of health
monitoring is given in [10]. These monitoring systems are
specially designed for monitoring purposes and rarely used
in other parts of the life cycle. Monitoring for medical and
human health is also an interesting and important aspect. An
example of an application is this area is given by Otto [11].

III. TECHNOLOGY USED AND ITS ADVANTAGES

In this section, the choice for agent technology is moti-
vated. Another part of this chapter presents an overview of the
benefits of the model for different stakeholders.

A. Agent technology
The reason why an agent is proposed is based on some

important characteristics of agents:

• autonomy; no user intervention is required. A device
can operate on its own.

• communicating; devices need to communicate with the
external world.

• reactive: this property will make the device work as
expected.

• pro-active: this might be a property that will make the
device smart.

• mobile: an agent can move from one platform to
another.

• learning: this is also a property that makes a device
smart

• adapting: the device can adapt itself to different situ-
ations

• reasoning: an advanced property for making the device
smart

• cooperative (important in a multiagent approach).

All these properties fit well within the concept of a smart
software entity to guide and represent a product and making
it a part of the IoT.

When agent-based product guidance is used, two possibil-
ities arise:

1) one single agent is developed to guide the product
during its whole life cycle. This agent might have
a backup or counterpart outside the device living in
cyberspace.

2) a multiagent approach is used, where different agents
operate at different phases but where information
exchange between these agents is possible.

Without pretending to give an exhaustive overview, we will
now describe some advantages of using agents in the life cycle
of a product.

B. Advantages
To investigate the benefits of the approach proposed, the

advantages and possibilities for different stakeholders will be
presented.

1) manufacturer: Though the life cycle agent concept was
introduced as a tool to implement agile manufacturing for
batch size equal to one, the concept can be used for all types
of products having a certain complexity and the capability to
register data from sensors installed in the product itself. For
the manufacturing phase, the concept is the enabler for agile
production of small quantities as described in [12]. It will
result in logging the production data for every single product.
However, in case of a batch production the logging could
be specific for the whole batch and shared by all products
belonging to that production batch.

By using the feedback during usage, the manufacturing
process itself and the product can be optimized, because of the
availability of usage information. Over the air (OTA) updates
of product software can be performed within the proposed
model. The mean time between failure (MTBF) of subparts
of the system will become a well-known factor because of the
information collected during usage. Finally the end-user can be
specifically advised by the manufacturer about a replacement
of a product, knowing the type of usage by that specific end-
user.

2) distributer: Logistic systems can benefit from the fact
that the product involved is already ”smart” by having a
software agent available. If the device is capable of using
its sensors during transport, the possibility arises to check
that transport has been done under acceptable conditions
(temperature, shock, time involved etc.). This might be helpful
because in many situations the distributor is responsible for
damage during transport.

3) end-user: When a device is connected to the internet,
several possibilities that can benefit the end-user arise. First,
the device can be monitored and controlled by the end-user
using a device like a smart phone, tablet or any other system
having a web browser. By collecting the usage that is made
the device can optimise itself to the usage of a specific end-
user. Preventive maintenance and over the air updates can also
benefit the user.

4) environment: Because the usage, MTBF and wear of
several subparts is available as well as the maintenance and
replacement of subsystems, during the process of recycling,
subparts can be reused based on these data. This makes it
possible to reuse materials as well because during the man-
ufacturing phase, data about the materials used are collected
by the life cycle agent. All these possibilities will reduce the
amount of waste.

IV. USAGE PHASE CASES

Two different types of devices are shown as proof of
concept. The first one is an autonomous robot vacuum cleaner.
The second one is a radio device for playing internet audio
streams. Though different there are also similarities. In both
cases the device contains the local agent. In case of the

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

internet radio, the hardware where the agent resides is also
the hardware that controls the device itself. In the case of
the vacuum cleaner, the agent has its own specific hardware
that is only connected to the system to get information about
the internal controls. Both cases use a Raspberry-Pi as the
agent platform. The reason is the low price and extensive
documentation available.

A. Generic and specific
The approach used was to build a generic system, that can

be used for a wide range of devices, while extra software will
be added to adapt to the specific properties of a device.

1) Functional requirements: When the needs for both
manufacturer and user in the use phase are considered, the
following list applies:

• the manufacturer needs data about the usage of the
products

• the manufacturer needs data about component failures
• the user wants to remotely control and monitor the

product.
• the user wants a generic system with similarities

among different products

These needs resulted in the following functional requirements:

• interface to collect information about the usage of a
product

• connection with the cloud, to prevent that data will be
lost in case a product is completely destroyed.

• Easy configuration for both the user as well as the
manufacturer

• Agent-based to fit in the concept of the life cycle
agent. The advantages and reason to use agent tech-
nology are already explained in the previous section.

2) overview: Figure 2 shows an overview of the archi-
tecture proposed. As seen in the figure, there are actually
two agents involved for every device. One residing in the
device, while the other is living in the cloud. The reason
for this is that in situations where the agent in the device
is completely destroyed, the cloud agents still has all the
information available. A collection of cloud agents store their
data in a database that is accessible to the manufacturer. An
API will open the possibility for the end-user to interact with
the device.

3) Technical requirements: For the implementation Jade
has been used. Some important properties of jade are: Jade
[13] was used as a platform for the Multiagent System (MAS).
The reasons for choosing Jade are:

• the system is a multiagent-based system. Jade provides
most of the requirements we need for our application
like platform independence and inter agent communi-
cation;

• Jade is Java-based. Java is a versatile and powerful
programming language;

• because Jade is Java-based it also has a low learning
curve for Java programmers;

• the life cycle agents should be capable to negotiate to
reach their goals. Jade offers possibilities for agents

Device

Platform Local Agent
(Raspberry Pi)

Virtual Agents
(Cloud)

(Big) Data storage

Website
(Manufacturer)

API

User

Figure 2. Architecture overview

to negotiate. If we need extra capabilities, the Jade
platform can easily be upgraded to an environment that
is especially designed for BDI agents like 2APL [14]
or Jadex [[13]]. Both 2APL as well as Jadex are based
on Jade but have a more steep learning curve for Java
developers;

• agents can migrate, terminate or new agents can
appear.

The Jade runtime environment implements message-based
communication between agents running on different platforms
connected by a network. In Figure 3, the Jade platform
environment is depicted.

LADT

GADT (cache)

Container E1

Java

LADT

GADT

DF AMS

Main Container

Java

LADT

GADT (cache)

Agents

Container E2

Java

JADE - Platform
Node A Server Node B

CT

Agents Agents

Figure 3. The Jade platform

The Jade platform itself is in this figure surrounded by a dashed
line. It consists of the following components:

• A main container with connections to remote contain-
ers (in our case Node A and Node B, representing for
example other computer platforms running Java);

• A container table (CT) residing in the main container,
which is the registry of the object references and

77Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

transport addresses of all container nodes composing
the platform;

• A global agent descriptor table (GADT), which is the
registry of all agents present in the platform, including
their status and location. This table resides in the main
container and there are cached entries in the other
containers;

• All containers have a local agent descriptor table
(LADT), describing the local agents in the container;

• The main container also hosts two special agents
AMS and DF, that provide the agent management
and the yellow page service (Directory Facilitator)
where agents can register their services or search for
available services.

Several requirements justified this choice.

• Open source, so the further development and inte-
gration with other sofwtare developments would be
possible, without dependence on developers of closed
software.

• Based on a standard widely accepted programming
language, making the adoption by third parties easy.

• Jade has been designed as a platform for a distributed
multiagent system. This is exactly the type of multia-
gent system that is needed in our case.

4) Software architecture: The generic system has a mod-
ular setup. The main modules of the system are depicted in
Figure 4 (LCA stands for Life Cycle Agent). LCADevice is
the module where the life cycle agent residing in the device is
created, while LCACloud is the module for the agent living in
cyberspace. LCAWebAPI contains a REST API (REpresenta-
tional State Transfer Application Programming Interface) [15]
that enables message transfer (by HTTP requests) to the JADE
platform that has been used for the implementation (see the
subsection Technical Requirements). All messages used by the
system use the same concept and are available to all modules
by LCAMessage.

Figure 4. Modules used

B. case vacuum cleaner
The model used in this experiment was a Roomba vacuum

cleaner. This brand had been chosen because of the availability
of an Open Interface (OI). A document is available where this

OI is described [16]. By using this interface most of the sensors
and actuators can be used. A simple serial interface makes the
connection to the device. A Raspberry-Pi was added to the
Roomba to enable a JADE runtime environment for the agent
and for establishing a WiFi connection.

1) sensors and actuators: The sensors can give information
if there are walls or holes in the floor near the device. The
amount of current used by the motor is available. A raise can
signal a wearing-out of the brushes. The buttons on the device
can be read. The distance travelled in millimetres since the
previous request can be read. Voltage and current from the
battery as well as the capacity and maximum capacity are
available. Bumper sensors are also available. Apart from the
sensors there are actuators.

• The motors driving the wheels. Speed and turning can
be controlled.

• Motors moving the brushes. The speed can be con-
trolled by Pulse Width Modulation (PWM).

• Several LEDs are available on the device. The inten-
sity is also controllable.

• The device contains a speaker for making sounds.
Sounds can be loaded and played.

2) Roomba application: As a proof of concept, an ap-
plication has been developed to monitor and control the
vacuum cleaner by the end-user. The vacuum cleaner should be
connected to the LifeCycleAgent platform as explained earlier
in this paper. The following list of functionalities is available
(see the start menu in Figure 5):

• user login;
• battery status (see figure 6);
• playing music;
• start cleaning;
• return to dock;
• remote control for driving the cleaner around.

Figure 5. Main menu for the user

78Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

Figure 6. Battery status page

To make this implementation work, two device-specific soft-
ware modules were developed. This is depicted in Figure 7.

LCA WebAPI Roomba WebAPI Roomba App

Figure 7. Architecture

The Roomba App will be installed on the smartphone or
tablet and is the actual user interface as presented in Figures 5
and 6. Because this is a device-specific application, a second
specific application has been added to control the commu-
nication between the Roomba App and de LCA WebAPI.
Normally, these two parts should be supplied for every specific
device.

C. case internet radio
In Figure 8 a blockscheme of the internet radio is shown.

The core of the system is a Raspberry-Pi enhanced with
a touchscreen and a powerful soundsystem that drives the
speakers.

Main board
(Raspberry-Pi)

USB-Sound
System

power

Internet

Touch-Screen

Figure 8. Block schematic

1) sensors: This is the list of input data available: The
volume setting, currently chosen audio stream, play (yes/no),
type of music chosen. Strictly speaking this information is not
directly originating from a sensor, but it is data provided by
the software entity that is the internet radio itself.

2) actuators: The actions that can be performed are:

• change the selected audio stream;
• change volume
• start playing
• stop playing
• pause playing

3) realisation: An application for remote control has not
been completed yet, but the radio is integrated as a system in
the life cycle agent platform, having its own virtual agent to
synchronise with. The usage of the radio is monitored by the
agent that lives inside the radio and the information is also
available for the agent in the cloud.

The display is shown in Figure 9. The radio itself is shown
in Figure 10.

Figure 9. Display

Figure 10. Radio

In Figure 10, a design is shown that was made by using a
water jet cutter to make the different panels. To these panels
several components are attached. The radio consists of six
panels (front, back, top, bottom, left and right) with zero or
more attachments. The end-user can select a shape, resulting in
these six panels. This results in a toplevel XML-file where the
radio is defined to consist of a these six panels in combination
with actions describing how to assemble the radio using these
panels. A simplified example of this XML-file that describes

79Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

the components of the radio as well as the actions to be taken
to construct it, looks like:

<Radio>
<Source>

six panels
</Source>
<Actions>

assembly instructions
</Actions>

</Radio>

Other XML-based information is added to refine the descrip-
tion, that is used to actually construct the radio.

V. FUTURE WORK

The manufacturing phase is still under development. Sev-
eral production machines have been constructed. The flexible
transport system is still under development. For the internet
radio the user specified production is also under development.
That means that a webinterface will be created where a user
can specify his or her specific implementation of an internet
radio. A list of so-called production steps (explaining what to
do) and materials (what to use) should be the result of this
design phase. This would be the input of an agent that will
guide the manufacturing and will become the life cycle agent
as presented in this paper. The first step in that direction will
be to replace the production machine agents by real humans.
These human agents will be instructed by the life cycle agent
during the manufacturing phase to actually make the product.
Meanwhile the recycling phase is studied by implementing a
marketplace for devices to buy and sell parts for maintenance
and repair. In all these situations we try to stick to the same
multiagent-based architecture, so migration from one phase to
another should be easy.

A special focus should be on the ethical aspects of the
approach proposed in this paper. When information is collected
during the usage phase, all kind of questions arise, like
who owns this information. Who should have access to this
information and so on. An end-user owning a device might
have concerns about his or her privacy and should be capable
to decide who should have access about the usage data of the
device.

VI. CONCLUSION

In this paper, the concept of a life cycle agent has been
introduced. The motivation for using agent technology was that
this fits all the requirements that the system proposed should
have. The multiagent architecture of the distributed system has
been presented. To test this architecture in the use phase the
system has been implemented. By using two different cases
the generic and specific parts of the architecture became clear.
The system worked as expected and can be further developed.

REFERENCES
[1] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, “How

virtualization, decentralization and network building change the manu-
facturing landscape: An industry 4.0 perspective,” International Journal
of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing
Engineering, vol. 8, no. 1, 2014, pp. 37–44.

[2] R. Rajkumar, I. Lee, Insup, S. L., and J. Stankovic, “Cyber-physical
systems: The next computing revolution,” Proceedings of the 47th
Design Automation Conference (DAC), Anaheim, California, 2010, pp.
731–736.

[3] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “The role of
agents in the lifecycle of a product,” CMD 2010 proceedings, 2010,
pp. 28–32.

[4] M. Wooldridge, An Introduction to MultiAgent Systems, Second Edi-
tion. Sussex, UK: Wiley, 2009.

[5] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Decentralized
autonomous-agent-based infrastructure for agile multiparallel manufac-
turing,” Proceedings of the International Symposium on Autonomous
Distributed Systems (ISADS 2011) Kobe, Japan, 2011, pp. 281–288.

[6] S. Bussmann, N. Jennings, and M. Wooldridge, Multiagent Systems for
Manufacturing Control. Berlin Heidelberg: Springer-Verlag, 2004.

[7] M. Paolucci and R. Sacile, Agent-based manufacturing and control
systems : new agile manufacturing solutions for achieving peak per-
formance. Boca Raton, Fla.: CRC Press, 2005.

[8] URL, HindSight-Eurocontrol Publications. at
http://www.skybrary.aero/index.php/HindSight - EUROCONTROL,
june, 2017.

[9] D. He, S. Wu, and E. Bechhoefer, Use of physics-based approach to
enhance HUMS prognostic capability, 2007, vol. 1, pp. 354–361.

[10] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates,
B. R. Nadler, and J. J. Czarnecki, “A review of structural health
monitoring literature: 1996–2001,” Los Alamos National Laboratory,
2003, pp. 1–7.

[11] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, “System archi-
tecture of a wireless body area sensor network for ubiquitous health
monitoring,” Journal of mobile multimedia, vol. 1, no. 4, 2006, pp.
307–326.

[12] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Implementation
of manufacturing as a service: A pull-driven agent-based manufacturing
grid,” Proceedings of the 11th International Conference on ICT in
Education, Research and Industrial Applications (ICTERI 2015), Lviv,
Ukraine, 2015, pp. 172–187.

[13] N. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, Multi-Agent
Programming. Springer, 2005.

[14] M. Dastani, “2apl: a practical agent programming language,” Au-
tonomous Agents and Multi-Agent Systems, vol. 16, no. 3, 2008, pp.
214–248.

[15] R. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[16] URL, pdf file name iRobot Roomba 500 Open Interface spec.pdf.
at http://www.irobot.lv/uploaded files/File, june, 2017.

80Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

