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Abstract—The present paper aims to control selective informa-
tion to understand the main mechanism of information processing
in multi-layered neural networks. We propose two types of
selective information, namely, individual and collective selective
information, or simply, individual and collective information. The
individual information represents to what degree a neuron is con-
nected specifically to another one, and it should be increased as
much as possible. Then, we try to use this abundant information
as impartially as possible, reducing the specificity of collective
neurons and reducing collective information. By controlling the
ratio of individual and collective information, we can realize a
number of different types of states to be interpreted, leading
to the interpretation of the inference mechanism. The method
was applied to the bankruptcy data set. In the experiments, we
successfully increased individual information and decreased col-
lective information. By examining partially compressed weights,
we could see how neural networks, by controlling the selective
information, can process information content in multi-layered
neural networks. This examination of information flow can lead us
to understand the main inference mechanism of neural networks.

Keywords—individual, collective, information, selectivity, partial
compression, interpretation, generalization

I. INTRODUCTION

The black-box property of neural networks, as well as
machine learning have caused much confusion in their applica-
tions, as well as model evaluation [1]–[6]. The black-box pre-
supposition for human intelligence has been one of the major
concerns in the possible introduction of machine learning into
our society [7]–[10]. From a certain viewpoint, the black box
is necessary, because the studies on human intelligence have
been so far very limited and premature. However, we think
that this confusion seems to be due to the different types of
objectives in model creation and application. When we try to
model human intelligence, our nervous systems, and cognitive
systems in terms of neural networks, it is absolutely necessary
to understand and interpret the main inference mechanism
inside. The objective of these types of studies is to reduce
the black-box properties as much as possible. This approach
was very active in the early stage of development of neural
networks, as has been well known in terms of connectionism
[11]–[14]. The neural networks were considered models to
create new information or knowledge by which we could
deepen the understanding our nervous and cognitive systems.

On the contrary, if we try to apply models to practical
problems, the objective is not necessary to understand human
intelligence or cognitive processes, but to apply well and

appropriately the models to practical problems naturally. From
this point of view, the recent development of neural networks,
as well as machine learning seem to be focused on the applica-
tion to the practical problems. For example, the Convolutional
Neural Networks (CNN) have been greatly developed recently,
but they have been based on the simplified models of visual
nervous systems [15]–[18], developed in the early seventies.
However, the simplicity of the models, inherited only partially
from the properties of our nervous systems [18], has made
it possible to improve their prediction performance in an
unexpected way. In other words, they have tried to extend
some parts of our visual nervous systems to many different
types of practical applications, keeping the main mechanism
of optical systems only partially known.

As mentioned above, those methods have aimed not to un-
derstand the main nervous systems but to improve recognition
and prediction performance, and the black-box property has
been not so serious as had been expected. Naturally, there have
been many attempts to interpret the inference mechanism in
the field of convolutional neural networks due to the urgent
need to respond to the right of explanation [9]. However, the
majority of methods have been focused on the individual inter-
pretation of neural networks for specific input patterns. Many
attempts have been made to examine what kind of features
among given input patterns are extracted in components of
neural networks [19]–[26]. Since we have not known the main
inference mechanism inside neural networks, all we can do
is to uncover partially and step by step the characteristics
related to specific input patterns. It should be repeated that this
prevailing approach is very natural, because the convolutional
neural network itself does not aim to clarify the human visual
nervous framework itself, but it tries to enhance the simple and
easily accessible parts of nervous systems as much as possible
to strengthen the model performance itself.

Thus, we can say that one of the main problems of
interpretation is that the objects to be interpreted have been
ambiguous. If our objective is to apply the model to practical
applications, the present models of interpretation, prevailing in
the convolutional neural networks, may be sufficient. But if we
try to understand the main mechanism of human intelligence
and cognitive processes in terms of neural networks, we should
think of a different type of interpretation.

Actually, there were serious attempts in neural networks
to understand the inference mechanism of living systems,
namely, the information-theoretic methods. One of the most
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important approaches is the maximum information preserva-
tion by Linsker [27]–[30]. He tried to understand the visual
nervous mechanism by supposing that neural networks try to
increase mutual information as much as possible. Then, from
this maximum information principle, he tried to explain the
actual phenomena observed in living systems. In terms of
model interpretation, maximum information preservation tried
to interpret human nervous systems in terms of information
storage and transmission in our neural systems.

Though this approach seemed to be a good starting point
for interpretation, the definition and computation of mutual
information inside cannot be necessarily and successfully used
in the field of neural networks. Though many different types
of methods have been developed so far [31]–[37], one of
the main problems is the too-abstract property of mutual
information, as well as other information measures applied to
the neural networks. Thus, if we try to understand the inference
mechanism in terms of information storage and transmission,
we need to make this abstract property of mutual information
more concrete and easily interpretable to be applicable to the
interpretation of neural networks.

We should repeat again that one of the major problems with
the Linsker-type maximum information preservation, when it is
applied to neural networks, is how to measure information con-
tent in concrete components in neural networks. The present
paper aims to realize the concept of mutual information in
more concrete ways. In mutual information maximization in
terms of neurons’ information processing, two contradictory
terms of entropy maximization and conditional entropy mini-
mization exist. Using more concrete terms, individual neurons
should respond very specifically to inputs, and at the same
time, those neurons should respond very uniformly to any
inputs on average or collectively. In living systems, neurons
should be used as equally as possible on average, and at
the same time, each neuron should respond as unequally as
possible individually. The living systems must cope with many
different types of new inputs and situations, and thus they need
to use any resources inside as much possible, and at the same
time, they need to know the properties of incoming inputs
as much as possible. Thus, this information maximization
principle states that the specific responses or larger information
to targets, should be compensated for by the uniform use of
components or smaller information from a collective point of
view. In other words, it is necessary to have larger information,
but this larger information should be distributed over as many
components as possible.

Let us apply this knowledge of living systems from an
information-theoretic view more concretely to neural networks.
We suppose here that the information content is concretely
measured in the selectivity of components such as neurons and
connection weights. When we try to measure information con-
tent in neural networks, the selectivity of components should
play an important role. Thus, information on inputs is stored
and transmitted in terms of selectivity of components. When
the selectivity of neurons toward inputs becomes higher, we
should say that the neurons tend to have more information on
inputs. Thus, we need to define the selectivity of components
and how to control it.

The importance of selectivity in actual living systems, the
interpretation methods, and in the field of improved gener-

alization has been already pointed out. First, for actual living
systems, it has been said that the selectivity should play an im-
portant role, discussed in the literature on neural sciences [38]–
[44]. Second, as mentioned above, in the field of convolutional
neural networks, to address the right to the explanation [9], a
number of attempts have been made to interpret information
processes in the networks. We think that the majority of
methods have been based on the selectivity of components
of neural networks [45]. Roughly speaking, the majority of
interpretation methods have tried to determine which parts
or components in multi-layered neural networks represent the
distinctive or common features of input patterns. In other
words, they have tried to determine which parts or components
try to respond to inputs selectively. The interpretation of neural
networks in this case corresponds to the determination of
specific components for specific inputs. Third, though the
paper does not deal with generalization, we should note that
that generalization is directly related to the selectivity of
components [45]–[50]. For example, when a neuron responds
too specifically to some inputs, generalization performance
cannot be improved, because it cannot respond appropriately
to ambiguous input patterns. For improving generalization, we
need to weaken the specific responses of neurons naturally.

This consideration leads us to say that the selectivity should
be appropriately controlled in living systems for coping with
uncertain conditions. Thus, we need to understand how this
selectivity can be controlled in living systems and how they
try to deal with uncertain conditions and unseen situations.
The present paper aims to control the selectivity or selective
information to explore how information should be stored and
transmitted in neural networks.

One of the main hypotheses in this paper is to suppose
that there is a variety of types of selectivity, and we should
control those variants to cope with coming unseen inputs .
In this paper, we suppose two types of selective information,
namely, individual and collective selective information, or
more simply, by eliminating the word “selective,” individual
and collective information. Individual information represents
how much a component responds to an input specifically,
namely, the information content an individual component has.
On the contrary, collective information represent information
pooled collectively by many neurons. Individual and collective
information in neural networks are not necessarily in harmony
with each other as is the case with human society. Thus, we
need to make a compromise between individual and collective
information in actual neural learning.

For simplicity’s sake, we suppose here that individual in-
formation is naturally information on a specific and individual
input, and it should be increased as much as possible. On
the contrary, regarding collective information, it is supposed
that we to collect as much information as possible on any
inputs, and thus it is necessary for collective information to
be as non-specific as possible to inputs. More technically,
we suppose that individual information should be increased,
while collective information should be decreased as much as
possible. Then, we should try to examine what properties
can be extracted when controlling two types of selective
information.

As mentioned above, the maximum information principle
by Linsker does not necessarily state that information should
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be simply maximized. Information in the individual level can
be increased under the condition that, in the collective level,
information should be decreased. More concretely, information
increase for individual components must be compensated for
by information decrease from a collective point of view. In
complex living systems, there are many different types of
contradictions, where a contradiction can be resolved in a level,
but in another level, the contradiction can be stronger. Thus,
for the maximum information principle, we need to develop a
composite information function by which information can be
increased and decreased at the same time.

The present paper does not simply increase the selectivity
of components. We try to control the selectivity of compo-
nents individually and collectively. Then, we try to examine
how information is stored and transmitted by changing the
selectivity individually and collectively. We try to understand
the main information processing mechanism in multi-layered
neural networks by which we can explain the generation of
individual inference mechanisms for different input patterns.

The paper has been organized as follows. In Section 2, we
present how to compute two types of selective information,
namely, individual and collective information. Then, we try to
present how to modify connection weights by changing the
ratio of individual to collective information. This method to
modify connection weights is called “selective information-
driven learning.” Then, to understand the information flow
in multi-layered neural networks, we show how to compress
multi-layered neural networks step by step, namely, partial
compression. In Section 3, we applied the method to the
bankruptcy data set. In the experiments, we tried to show
that the selective information could easily be controlled, and
this control was directly related to which parts of infor-
mation were obtained by multi-layered neural networks. By
changing the ratio, we could produce compressed networks
whose connection weights were quite similar to the original
correlation coefficients between inputs and targets. In addition,
we could extract and choose a few weights necessary only
for prediction. The results show that the selective information
control can generate more interpretable networks by which we
can understand how information is processed in a multi-layered
neural network.

II. THEORY AND COMPUTATIONAL METHODS

This section describes the selective information with indi-
vidual and collective information. Then, we explain how to
compress fully and partially networks into the simplest ones.

A. Selective Information Control

As discussed above, information contained in neural net-
works can be represented in terms of selectivity or selective
information in their components. Thus, selective information
is supposed to represent information content stored and trans-
mitted in neural networks. Depending on given objectives,
we need to control selective information appropriately, cor-
responding to the information control in neural networks. For
example, too much selectivity of components is not good for
responding to new inputs, but it is needed to specify the roles of
components for the interpretation. In addition, for the efficient
use of components, we need to treat those components as

equally as possible. This means that we need to reduce the
selectivity of components when we try to use the resources
of components as much as possible. Then, the selectivity of
components should be reduced, where each component should
have equal importance collectively. Thus, we suppose that the
selective information should be increased when components
are treated individually. On the contrary, when they are treated
collectively, the selectivity should be reduced.

For realizing this situation, we suppose two type of selec-
tive information. In one type of selective information, called
“individual information,” the information should be increased
as much as possible. Each component should respond very
specifically to inputs. On the contrary, in the other type
of selective information, called “collective information,” the
information should be decreased as much as possible. All
components should have the same importance; that is, all
components should respond equally to inputs. By mixing these
two types of information, we can control the selectivity of
components. Naturally, it is not so easy to maximize and at the
same time minimize the selective information in the same level.
However, the selective information increase and decrease are
performed in different levels, namely, individual and collective
ones, and it is possible to make a compromise between two
types of different selectivity control.

B. Individual Information

We explain here how to compute individual information.
The individual information measures how much a neuron is
connected with the corresponding one specifically. For this,
we use a network architecture shown in Figure 1, in which
the number of layers is seven, including the first input and the
last seventh output layer. For simplicity’s sake, we define them
by connection weights between the second and third layer and
neurons in the third layer in Figure 1. In our experiments,
we tried to control the selective information only for hidden
layers, because it is easy to do it in the hidden layers due to
less input and output information.

First, the strength of connection weights can be computed
by the absolute value

u
(2,3)
jk =| w(2,3)

jk | (1)

where (2, 3) denotes a transition from the second to the
third layer. This strength denotes the strength of connecting
a neuron with the other specific one. Because the strength is
changeable, depending on different neurons, we normalize it
by its maximum value

z
(2,3)
jk =

u
(2,3)
jk

maxk′ u
(2,3)
jk′

(2)

By this normalized strength, we have individual information
for the jth neuron

h
(2,3)
j = n3 −

n3∑
k=1

z
(2,3)
jk (3)

where n3 is the number of neurons in the third layer. This
individual information increases when the number of stronger
neurons decreases. Finally, when a neuron is connected only
with one specific neuron, the selective information becomes

29Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications



maximum (n3 − 1) in Figure 1(a). On the contrary, when the
neuron is connected equally with all neurons, the selective
information becomes minimum (zero) in Figure 1(b). When all
connection weights are zero, the selective information should
be zero by definition, because all connection weights have the
same value of zero.

For the overall property of this selective information, by
averaging it, we have the final individual information

h(2,3) =
1

n2

n2∑
j=1

h
(2,3)
j (4)

This individual information roughly corresponds to conditional
entropy in mutual information. However, this definition of
information in terms of selectivity is more easily interpreted.
Finally, we should note that, when we try to control the
individual information, we should change weights according
to the normalized value of zjk.

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(a)  Maximum selectivity

(b)  Minimum selectivity 

Fig. 1. Individual information with maximum (a) and minimum (b)
selectivity.

C. Collective Information

We increase individual information and at the same time
decrease the collective information. This is because we try to
use all components as equally as possible for their efficient
use, but we try to understand the meaning of each component
as much as possible for interpretation. Simultaneous infor-
mation maximization and minimization has difficulty for a
compromise to be made between them. However, when those
contradictory operations are performed in different levels,
namely, individually and collectively , it is possible to do it.

Then, the collective information should denote informa-
tion, independently of specific neurons, as well as connection
weights. Thus, as shown in Figure 2(a) for the collective
information, we sum the strength of connection weights

u
(2,3)
k =

n2∑
j=1

u
(2,3)
jk (5)

where n2 denotes the number of neurons in the second layer.
The normalized strength is computed by

v
(2,3)
k =

u
(2,3)
k

maxk′ u
(2,3)
k′

(6)

Using this normalized strength, collective information is de-
fined by

g(3) = n3 −
n3∑
k=1

v
(2,3)
k (7)

When this collective information, all connection weights to the
corresponding neurons in the third layer becomes stronger, as
shown in Figure 2(a). On the contrary, when the information
decreases, all connection weights to the neurons become equal,
as shown in Figure 2(b). As mentioned above, all connection
weights happen to be very strong when the information is
maximized, as shown in Figure 2(b). Thus, we need to reduce
the strength of weights as much as possible for the minimum
information states shown in Figure 2(c). Collective information
minimization is a good candidate for information minimiza-
tion, because this minimization aims to make all connection
weights equal only collectively, meaning that some weights
may be relatively stronger. This property can be good at
compromising between individual and collective information.

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(a)  Maximum selectivity

(b)  Minimum selectivity 

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(c)  Minimum selectivity 

Fig. 2. Collective information with maximum selective information (a) and
minimum selective information (b) and (c).

D. Selective Information-Driven Learning

We must control two types of selective information by ac-
tually changing the weights. However, to control the selective
information, all we have to do is to change weights by the
normalized strength of connection weights z and v. For this
purpose, we introduce a composite measure, combining the
normalized strength of weights

d
(2,3)
jk = αz

(2,3)
jk + ᾱv̄

(3)
k (8)

where parameter α ranges between zero and one, ᾱ = 1− α,
and v̄ = 1 − v. When the parameter α increases, the effect
of individual information increases. On the contrary, when the
parameter α decreases and ᾱ increases, the effect of collective
information increases. When the effect of ᾱ increases, the
strongest weights are forced to be smaller, keeping smaller
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ones relatively the same. Eventually, all connection weights
become equal and smaller.

Then, for the connection weights from the second to the
third layer in the tth learning step, the weights are changed
simply by

w
(2,3)
jk (t+ 1) = d

(2,3)
jk (t) w

(2,3)
jk (t) (9)

When the composite measure d is applied, weights should
be updated with the normal error minimization method to
assimilate the effect of the composite measure.

E. Partial Compression

To examine more carefully the information flow by the
selective information control, we try to see how connection
weights are changed when going through multiple hidden
layers. For this purpose, we introduce partial compression,
where an original multi-layered neural network is gradually
compressed into the simplest one without hidden layers for
interpretation. For simplicity’s sake, the number of neurons
in any hidden layers was the same. This assumption of an
equal number of neurons in hidden layers does not necessarily
mean that we do not consider a different number of neurons
in hidden layers. The reduction in the number of neurons can
be actually realized by suppressing the number of connection
weights by the present method.

Figure 3 shows how to compress a multi-layered neural
network step by step. In the first partial compression, as shown
in Figure 3(a), we immediately compress the input and output
layers, skipping all hidden layers,

w
(1,7)
iq =

n6∑
q=1

w
(1,2)
iq w(6,7)

qr (10)

This shows only information contained in the input and output
layers.

Then, we suppose that two connection weights from the
first to the second layer, represented by (1,2), and between the
second and the third layer, represented by (2,3), are combined
into

w
(1,2,3)
ik =

n2∑
j=1

w
(1,2)
ij w

(2,3)
jk (11)

where (1,2,3) represents compression that is performed up to
the second layer. In the second compression in Figure 3(b), we
combine this compressed weight with the final output layer

w
(1,3,7)
ir =

n6∑
q=1

w
(1,2,3)
iq w(6,7)

qr (12)

where (1,3,7) denotes that compression is performed up to the
third layer. We compress the remaining connection weights
in the same way in Figure 3(c) and (d), and finally, we can
compress all layers into the simplest ones in Figure 3(e)

w
(1,6,7)
ir =

n6∑
q=1

w
(1,6,6)
iq w(6,7)

qr (13)

where (1, 6, 7) shows that compression is performed up to
the sixth layer, namely, full compression. Those compressed
weights aim to represent the main characteristics of overall

connection weights. The compressed weights can be computed
by multiplying connection weights of all routes from an input
to the corresponding output.

(1) i
(2) j

(1) i

(3) k 

(1) i
(2) j

(4) l 

(1) i
(2) j (3) k 

(5) 

(1) i
(2) j (3) k (4) l 

(6) q

(7) r

(6) q

(7) r

(6) q

(7) r

(6) q

(7) r

(6) q

(7) r

(1)

(1)

(1)

(1)

(1)

(a)

(b)

(c)

(d)

(e)

(1) i
(2) j (3) k (4) l (5) (6) q

(7) r

(7)

(7)

(7)

(7)

(7)

Fig. 3. Network architecture with seven layers, including five hidden layers
(a) to be compressed step by step into the simplest ones (b)-(e).

III. RESULTS AND DISCUSSION

This section present the experimental results applied to the
bankruptcy data set, in which we tried to show that individual
and collective information could be controlled to capture
input or output information. In addition, behind complicated
connection weights, we could find very simple, independent,
and individual relations between inputs and outputs.

A. Results of Bankruptcy Data Set

1) Experimental Setting: The experiment aimed to predict
bankruptcy by six qualitative input variables: industrial risk,
management risk, financial flexibility, credibility, and operating
risk [51]. As shown in Figure 4, the number of input, hidden,
and output neurons was 6, ten, and one, and the number of
hidden layers was ten. We used the partial compression in
which compression was performed step by step by multiplying
connection weights in higher hidden layers as shown on the
lower side of the figure in Figure 4. The number of input
patterns was 250, where 70 percent and the remaining 30
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(1) (2) (3)

(12)

(4) (5) (6) (7) (8) (9) (10) (11)

(a) Original network

(b) Partial Compression

(1)(1)

(12) (12) (12)

(1)

6 10

(1,2,12) (1,3,12) (1,11,12)

Fig. 4. Network architecture (a) and a process of partial compression (b)
for the bankruptcy data set. The notation (1,2,12) denotes that compression is
applied up to the second layer.

percent of the data set was for training and testing. The
generalization performance was almost perfect by the present
method, as well as the other conventional methods such as
logistic regression and random forest. However, connection
weights and other importance measures were different by
different methods. Thus, this is a good benchmark data set
for comparing the final representations by different methods.
We used the scikit-learn neural network package with almost
all parameters set to default values, except for the number of
epochs and tangent-hyperbolic activation function, for making
the reproduction of the present results as easy as possible.
In addition, the effect of selective information is forced to
be applied many times (up to 5 times), in direct proportion
to the number of learning epochs. This property tended to
make connection weights extremely large or small due to the
repeated assimilation procedures. Thus, we reduced the effect
of selective information as follows:

d
(2,3)
jk = θ

[
αz

(2,3)
jk + ᾱv̄

(3)
k

]β
(14)

Newly added parameters θ and β were used only for reducing
the excessive effects of selective information by repeating the
assimilation processes (up to 5 times). The actual values of
the parameter θ and β were 0.99 and 0.9, respectively.

2) Selective Information Control: In the first place, we try
to show that the present method can decrease collective infor-
mation and at the same time increase individual information
by changing the parameter α. Figure 5 shows collective and
individual information and the ratio of individual to collective
information for the last hidden layer, namely, from the tenth
to the eleventh layer for the bankruptcy data set. We chose the
most typical hidden layer, where selective information could
be controlled the most explicitly by the present method. As
shown in Figure 5(a1), collective information increased very
slightly, and individual information increased immediately in
the first place and remained almost the same in the later
stages of the learning steps. Thus, the ratio of individual to
collective information stayed almost the same throughout the
entire learning steps. This can be explained by the fact that,
when the parameter was one, only individual information was
forced to be increased. When the parameter decreased from 0.9
(b) to 0.7 (d), individual information was forced to increase

Steps Steps Steps

Steps Steps Steps

Steps Steps Steps

Steps Steps Steps

Steps Steps

Steps

Steps

(a) 1

(b) 0.9

(c) 0.8

(d) 0.7

(e) 0.6

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

Steps Steps

(f) Conventional(e1) (e2) (e3)

Fig. 5. Collective information (1), individual information (2), and the ratio
of individual to collective information (3) when the parameter decreased from
1 (a) to 0.6 (e), and the conventional method (f) for the bankruptcy data set.

more slowly. Collective information gradually decreased, and
the ratio of collective to individual information increased
gradually. In particular, when the parameter was 0.6 in Figure
5(e3), the ratios increased considerably when the learning
steps increased. However, we could see some fluctuations,
showing difficulty in controlling two types of information.
Note that, when the parameter was increased further, we could
not obtain stable results. Finally, without information control,
no changes in selective information and its ratios could be seen
in Figure 5(f). These results show that the present method can
control two types of selective information, where collective
information can be decreased, and at the same time, individual
information can be increased, though some difficulty could be
seen when the parameter was forced to be smaller and we must
compromise between individual and collective information.
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(a) 1

(b) 0.9

(c) 0.8

(d) 0.7

(e) 0.6

(f) Conventional

Fig. 6. Weights when the parameter decreased from 1 (a) to 0.6 (e) and by
using the conventional method (f) for the bankruptcy data set.

Figure 6 shows connection weights for all hidden layers
when the parameter decreased from 1(a) to 0.6(e). When the
parameter was one in Figure 6(a), many strong connection
weights were scattered. When the parameter decreased from
0.9 in Figure 6(b) to 0.7 in Figure 6(d), a neuron in the
preceding layer tended to be connected with all neurons in the
subsequent layer. In particular, the final connection weights
from the tenth to the eleventh layer, located in the rightmost
column, shows the most typical state. This tendency tended
to prevail for all layers when the parameter decreased to 0.6
in Figure 6(e). This means that, when collective information
is forced to decrease, a specific neuron tends to be connected
with all neurons in the subsequent layer. Collective information
minimization can be realized by connecting a neuron with as
many different neurons as possible. Finally, when we did not
use selective information, little regularity could be seen over
connection weights in Figure 6(f). However, we could see
the same tendency, that neurons in the precedent layers were
connected with ones in the subsequent layers. The selective
information method seems to enhance this tendency.

3) Compressed Weights: We show here that the compressed
weights from the original multi-layered neural networks were
very close to the original correlation coefficients between
inputs and targets of the data set, meaning that the method
could disentangle connection weights to get individual and
independent relations between inputs and outputs.

Figure 7(a) shows the correlation coefficients between
inputs and targets of the original data set. Figures 7 (b) to
(f) show compressed weights when the parameter decreased
from 1 to 0.6. In addition, Figure 7(h) shows the regression
coefficients of the logistic regression analysis. Those com-
pressed weights and regression coefficients were quite similar
to each other, and they were close to the original correlation
coefficients between inputs and outputs in Figure 7(a). On

I(a) Original Correlation (b) 1 (c) 0.9

(d) 0.8 (e) 0.7 (f) 0.6

(g) Conventional (h) Logistic (i) Random forest

Inputs Inputs Inputs

Inputs Inputs Inputs

Inputs Inputs Inputs

Fig. 7. Correlation coefficients between inputs and targets in the original data
set (a) and compressed weights when the parameter α decreased from 1 (b) to
0.6 (f) and by the conventional method without selective information control
(g), and the regression coefficients by the logistic regression analysis (h) and
prediction importance (i) by the random forest method for the bankruptcy data
set.

the contrary, the conventional method without the selective
information produced compressed weights different from the
original correlations and regression coefficients in Figure 7(g).
This means that the selective information control can be used
to disentangle connection weights and to produce individual
and independent relations between inputs and outputs. Finally,
Figure 7(i) shows the prediction importance by the random
forest method, where the importance was all positive, because
the method could not deal with the negative values.

4) Partially Compressed Weights: Then, we tried to par-
tially compress connection weights to examine how neural
networks tried to extract information when the hidden layer in-
creased. The principal finding was that individual information
tended to deal with information from outputs, while collective
information tended to focus on information from inputs.

Figure 8(a) shows compressed weights for all layers when
the parameter was one and only individual information was
forced to be increased. Weights were partially and step by step
compressed from the top- left to the bottom-right box. The
top-left compressed weights were ones obtained by combining
only input and output layers, and the bottom-right weights
were obtained by compressed all connection weights of all
layers, namely, full compression. As can be seen in the figures,
partially compressed weights were small when we compressed
weights up to the sixth layer, when the compressed weights
became slightly stronger. Finally, we could obtain the final
compressed weights by the full compression (bottom-right).
This means that neural networks cannot extract necessary
information up to the final layer, which suggests that the
individual information is dependent on the acquisition of
output information.
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Figure 8(b) shows partially compressed weights when the
parameter was set to zero and only collective information
was used. Note that, when the parameter was set to zero, the
neural networks could not finish the learning, producing large
errors for the outputs. Thus, the results were used to show
the effects of collective information minimization as clearly as
possible. As can be seen in the figure, only when connection
weights in the input and output layers were compressed (top-
left), we could obtain strong connection weights, while in all
the other cases, the compressed weights were very small. As
was mentioned, the learning failed, because information from
inputs could not be transmitted to the final layer.

Figure 8(c) shows partially compressed weights by the
conventional method without selective information. As can be
seen in the figure, only when all connection weights in all
layers were compressed (bottom right) were strong compressed
weights obtained. This seems to us that the conventional
method focused on information from outputs. As shown in
Figure 8(a), individual information maximization also showed
the same tendency of focusing toward output information.

These results show that the conventional method, as well
as individual information can produce the final compressed
weights only when all information goes through all hidden
layers. On the other hand, the collective information has a
property to detect some information in the early stages of
multi-layers. From these experimental results, we can infer
that we can obtain different types of internal representations
by focusing on input or output information.

IV. CONCLUSION AND FUTURE WORK

The present paper aimed to propose a new type of
information-theoretic method to control the selectivity of
components of neural networks. To interpret the process of
information storing and transmission of neural networks, we
need to control the selectivity of components, or selective
information. Only by controlling the selective information can
we interpret the information processing of neural networks
and thus interpret the main inference mechanism of neural
networks. We prepared two types of selective information:
individual and collective information. By the ratio of the two
types of selective information, we tried to explore the main
information processing mechanism. The method was applied
to the bankruptcy business data sets. The experimental results
showed that individual and collective information could be
controlled by the present method. With this control, we could
see how neural networks try to capture input information or
output information differently. In addition, the results showed
that, behind seemingly complicated representations in multi-
layered neural networks, very simple, individual, and indepen-
dent relations could be observed. It can be expected that the
complicated representations in the surface level can be trans-
formed from those simple basic representations. We should say
that it is possible to transform complicated neural networks
into the simple ones, whose basic structure can be easily
interpreted, and the structure can be easily transformed to
produce a variety of surface and complicated representations.

Finally, this paper was concerned with the interpretation,
but it is better to unify the problem of interpretation with im-
proved generalization performance. Thus, we need to propose

(a) 1

(b) 0

(c) Conventional

Fig. 8. Partially compressed weights when the parameter was 1 (a) and
0 (b), and the conventional method without selective information (c) for the
bankruptcy data set.

a method to interpret the inference mechanism, followed by
improved generalization.
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