
The Architecture of a Software Framework for

Biologically-Inspired Optimization Algorithms

Florin Leon

Faculty of Automatic Control and Computer Engineering

“Gheorghe Asachi” Technical University of Iași

Iași, Romania

e-mail: florin.leon@academic.tuiasi.ro

Silvia Curteanu

Faculty of Chemical Engineering and Environmental

Protection

“Gheorghe Asachi” Technical University of Iași

Iași, Romania

e-mail: silvia.curteanu@academic.tuiasi.ro

Abstract—Biologically-inspired optimization algorithms are

robust techniques that can be applied for a wide range of

practical problems. A large number of such algorithms have

been proposed by researchers, but their implementation is

often not available or is done in different programming

languages. This paper presents a flexible software architecture

of a .NET optimization framework where such methods can be

easily incorporated. It includes algorithms that belong to

various subfields: from ideas based on human social behavior

to ideas based on virus behavior. Using this framework, many

modifications and hybridizations for algorithms are also

possible.

Keywords-biologically-inspired optimization algorithms;

optimization framework; software architecture; .NET

framework.

I. INTRODUCTION

Biologically-inspired optimization algorithms have
become popular in the recent years as general, simple, and
robust techniques that can be used when other mathematical
optimization methods cannot be applied. Among their
advantages, which facilitate their application to various
fields, such as planning, design, control, classification,
clustering, and time series modeling, one can mention the
following [1]:

 They do not require the objective function to be
continuous and/or differentiable;

 They do not require extensive problem formulation,
e.g., in case of traditional methods such as integer
programming, geometric programming, as well as
branch and bound methods, a special mathematical
formulation is required for solving a problem;

 They are not sensitive to the starting point of the
search;

 They are more robust in the presence of local optima
and are more likely to find the global optimum of a
function than gradient-based methods [2][3].

In this work, the architecture of an optimization
framework called HAVOC for biologically-inspired
optimization will be presented. The abbreviation comes from
the title of the project: From Human to Virus. Optimization
Algorithms with Chemical Engineering Applications. It is
one of the few optimization frameworks available for .NET,

which incorporates biologically-inspired algorithms that
belong to a wide range of subfields: from ideas based on
human social behavior to ideas based on virus behavior.
While many such algorithms have been proposed and some
have their implementation publicly available, they are not
integrated into a unified framework.

The motivation of dealing with algorithms inspired by
human and virus behavior can be seen from several
perspectives:

 A relatively new, little studied field of interest is
approached, which creates good scientific
perspectives in the sense of identifying directions
that can contribute to stimulating creativity and
innovative ideas;

 There are also few applications of these algorithms,
so future work will include applying these
algorithms in a new field, i.e., chemical engineering
(more precisely, polymerization engineering), with
processes that represent a challenge through the
complexity and difficulty of the problems they raise
in the actions of modeling and optimization.

 A systematic, detailed study of these algorithms is
intended, from basic variants to modified versions,
from general to the particular, adapting to specific
applications and including comparisons with
previous achievements, but also with approaches
from the literature.

The rest of this paper is organized as follows. In Section
II, some related work in terms of other optimization libraries
available today is addressed. Section III describes the
architecture of the HAVOC optimization framework. The
actual algorithms are briefly presented in Section IV. A
discussion of future work and the conclusions are included in
Section V.

II. RELATED WORK

Presently, there are a number of evolutionary/genetic

algorithm libraries available, such as: Evolving Objects: an

Evolutionary Computation Framework [4][5], Genetic

Algorithms Framework [6], Watchmaker Framework for

Evolutionary Computation [7], AForge.NET Genetic

Algorithms Library [8], as well as many others.

The SciPy optimize [9] package contains strategies such

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications

Figure 1. The architecture of the HAVOC framework (UML class diagram).

Figure 2. The implementation of the Teaching-Learning based Optimization algorithm (UML class diagram).

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications

as Nelder-Mead, Powell, Quasi-Newton strategies, etc., and

can also handle linear and nonlinear constraints. lpsolve [10]

is another powerful mixed integer linear programming

solver. MathWorks also provides an Optimization Toolbox

[11] for Matlab, which can solve linear, quadratic, conic,

integer, and nonlinear optimization problems. A general

evolutionary algorithm framework especially designed for

multi-agent systems is presented in [1].

Other optimization systems that can be mentioned are:

ECJ [12] and jMetal [13], programmed in Java, DEAP [14],

implemented in Python, and HeuristicLab [15]. From these

tools, only the last one uses .NET. It also allows the

dynamic inclusion of additional algorithms as plug-ins.

However, these frameworks do not contain yet the classes of

algorithms envisaged to be included in the proposed

HAVOC system.

III. SYSTEM ARCHITECTURE

The architecture of the HAVOC framework is presented
in Figure 1 as a Unified Modeling Language (UML) class
diagram. The purpose of the framework is to allow the user
to experiment with different algorithms and problems in a
very simple way. The user selects a problem and an
algorithm, and the framework solves the problem using the
specified algorithm. In order to be able to handle this, all ten
algorithm classes implement the common IAlgorithm
interface. Similarly, all the problem classes implement the
IProblem interface. In this way, the corresponding code is
common for all combinations of problems and algorithms:

IProblem problem = new XProblem();
IAlgorithm algorithm = new YAlgorithm(parameters);
algorithm.Solve(problem);

Afterwards, the solution and additional information can

be retrieved from the algorithm object. The BestX property
represents the “x” that minimizes f(x); it is a vector of real
numbers. The BestY property is a real number that represents
the “y”, where y = f(x).

Other useful characteristics are the number of function
evaluations that the algorithm performs. This is one of the
recent ways to compare the performance of heuristic
optimization algorithms. The actual execution time is also
provided, using the Stopwatch class from the .NET
framework.

Each algorithm object is instantiated with a set of
parameters. More specifically, the parameters are given as a
Dictionary (a generic hash table collection), where the key is
the name of the parameter and the value is the corresponding
parameter value:

var parameters = new Dictionary<string, dynamic> {
 ["NoIterations"] = 1000, ["PopSize"] = 100 };
IAlgorithm alg = new Tlbo(parameters);
alg.Solve(currentProblem);
// alg.BestX, alg.BestY, alg.NoEvaluations, alg.Time are available

These values are not restricted to be real numbers, they
can have any desired type. The user will be able to modify
the parameter values from the graphical user interface or
directly by editing a configuration file.

Each algorithm is implemented in it own class (or
classes); e.g., in Figure 2, the UML class diagram for the
Teaching-Learning based Optimization (TLBO) algorithm is
presented. Figure 3 shows the results obtained with TLBO
for several well-known benchmark problems: Sphere,
Ackley, Griewank, and Rosenbrock [16]. They were obtained
using a computer with a 4-core 2 GHz Intel processor and 8
GB of RAM.

Figure 3. The results obtained with the Teaching-Learning based

Optimization algorithm for several benchmark problems.

The IProblem interface defines the main characteristics
of an optimization problem: its dimensionality (the N
property), the search range defined by the lower bounds and
the upper bounds of each dimension (the XMin and XMax
properties), and the actual implementation of the function to
be optimized in the Compute method. The optimization
problems need not be simple, analytical functions. They can
be complex, simulation-based procedures, e.g., the minimum
distance from a target when launching a space probe with
certain initial properties, such as angle, speed and
acceleration. The trajectory of this object can be simulated in
a discrete, step-by-step fashion, taking into account the
resulting force applied by the large space objects on the
probe. As long as the simulation returns a value (in this
example, the ideal value is 0, i.e., the probe has reached its
target), it can be used as an optimization function in the
proposed framework.

In the present version, the architecture only supports
solutions encoded as an array of real numbers, but solutions
represented as an array of integers can also be found. This
would require that the user make a genotype-phenotype
distinction, where the actual encoding genes are not used as
such in the computation of the objective function but they are
transformed or interpreted in a certain way. E.g., real
numbers can be interpreted as integers, by rounding them or
using random key encoding for problems that have
permutations as solutions. In future versions, constraints can
be included as C# predicates that can be passed as

12Copyright (c) IARIA, 2021. ISBN: 978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications

parameters to the algorithms. Variable length solutions can
also be employed using the same array-based
representations. However, these changes in the architecture
should also be supported by the underlying algorithms.

IV. THE ALGORITHMS

The included algorithms are grouped into three main
categories, as shown in Table I. They are discussed in the
following subsections.

TABLE I. THE ALGORITHMS SELECTED FOR IMPLEMENTATION

Category Algorithm Encoding

Algorithms
inspired by the
human
behaviors of
learning and
cooperation

Simplified Human Learning Optimization
(SHLO) [17]

binary

Social Learning Optimization (SLO) [18] real

Teaching-Learning based Optimization
(TLBO) [19]

real

Algorithms
inspired by
human
competitive
behavior

Football Game Algorithm (FGA) [20][21] real
Volleyball Premier League (VPL) [22] real
Imperialist Competitive Algorithm (ICA)
[23]-[25]

real

Algorithms
inspired by
virus behavior

Viral System (VS) [26] binary
Virulence Optimization Algorithm (VOA1)
[27]

real

Virus Colony Search (VCS) [28]-[30] real
Virus Optimization Algorithm (VOA2)
[31]-[33]

real

A. Algorithms inspired by the human behaviors of learning

and cooperation

Many learning activities are similar to the meta-heuristic
search, where the success is achieved through repetition and
adjusting. Although the human learning process is very
complex, the three main strategies used in human learning
include: random learning, individual learning and social
learning. SHLO includes all three strategies to search for
good solutions. On the other hand, SLO simulates the social
learning approach and it is based on the Culture Algorithm
framework (CA) [34] comprising three elements: population
space, belief space and a protocol describing the manner in
which knowledge is exchanged between the two spaces. To
this CA framework, SLO adds an additional bottom layer
that includes individual genetic evolution. In case of the
TLBO algorithm, the simulated process is represented by the
transfer of knowledge between the teacher and the student,
i.e., the teaching phase, and the collaboration between
students, i.e., the learning phase. Very few variants and
combinations have been developed for the first two
algorithms: adaptive SHLO [35][36] and SLO with
Differential Evolution and improved Social Cognitive
Optimization [37]. TLBO is the most used algorithm due to
its simplicity and efficiency [38], and has been included in
various hybrid variants: TLBO with error correction strategy
and Cauchy distribution [39], TLBO including genetic
crossover and mutation strategies [40], TLBO with Bird
Mating Optimizer [41], TLBO with Differential Learning
[42] and more.

B. Algorithms inspired by human competitive behavior

In addition to the concept of learning associated with
humans, the concept of competitiveness is studied. FGA
mimics the manner in which football is played. The
population is represented by the players and the optimization
is performed in two steps: random walk and coaching, with
two strategies: attacking and substitution. Distinctively from
FGA, VPL closely follows the rules of volleyball and the
solution is formed from two segments: active (representing
the main formulation of each team) and passive (which
stores variables and special instruction rules). If FGA and
VPL are team-based, in the sense that they include a reduced
number of players, ICA simulates the competition behavior
at the “national” level, where each individual represents a
country and there are two types of countries: imperialist and
colonies. For the first two algorithms, very few
improvements and applications have been published:
modified VPL using sine cosine algorithm [43] and Multi-
Objective Volleyball Premier League [44]. By comparison,
ICA is a more mature algorithm, with many applications,
known in different variants, of which one can mention: ICA
with different chaotic maps [45], ICA with k-means
clustering [46], ICA with neural networks [47][48], etc.

C. Algorithms inspired by virus behavior

VS is based on the viral infection processes and, to reach
the optimum, it uses two mechanisms: replication and
infection. Depending on the type of virus infection, i.e.,
selective or massive infection, and on the type of evolution
of the virus, different mechanisms are activated during the
search. VS stops when the collapse and death of the
organism occurs or the virus is isolated. On the other hand,
VOA1 simulates several important mechanisms in the virus
life-cycle: reproduction and mutation, cloning, and escaping
from the infected region. In the case of VCS, the virus
diffusion, cell infection and immune response are simulated
using Gaussian random walk, Covariance Matrix Adaptation
Evolution Strategy and Evolution Strategy. VOA2 mainly
focuses on converting the concept of a virus attacking a host
cell into a continuous domain optimization method. In
general, there are few approaches and applications of these
algorithms, with a single modified variant [49].

V. CONCLUSIONS AND FUTURE WORK

In this work, the architecture of an optimization
framework called HAVOC was presented. It is extensible, so
that other algorithms and variants of the base algorithms
should be easy to add. In this way, it facilitates comparisons
on both benchmark problems and real-life problems from the
chemical engineering field. HAVOC uses .NET (C#) and
includes classes of algorithms less often implemented in
other publicly available frameworks.

Since the open literature presents too few variants and
applications of algorithms that mimic the human and virus
behaviors, our future research aims to carry out an in-depth,
systematic study, accompanied by rigorous tests and various
applications, bringing the following as elements of novelty
and originality:

13Copyright (c) IARIA, 2021. ISBN: 978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications

 New variants of the optimization algorithms inspired
by human, animal and virus behaviors;

 Combinations between different categories of
algorithms such as neural networks, support vector
machines, evolutionary algorithms, artificial immune
systems, etc., leading to new hybrid configurations
with improved performance, which can open new
perspectives for the advanced modeling and
optimization techniques;

 Association of the developed methodologies with
new real-world case studies;

 Innovative implementation of the proposed methods
by original software.

The new variants of the algorithms, including new
concepts, the hybrid configurations of the artificial
intelligence tools, and the use of bio-inspired modeling and
optimization methodologies for chemical processes can be
considered as new approaches, which open new fruitful
directions of research and applications in this field. At the
same time, the flexibility of the algorithms, the way in which
the implementations will be made, their possibilities of
adaptation, give them generality and, therefore, possibilities
to be applied in various other fields.

Possible applicative research directions derive from the
chemical processes considered as case studies for the
proposed algorithms. The results of the modeling and
optimization procedures provide useful information for
experimental and industrial practice, e.g.:

 They can substitute or better schedule the
experiments that are materials-, energy- and time-
consuming;

 They emphasize the maximum performance of the
systems and the conditions necessary to accomplish
them;

 These achievements bring important economic
benefits, as the use of the developed modeling and
optimization techniques represent an important stage
in optimal control engineering.

ACKNOWLEDGMENT

This work was supported by Exploratory Research
Projects PN-III-P4-ID-PCE-2020-0551, financed by
UEFISCDI.

REFERENCES

[1] F. Leon, B. I. Aignătoaiei, and A. D. Leca, “An Evolutionary
Optimization Framework for Intelligent Agents”, Proceedings
of the 15th International Conference on System Theory,
Control and Computing (Joint Conference SINTES 15,
SACCS 11, SIMSIS 15), 306-311, 2011.

[2] B. V. Babu and R. Angira, “Modified differential evolution
(MDE) for optimization of non-linear chemical processes”,
Comp. Chem. Eng., vol. 30, pp. 989–1002, 2006.

[3] S. Curteanu and F. Leon, “Optimization Strategy Based on
Genetic Algorithms and Neural Networks Applied to a
Polymerization Process”, International Journal of Quantum
Chemistry, vol. 108, pp. 617–630, Wiley Periodicals, USA,
2008.

[4] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer,
“Evolving objects: A general purpose evolutionary
computation library”, Artificial Evolution, vol. 2310, pp. 829–
888, 2002.

[5] Evolving Objects (EO): an Evolutionary Computation
Framework, http://eodev.sourceforge.net, 2012 [retrieved:
June, 2021].

[6] Genetic Algorithms Framework, http://sourceforge.net/
projects/ga-fwork, 2013 [retrieved: June, 2021].

[7] Watchmaker Framework for Evolutionary Computation,
http://watchmaker.uncommons.org, 2010 [retrieved: June,
2021].

[8] AForge.NET, “Genetic Algorithms Library”, http://www.
aforgenet.com/framework/features/genetic_algorithms.html,
2013 [retrieved: June, 2021].

[9] The SciPy community, “Optimization (scipy.optimize)”,
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.ht
ml, 2021 [retrieved: June, 2021].

[10] M. Berkelaar, K. Eikland, and P. Notebaert, “lpsolve, Mixed
Integer Linear Programming (MILP) solver”,
https://sourceforge.net/projects/lpsolve, 2021 [retrieved: June,
2021].

[11] MathWorks, “Optimization Toolbox”, https://www.
mathworks.com/products/optimization.html, 2021 [retrieved:
June, 2021].

[12] S. Luke et al., “ECJ 27, A Java-based Evolutionary
Computation Research System”, https://cs.gmu.edu/~eclab/
projects/ecj, 2019 [retrieved: June, 2021].

[13] A. J. Nebro, “jMetal, Metaheuristic Algorithms in Java”,
http://jmetal.github.io/jMetal, 2020 [retrieved: June, 2021].

[14] F. A. Fortin, F. M. De Rainville, M. A. Gardner, M. Parizeau,
and C. Gagné, “DEAP: Evolutionary Algorithms Made Easy”,
Journal of Machine Learning Research, vol. 13, pp. 2171–
2175, 2012.

[15] S. Wagner et al., “HeuristicLab, A Paradigm-Independent
and Extensible Environment for Heuristic Optimization”,
https://dev.heuristiclab.com/trac.fcgi/wiki, 2019 [retrieved:
June, 2021].

[16] R. Oldenhuis, “Test functions for global optimization
algorithms”, https://github.com/rodyo/FEX-testfunctions/
releases/tag/v1.5, 2021 [retrieved: June, 2021].

[17] L. Wang, H. Ni, R. Yang, M. Fei, and W. A. Ye, “Simple
Human Learning Optimization Algorithm”, Communications
in Computer and Information Science book series CCIS,
Springer Berlin, vol. 462, pp. 56–65, 2014.

[18] Z. Z. Liu, D. H. Chu, C. Song, X. Xue, and B. Y. Lu, “Social
learning optimization (SLO) algorithm paradigm and its
application in QoS-aware cloud service composition”,
Information Sciences, vol. 326, pp. 315–333, DOI:
10.1016/j.ins.2015.08.004, 2016.

[19] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching–
learning-based optimization: A novel method for constrained
mechanical design optimization problems”, Computer-Aided
Design, vol. 43, pp. 303–315, 2011.

[20] E. Fadakar and M. Ebrahimi, “A new metaheuristic football
game inspired algorithm”, 1st Conference on Swarm
Intelligence and Evolutionary Computation, CSIEC 2016
Proceedings, 6-11, 2016.

[21] A. V. Djunaidi and C. P. Juwono, “Football game algorithm
implementation on the capacitated vehicle routing problems”,

14Copyright (c) IARIA, 2021. ISBN: 978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications

International Journal of Computing Algorithm, vol. 7.1, pp.
45–53, 2018.

[22] R. Moghdani and K. Salimifard, “Volleyball Premier League
Algorithm”, Applied Soft Computing, vol. 64, pp. 161–185,
2018.

[23] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive
algorithm: an algorithm for optimization inspired by
imperialistic competition”, Evolutionary computation, CEC
IEEE Congress, 4661-4667, 2007.

[24] H. Shabani, B. Vahidi, and M. Ebrahimpour, “A robust PID
controller based on imperialist competitive algorithm for
load-frequency control of power systems”, ISA Transactions,
vol. 52, no. 1, pp. 88–95, 2013.

[25] S. Hosseni and A. Khaled, “A survey on the imperialist
competitive algorithm metaheuristics: implementation in
Engineering domain and directions for future research”,
Applied Soft Computing, vol. 24, pp. 1078–1094, 2014.

[26] P. Cortés, J. M. García, J. Muñuzuri, and L. Onieva, “Viral
systems: A new bio-inspired optimisation approach”,
Computers & Operations Research, vol. 35, pp. 2840–2860,
2008.

[27] M. Jaderyan and H. Khotanlou, “Virulence Optimization
Algorithm”, Applied Soft Computing, vol. 43, pp. 596–618,
2016.

[28] M. D. Li, H. Zhao, X. W. Weng, and T. Han, “A novel
nature-inspired algorithm for optimization: Virus colony
search”, Advances in Engineering Software, vol. 92, pp. 65–
88, 2016.

[29] S. J. D. Hosseini, M. Moradian, H. Shahinzadeh, and S.
Ahmadi, “Optimal Placement of Distributed Generators with
Regard to Reliability Assessment using Virus Colony Search
Algorithm”, International Journal of Renewable Energy
Research, vol. 8, 2018.

[30] H. Shahinzadeh, G. B. Gharehpetian, M. Moazzami, J.
Moradi, and S. H. Hosseinia, “Unit commitment in smart
grids with wind farms using virus colony search algorithm
and considering adopted bidding strategy”, Proceedings of
Smart Grid Conference (SGC), 1-9, 2017.

[31] Y. C. Liang and J. R. Cuevas Juarez, “Multilevel image
thresholding using relative entropy and virus optimization
algorithm”, IEEE Congress on Evolutionary Computation,
2012.

[32] Y. C. Liang and J. R. Cuevas Juarez, “A novel metaheuristic
for continuous optimization problems: Virus optimization
algorithm”, Engineering Optimization, vol. 48, pp. 73–93,
2015.

[33] Y. C. Liang and J. R. Cuevas Juarez, “Harmony search and
virus optimization algorithm for multi-objective combined
economic energy dispatching problems”, IEEE Congress on
Evolutionary Computation, 3947-3954, 2016.

[34] B. Peng, “Knowledge and population swarms in cultural
algorithms for dynamic environments”, Wayne State
University, 2005.

[35] L. Wang et al., “An adaptive simplified human learning
optimization algorithm”, Information Sciences, vol. 320, pp.
126–139, 2015.

[36] J. Cao, Z. Yan, X. Xu, G. He, and S. Huang, “Optimal power
flow calculation in AC/DC hybrid power system based on
adaptive simplified human learning optimization algorithm”,

Journal of Modern Power Systems and Clean Energy, vol. 4,
pp. 690–701, 2016.

[37] A. Naik, A., and S. C. Satapathy, “A comparative study of
social group optimization with a few recent optimization
algorithms”, Complex Intell. Syst. vol. 7, pp. 249–295, DOI:
10.1007/s40747-020-00189-6, 2021.

[38] R. Venkata Rao, “Review of applications of TLBO algorithm
and a tutorial for beginners to solve the unconstrained and
constrained optimization problems”, Decision Science Letter,
vol. 5, pp. 1–30, 2016.

[39] Z. Zhai, G. Jia, and K. Wang, “A novel Teaching-Learning-
Based Optimization with Error Correction and Cauchy
Distribution for Path Planning of Unmanned Air Vehicle”,
Computational Intelligence and Neuroscience, pp. 1–12, DOI:
10.1155/2018/5671709, 2018.

[40] Y. Kumar, N. Dahiya, S. Malik, and S. Khatri, “A new variant
of teaching learning based optimization algorithm for global
optimization problems”, Informatica, vol. 43, no. 1, 2019.

[41] Q. Zhang, G. Yu, and H. Song, “A hybrid bird mating
optimizer algorithm with teaching-learning-based
optimization for global numerical optimization”, Statistics,
Optimization & Information Computing, vol. 3, pp. 54–65,
2015.

[42] F. Zou, L. Wang, D. Chen, and X. Hei, “An Improved
Teaching-Learning-Based Optimization with Differential
Learning and Its Application”, Mathematical Problems in
Engineering, pp. 1–19, 2015.

[43] R. Moghdani, M. Abd Elaziz, D. Mohammadi, and N.
Neggaz, “An improved volleyball premier league algorithm
based on sine cosine algorithm for global optimization
problem”, Engineering with Computers, pp. 1–30, 2020.

[44] R. Moghdani, K. Salimifard, E. Demir, and A. Benyetton,
“Multi-objective volleyball premier league algorithm”,
Knowledge-Based Systems, vol. 196, no. 21, 2020.

[45] S. Talatahari, B. Farahmand Azar, R. Sheikholeslami, and A.
H. Gandomi, “Imperialist competitive algorithm combined
with chaos for global optimization”, Communications in
Nonlinear Science and Numerical Simulation, vol. 17, no. 3,
pp. 1312–1319, 2012.

[46] T. Niknam, E. T. Fard, N. Pourjafarian, and A. Rousta, “An
efficient hybrid algorithm based on modified imperialist
competitive algorithm and K-means for data clustering”,
Engineering Applications of Artificial Intelligence, 24, 2, pp.
306–317, 2011.

[47] M. A. Ahmadi, M. Ebadi, A. Shokrollahi, and J. M. S. Majidi,
“Evolving artificial neural network and imperialist
competitive algorithm for prediction oil flow rate of the
reservoir”, Applied Soft Computing, vol. 13, no. 2, pp. 1085–
1098, 2013.

[48] M. Hajihassani, D. J. Armaghani, A. Marto, and E. T.
Mohamad, “Ground vibration prediction in quarry blasting
through an artificial neural network optimized by imperialist
competitive algorithm”, Bulletin of Engineering Geology and
the Environment, vol. 4, pp. 873–886, 2015.

[49] C. Lu, X. Li, L. Gao, W. Liao, and J. Yi, “An effective multi-
objective discrete virus optimization algorithm for flexible
job-shop scheduling problem with controllable processing
times”, Computers & Industrial Engineering, vol. 104, pp.
156–174, 2017.

15Copyright (c) IARIA, 2021. ISBN: 978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications

